首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Celiac disease (CD) is an autoimmune permanent enteropathy that is triggered in susceptible individuals after the ingestion of gluten, a storage protein fraction presents in wheat, rye and barley endosperm. Specific gluten peptides can bind to HLA-DQ2/8 and induce lamina propria CD4+ T cell responses causing damage of the small intestine mucosa. Recent studies suggested that beside immunodominant and toxic epitopes, wheat gluten also contains epitopes capable of preventing the mucosal response in vitro. Among them, a decapeptide (QQPQDAVQPF) from wheat was reported to have an antagonist effect on the agglutination of K562(S) cells and celiac T-cell activation, although the corresponding nucleotidic sequence remained unknown. This study was therefore designed to clone the sequence encoding the protein carrying the decapetide with CD protective properties. A ω-secalin gene encoding containing the decapeptide QQPQRPQQPF was isolated. Although the decapeptide was not identical to the one previously described, QQPQRPQQPF showed the same capability to prevent K562(S) cell agglutination and celiac mucosa immune activation induced by toxic gliadins. The ω-secalin gene was found in wheat carrying the wheat–rye chromosomal translocations 1BL.1RS. The identification of this immunomodulatory gliadin sequence, naturally occurring in cultivars of wheat toxic for celiac patients, might offer new therapeutic strategies for CD.  相似文献   

2.
Celiac disease is a T-cell mediated immune response in the small intestine of genetically susceptible individuals caused by ingested gluten proteins from wheat, rye, and barley. In the allohexaploid bread wheat (Triticum aestivum), gluten proteins are encoded by multigene loci present on the homoeologous chromosomes 1 and 6 of the three homoeologous genomes A, B, and D. The effect of deleting individual gluten loci was analyzed in a set of deletion lines of T. aestivum cv. Chinese Spring with regard to the level of T-cell stimulatory epitopes (Glia-α9 and Glia-α20) and to technological properties of the dough including mixing, stress relaxation, and extensibility.  相似文献   

3.
Oat malt is a nutritionally rich ingredient mainly used in a small number of speciality products. The aim of this study was to evaluate the suitability of oat malt in wheat baking. The effect of oat malt on bread and dough properties at levels ranging from 0.5% to 5% was studied and compared with barley and wheat malts. The addition of all malts increased loaf specific volumes. Barley and wheat malts at levels above 2.5% led to a sticky and coarse crumb, but the effect of oat malt on the crumb grain was negligible. Rheological characterisation could not explain the superior baking performance of oat malt, as it increased extensibility and decreased resistance extensively indicating weakening of the extensional properties of the gluten network. The high lipolytic activity may have compensated for the loss of dough strength by improving the surface properties of gas cells. The results show that oat malt can be used in wheat baking to improve the loaf volume and nutritional quality without the detrimental effects associated with the excess amylolytic activity of barley and wheat malts.  相似文献   

4.
Oat malt is a nutritionally rich ingredient mainly used in a small number of speciality products. The aim of this study was to evaluate the suitability of oat malt in wheat baking. The effect of oat malt on bread and dough properties at levels ranging from 0.5% to 5% was studied and compared with barley and wheat malts. The addition of all malts increased loaf specific volumes. Barley and wheat malts at levels above 2.5% led to a sticky and coarse crumb, but the effect of oat malt on the crumb grain was negligible. Rheological characterisation could not explain the superior baking performance of oat malt, as it increased extensibility and decreased resistance extensively indicating weakening of the extensional properties of the gluten network. The high lipolytic activity may have compensated for the loss of dough strength by improving the surface properties of gas cells. The results show that oat malt can be used in wheat baking to improve the loaf volume and nutritional quality without the detrimental effects associated with the excess amylolytic activity of barley and wheat malts.  相似文献   

5.
Sorghum and millets have considerable potential in foods and beverages. As they are gluten-free they are suitable for coeliacs. Sorghum is also a potentially important source of nutraceuticals such antioxidant phenolics and cholesterol-lowering waxes. Cakes, cookies, pasta, a parboiled rice-like product and snack foods have been successfully produced from sorghum and, in some cases, millets. Wheat-free sorghum or millet bread remains the main challenge. Additives such as native and pre-gelatinised starches, hydrocolloids, fat, egg and rye pentosans improve bread quality. However, specific volumes are lower than those for wheat bread or gluten-free breads based on pure starches, and in many cases, breads tend to stale faster. Lager and stout beers with sorghum are brewed commercially. Sorghum's high-starch gelatinisation temperature and low beta-amylase activity remain problems with regard to complete substitution of barley malt with sorghum malt . The role of the sorghum endosperm matrix protein and cell wall components in limiting extract is a research focus. Brewing with millets is still at an experimental stage. Sorghum could be important for bioethanol and other bio-industrial products. Bioethanol research has focused on improving the economics of the process through cultivar selection, method development for low-quality grain and pre-processing to recover valuable by-products. Potential by-products such as the kafirin prolamin proteins and the pericarp wax have potential as bioplastic films and coatings for foods, primarily due to their hydrophobicity.  相似文献   

6.
Novel food and non-food uses for sorghum and millets   总被引:4,自引:3,他引:4  
Sorghum and millets have considerable potential in foods and beverages. As they are gluten-free they are suitable for coeliacs. Sorghum is also a potentially important source of nutraceuticals such antioxidant phenolics and cholesterol-lowering waxes. Cakes, cookies, pasta, a parboiled rice-like product and snack foods have been successfully produced from sorghum and, in some cases, millets. Wheat-free sorghum or millet bread remains the main challenge. Additives such as native and pre-gelatinised starches, hydrocolloids, fat, egg and rye pentosans improve bread quality. However, specific volumes are lower than those for wheat bread or gluten-free breads based on pure starches, and in many cases, breads tend to stale faster. Lager and stout beers with sorghum are brewed commercially. Sorghum's high-starch gelatinisation temperature and low beta-amylase activity remain problems with regard to complete substitution of barley malt with sorghum malt . The role of the sorghum endosperm matrix protein and cell wall components in limiting extract is a research focus. Brewing with millets is still at an experimental stage. Sorghum could be important for bioethanol and other bio-industrial products. Bioethanol research has focused on improving the economics of the process through cultivar selection, method development for low-quality grain and pre-processing to recover valuable by-products. Potential by-products such as the kafirin prolamin proteins and the pericarp wax have potential as bioplastic films and coatings for foods, primarily due to their hydrophobicity.  相似文献   

7.
The milling potential of hulled barley, hulled oat, triticale, rye and wheat was studied using a long tempering process and a laboratory four-roller mill. Regardless of the investigated cereal, the results indicated a significant influence (p < 0.05) of volume per surface area ratio on the milling yield and ash contents of the flour. