首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Traditional instruments used to evaluate dough and/or gluten rheological properties do not provide unambiguous separation of elastic and viscous behaviors. Recovery after shear creep and cyclic large deformation cyclic tensile testing were used here to decouple elastic and viscous effects. A large variation in the recoverable shear strain (∼7.2% to ∼28%) was seen for glutens from 15 U.S. popular common wheat cultivars with varying HMW subunits. Sedimentation values ranged from 29 to 57 ml for 12 hard wheat cultivars and 15 to 22 ml for three soft wheat cultivars. The tensile force at 500% extension ranged from 0.12 to 0.67 N for hard wheat glutens and from 0.10 to 0.20 for soft wheat glutens. However, the recoverable work after large extension was less than 40% of the total work of extension. In addition, recoverable work in tensile testing was highly correlated with the total work of extension (r2 = 0.97) and mixograph mix times (r2 = 0.81). Good to excellent bread volume was obtained for several cultivars from this sample set. This suggests that optimizing water absorption for mixing doughs to achieve maximal bread volume compensates for the wide range of viscoelastic behaviors of gluten.  相似文献   

2.
为明确不同类型小麦的面粉改良方案,为我国优质面包专用粉的生产提供理论与技术支持,以三个筋力不同的小麦品种宁麦13、扬麦16和郑麦9023为材料,通过洗面筋法提取各供试材料的湿面筋,将其冷冻干燥后按照7%、8%、9%、10%、11%的添加比例与各自面粉进行配比,对配粉的面包烘焙品质、面粉理化性质和面团流变学特性进行了测定分析。结果发现,随着面筋蛋白添加量的提高,配粉的蛋白质、湿面筋、谷蛋白大聚体(GMP)含量和沉降值逐步上升;粘度参数和面团弱化度有所下降;糊化温度和糊化时间呈上升趋势。在同一添加量下,强筋小麦的烘焙品质和面粉理化性质始终优于中筋小麦和弱筋小麦。随着面筋蛋白添加量的提高,面包体积、弹性、回复性、内聚力增大,而硬度、咀嚼性减小,感官品质得到改善。面筋蛋白添加量超过一定范围(宁麦13、扬麦16添加9%,郑麦9023添加8%),面包品质改良效果变缓,且色泽不断加深。综上所述,适量添加面筋蛋白可改变面粉的理化性质,提高其面包烘焙品质;配粉的蛋白质含量为18%左右是最经济的面包烘焙品质改良方案。  相似文献   

3.
Traditional instruments used to evaluate dough and/or gluten rheological properties do not provide unambiguous separation of elastic and viscous behaviors. Recovery after shear creep and cyclic large deformation cyclic tensile testing were used here to decouple elastic and viscous effects. A large variation in the recoverable shear strain (∼7.2% to ∼28%) was seen for glutens from 15 U.S. popular common wheat cultivars with varying HMW subunits. Sedimentation values ranged from 29 to 57 ml for 12 hard wheat cultivars and 15 to 22 ml for three soft wheat cultivars. The tensile force at 500% extension ranged from 0.12 to 0.67 N for hard wheat glutens and from 0.10 to 0.20 for soft wheat glutens. However, the recoverable work after large extension was less than 40% of the total work of extension. In addition, recoverable work in tensile testing was highly correlated with the total work of extension (r2 = 0.97) and mixograph mix times (r2 = 0.81). Good to excellent bread volume was obtained for several cultivars from this sample set. This suggests that optimizing water absorption for mixing doughs to achieve maximal bread volume compensates for the wide range of viscoelastic behaviors of gluten.  相似文献   

4.
The gluten polymerization behavior, water content, starch crystallinity and firmness of Chinese steamed bread made from frozen dough were investigated and their correlations were also established in this study. The decreased degree of gluten polymerization in steamed bread was observed by the enhanced SDS-extractable proteins (SDSEPs) upon frozen storage. Less incorporation of glutenin in the glutenin–gliadin crosslinking of steamed bread mainly contributed to the decreased degree of gluten polymerization. The decreased moisture of steamed bread had a significant negative correlation with the sublimated water in frozen dough (r = −0.8850, P < 0.01). Frozen storage also induced an increase in starch crystallinity and bread firmness. A multiple linear regression model with SDS-extractable proteins, water content and melting enthalpy of starch crystals of steamed bread accounted for 86% of the variance in the natural logarithm of firmness and further revealed that starch crystallinity mainly contributed to bread firmness.  相似文献   

5.
There is a need to develop more sensitive and reliable tests to help breeders select wheat lines of appropriate quality. Gluten thermostability, measured by the viscoelasticity of heated gluten, was assessed for its usefulness in evaluating quality of wheats in breeding programs. Two sets of wheat samples were used: Set I consisting of 20 cultivars and/or breeders' lines (BL), with diverse dough strengths and allelic variations of high Mr glutenin subunits coded at the Glu-A1, Glu-B1 and Glu-D1 loci (N=20) and Set II consisting of 16 near isogenic BL of F7 generation that had been in a quality selection program for three years. Thermostability of the isolated wet gluten was determined by measuring its viscoelastic properties, and was related to noodle texture, flour protein content, protein composition, dough physical properties and other quality predicting tests.Viscoelasticity of heat-treated gluten, isolated with 2% NaCl solution, significantly correlated with most of the tests used to measure dough and/or gluten strength and Chinese white salted noodle texture. The rate of thermal denaturation of proteins depends on Mr and packing density. High ratios of monomeric proteins such as gliadins and low Mr glutenin subunits to high Mr glutenin subunits increase the thermostability of the gluten. The measurement of viscoelasticity of heat-denatured gluten can be a useful test to determine gluten quality. Our study showed that gluten viscoelasticity and most of the tests related to dough and/or gluten strength are independent of allelic variations of the high molecular weight glutenin subunits. This test has been developed for predicting white salted noodle quality.  相似文献   

6.
Durum wheat (Triticum turgidum L. var. durum) is used predominantly for pasta products, but there is increasing interest in using durum for bread-making. The goal of this study was to assess the bread-making potential of 97Emmer19, an Emmer wheat (Triticum turgidum L. var. dicoccum) and in breeding lines derived from crosses of 97Emmer19 with adapted durum wheat cultivars. 97Emmer19 and its progeny were evaluated in 2005 and 2006 along with five durum wheat cultivars. Three bread wheat (Triticum aestivum L.) cultivars were included as checks to provide a baseline of bread making quality observed in high quality bread wheat cultivars. 97Emmer19 exhibited higher LV than all the durum wheat checks and approached the LV achieved with the bread wheat cultivar ‘AC Superb’. Breeding lines derived from 97Emmer19 had higher LV than those of the durum wheat checks, confirming that this trait was heritable. In general, durum wheat cultivars with elevated gluten strength and/or increased dough extensibility were noted to have higher LV. Dough extensibility appeared to be a more critical factor as gluten strength increased. These results indicate that there is potential to select for genotypes with improved baking quality in durum breeding programs.  相似文献   

7.
Arabinoxylans (AXs) are the major dietary fiber (DF) component in wheat and their consumption has been associated with several health benefits. Genetic improvement of the AX in refined wheat flour could be a good solution to improve the DF daily consumption while maintaining the flour desirable quality. In this study, 193 common wheat lines were analyzed for their AX content in refined flour and end-use quality. Wide variation in both the total arabinoxylan (TOT-AX) (10.8–16.5 mg/g) and water-extractable arabinoxylan (WE-AX) (3.2–7.6 mg/g) was identified and, in both cases, the genotype had the greatest impact on the observed phenotypes. Variation in the endogenous AX fractions appeared to have a moderate effect on wheat quality. The WE-AX, specifically, were positively correlated with gluten strength (r = 0.11 to 0.32) and bread loaf volume (r = 0.16), whereas the TOT-AX were negatively correlated with dough extensibility (r = −0.11) and bread making quality (r = −0.11). Overall, results of this study show that the genetic improvement of grain AX is feasible and that the AXs present in refined flour do not dramatically alter wheat quality indicating that it is possible to select varieties with high AX endosperm content end desired end-use quality.  相似文献   

8.
Gluten extracted from fresh pasta by-products (PG) was enzymatically hydrolyzed by two different commercial proteases (Alcalase 2.4 L and Pancreatin) to different degrees of hydrolysis (DH 2.0, 4.0 and 8.0%). Commercial gluten (CG) was used as reference. The evaluation of functional properties of hydrolyzates from pasta gluten (PGH) and commercial gluten (CGH) showed that Pancreatin hydrolyzates had the highest emulsifying capacities. Regarding the foaming activity, all hydrolyzates performed better than unhydrolyzed gluten. PGH and CGH were added to wheat flour (1%) and their effects on dough rheology were studied. Most hydrolyzates with DH 8% increased dough thermal stability and elasticity during mixing, accelerated the denaturation rate of the protein network, and delayed the gelatinization speed of starch as the temperature increased. Texture profiles and specific volumes of breads from low quality wheat flour with added Pancreatin hydrolyzates (DH 8%) were comparable to those of breads from high quality flour. This showed the potential suitability of PGH and CGH as bread improvers.  相似文献   

9.
A rising global population necessitates continued genetic improvement of wheat (Triticum spp.), but not without monitoring of unintended consequences to processors and consumers. Our objectives were to re-establish trends of genetic progress in agronomic and milling traits using a generational meter stick as the timeline rather than cultivar release date, and to measure correlated responses in flour quality and human wheat-sensitivity indicators. Grain yield and kernel size showed stepwise increases over cycles, whereas wheat protein content decreased by 1.1 g/100 g. Reduced protein content, however, did not result in lower dough strength pertinent to bread baking. A novel method of directly testing gluten elasticity via the compression-recovery test indicated a general increase in gluten strength, whereas the ratio of total polymeric to total monomeric proteins remained stable. Also showing no change with genetic progress in yield were flour levels of gluten epitopes within the key immunotoxic 33-mer peptide. The oligosaccharide fructan, present in milled and wholemeal flours, increased with increasing grain yield potential. While yield improvement in U.S. bread wheat was not accompanied by a decline in gluten strength or systematic shift in a key wheat sensitivity parameter, the unanticipated rise in total fructans does implicate potentially new dietary concerns.  相似文献   

10.
The effects of particle size of granulars (semolina and flour combined), gluten strength, protein composition and fermentation time on the breadmaking performance were compared for eleven durum wheat genotypes of diverse strength from North America and Italy grown in the same environment. All genotypes were γ-gliadin 45 types (low-molecular weight glutenin subunit 2 patterns) associated with superior pasta-making quality. Three cultivars with high-molecular weight glutenin subunit 20 exhibited relatively weak gluten, confirming that this subunit is associated with weakness in durum wheat. Gluten strength as measured by a range of technological tests was directly and strongly related to the proportion of insoluble glutenin (IG) in granulars protein as determined by a spectrophotometric procedure. Reducing the particle size of granulars by gradual reduction shortened development time in both the farinograph and mixograph. Reducing granulars also increased starch damage and, accordingly, farinograph water absorption, but remix-to-peak baking absorption was unaffected due to increased fermentation loss for finer granulars. Neither loaf volume, nor remix-to-peak mixing time were affected by the particle size of the granulars indicating that regrinding is not an asset for baking provided there is adequate gassing power. Loaf volume was directly related to gluten strength and IG content, and inversely related to residue protein, a non-gluten containing fraction. When fermentation time was reduced from the standard 165 to 90 min and 15 min, all genotypes exhibited a progressive increase in loaf volume. Therefore, regardless of strength, short fermentation time is preferred when high volume durum wheat bread is desired. Some of the stronger durum genotypes exhibited remix-to-peak bread volume comparable to that expected of good quality bread wheat, indicating that there is potential to select for genotypes with improved baking quality in conventional breeding programs by screening for high content of insoluble glutenin.  相似文献   

11.
The present work aims to study the influence of reducing agents of sodium bisulfite, sodium sulfite and thioglycolic acid on the equibiaxial extensional deformation of glycerol plasticized wheat gluten and the properties of gluten bioplastics thermo-molded at 125 °C. Moisture absorption, weight loss and water uptake, uniaxial tensile properties (Young's modulus, tensile strength, elongation at break and tensile set), and morphology observations were performed to characterize the physical properties of the thermo-molded gluten bioplastics. The results showed that reducing agents facilitated the viscous flow and restrained the elastic recovery of the plasticized gluten while not hindering the crosslinking reaction of gluten proteins during thermo-molding. On the contrary, reducing agents do not significantly influence moisture absorption, Young's modulus, tensile strength and the morphology of the gluten bioplastics thermo-molded at 125 °C. It is shown that reducing agents are highly effective for tailoring the flow viscosity of the plasticized gluten dough and the mechanical properties of thermo-molded gluten bioplastics.  相似文献   

12.
Gluten strength is an important characteristic, determining the end product quality of durum wheat semolina. To identify the genetic basis of gluten strength in North Dakota durum cultivars, a doubled haploid population was developed from the cross of a weak gluten cultivar ‘Rugby’ and a strong gluten cultivar ‘Maier’. A framework linkage map consisting of 228 markers was constructed and used with phenotypic data on gluten strength (measured by sedimentation volume) to conduct single- and two-locus QTL analyses. Only one consistent QTL (QGs.ndsu-1B) contributing up to 90% of the phenotypic or 93% of the genotypic variation was detected on 1BS. No QTL × QTL or QTL × environment interactions were observed. The QGs.ndsu-1B was flanked by two DArT markers which were converted to STS markers and used along with SSR and EST-SSRs to develop a map of 1BS. QTL analysis delineated QGs.ndsu-1B in a 7.3 cM region flanked by an STS marker (STS-wPt2395) and a SSR marker (wmc85). The adapted background of this material and availability of PCR-based markers closely associated with this locus represent invaluable resources for marker-assisted introgression of gluten strength into other durum wheat varieties. A single QTL segregating in this population also makes it an ideal target for map-based cloning.  相似文献   

13.
The present work aims to study the influence of reducing agents of sodium bisulfite, sodium sulfite and thioglycolic acid on the equibiaxial extensional deformation of glycerol plasticized wheat gluten and the properties of gluten bioplastics thermo-molded at 125 °C. Moisture absorption, weight loss and water uptake, uniaxial tensile properties (Young's modulus, tensile strength, elongation at break and tensile set), and morphology observations were performed to characterize the physical properties of the thermo-molded gluten bioplastics. The results showed that reducing agents facilitated the viscous flow and restrained the elastic recovery of the plasticized gluten while not hindering the crosslinking reaction of gluten proteins during thermo-molding. On the contrary, reducing agents do not significantly influence moisture absorption, Young's modulus, tensile strength and the morphology of the gluten bioplastics thermo-molded at 125 °C. It is shown that reducing agents are highly effective for tailoring the flow viscosity of the plasticized gluten dough and the mechanical properties of thermo-molded gluten bioplastics.  相似文献   

14.
This study focuses on the effect of Aegilops longissima on wheat bread making quality. Chromosome 1Sl disomic addition line of Ae. longissima (DAL1Sl) had significantly higher dough strength, grain hardness, mixographic peak height, band width, and unextractable polymeric protein content compared with wheat. DAL1Sl also had additional glutenin and gliadin proteins contributed by Ae. longissima. The larger size of 1Sl coded HMW-GSs sequenced from DAL1Sl and their phylogenetic similarity to the D-genome-coded subunits were suspected to be one of the major reasons for the increased dough strength of DAL1Sl. To transfer the chromosome 1Sl genes responsible for the good bread-making quality to wheat, we generated a chromosome-specific disomic substitution line [DSL1Sl(1A)] by crossing DAL1Sl with nulli 1A tetra 1B genetic stock and further selection. Grain quality analysis revealed significantly lower grain hardness and significantly higher dough strength, farinograph development time, stability time, gluten index, bread loaf volume, and bread quality score in DSL1Sl(1A), compared with wheat. However, the increased bread loaf volume and quality were not proportional to the relatively higher increases in dough strength and gluten index, indicating importance of other traits influencing bread making quality. The presence of a minor hardness locus on chromosome 1A is speculated.  相似文献   

15.
The aim of this study was to determine whether protein body-free kafirins in high digestibility, high-lysine (HDHL) sorghum flour can participate as viscoelastic proteins in sorghum-wheat composite dough and bread. Dough extensibility tests revealed that maximum resistance to extension (g) and time to dough breakage (sec) at 35 °C for HDHL sorghum-wheat composite doughs were substantially greater (p < 0.01) than for normal sorghum-wheat composite doughs at 30 and 60% substitution levels. Functional changes in HDHL kafirin occurred upon exceeding its Tg. Normal sorghum showed a clear decrease in strain hardening at 60% substitution, whereas HDHL sorghum maintained a level similar to wheat dough. Significantly higher loaf volumes resulted for HDHL sorghum-wheat composites compared to normal sorghum-wheat composites at substitution levels above 30% and up to 56%, with the largest difference at 42%. HDHL sorghum-wheat composite bread exhibited lower hardness values, lower compressibility and higher springiness than normal sorghum-wheat composite bread. Finally, HDHL sorghum flour mixed with 18% vital wheat gluten produced viscoelastic dough while normal sorghum did not. These results clearly show that kafirin in HDHL sorghum flour contributes to the formation of an improved protein network with viscoelastic properties that leads to better quality composite doughs and breads.  相似文献   

16.
An instrument for measuring the expansion capacity of dough was developed based on the application of a known negative pressure and measurement of the height reached by the dough using a dough height tracker. At a negative pressure of 74 cm of Hg, the same maximum heights were reached after expansion at all stages of processing from after mixing to end of proof. For this negative pressure (74 cm Hg), the expanded dough heights measured immediately after mixing for doughs from 9 hard and 10 soft wheat flours coincided closely with the heights reached by corresponding baked loaves (r=0.99). Pizza doughs were also found to give a good correlation with baked pizza height (r=0.78, significant at 1% level). The method was used to obtain information about the timing of the effects of bromate addition and flour lipid extraction during processing. An increase in dough expansion capacity from bromate addition was observed only after the final proofing stage. Gas cell fineness of the bread crumb, measured by CrumbScan software, was decreased by bromate addition but gas cell elongation was increased. Effects of lipid removal were different. An increase in expansion capacity occurred at all processing stages and gas cell fineness of the bread crumb was increased. Expansion capacity appears to be an inherent property of a dough and may have potential as a rapid measurement to predict baking performance.  相似文献   

17.
In this study, sixteen wheat varieties for cultivation in China were examined for the flour characteristics using the farinograph, extensograph and rheofermentometer, uniaxial extensional rheology employing the extensograph and the Kieffer extensibility rig and biaxial extension by uniaxial compression of mixed dough with and without yeast, rested and fermented dough, and steamed bread quality including specific volume and texture properties. Three statistical analysis methods including Pearson correlation, principle component and stepwise multiple regression analysis were carried out to correlate dough properties with steamed bread quality. Biaxial extension viscosity was positively correlated with texture properties (hardness and chewiness) of steamed bread (r = 0.521–0.685, p < 0.05). Based on the correlation coefficients and the model (r2 = 0.852, p = 0.003) obtained using stepwise multiple regression analysis, the best predictors for specific volume of steamed bread were the maximum resistance to extension of rested dough (r = 0.664, p < 0.01) and total work for breakage of fermented dough (r = 0.662, p < 0.01). Principal component analysis of rheological properties of fermented dough and flour characteristics provided more useful information for discriminating wheat flour quality and help breeders to select most convenient wheat flour for the steamed bread making.  相似文献   

18.
Wheat gluten was isolated in a laboratory dough-batter flour separation process in the presence or absence of lipases differing in hydrolysis specificity. The obtained gluten was blended with wheat starch to obtain gluten-starch (GS) blends of which the water and oil binding capacities were investigated. Furthermore, GS blends were mixed into dough and processed into model breads, of which dough extensibility and loaf volume were measured, respectively. In comparison to GS blends prepared with control gluten, oil binding capacity was higher when GS blends contained gluten isolated with Lecitase Ultra (at 5.0 mg enzyme protein/kg flour), a lipase hydrolyzing both non-polar and polar lipids. Additionally, dough extensibility and total work needed for fracture were lower for dough prepared from GS blends containing gluten isolated with Lipolase (at 5.0 mg enzyme protein/kg flour), a lipase selectively degrading non-polar lipids. In GS blend bread making, this resulted in inferior loaf volumes. Comparable GS blend properties were measured when using control gluten and gluten isolated with YieldMAX, a lipase mainly degrading N-acyl phosphatidylethanolamine. In conclusion, properties of GS blend model systems are altered when gluten prepared in the presence of lipases is used to a degree which depends on lipase specificity and concentration.  相似文献   

19.
The rheological characteristics of gluten-free doughs and their effect on the quality of biologically leavened bread were studied in amaranth, chickpea, corn, millet, quinoa and rice flour. The rheological characteristics (resistance to extension R, extensibility E, R/E modulus, extension area, stress at the moment of dough rupture) were obtained by uniaxial dough deformation. Specific loaf volume of laboratory prepared gluten-free breads was in significant positive correlation with dough resistance (r = 0.86), dough extensibility (r = 0.98) and peak stress at the moment of dough rupture (r = 0.96). Even if the correlation between R/E modulus and the characteristics of loaf quality were not significant, the breads with the highest specific loaf volume were prepared from flours with R/E closer to the wheat check sample (18 N?mm-1). The results showed, in general, good baking flours exhibited stronger resistance to extension and greater extensibility, but differences found were not directly related to the results of baking tests.  相似文献   

20.
Celiac disease is a T-cell mediated immune response in the small intestine of genetically susceptible individuals caused by ingested gluten proteins from wheat, rye, and barley. In the allohexaploid bread wheat (Triticum aestivum), gluten proteins are encoded by multigene loci present on the homoeologous chromosomes 1 and 6 of the three homoeologous genomes A, B, and D. The effect of deleting individual gluten loci was analyzed in a set of deletion lines of T. aestivum cv. Chinese Spring with regard to the level of T-cell stimulatory epitopes (Glia-α9 and Glia-α20) and to technological properties of the dough including mixing, stress relaxation, and extensibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号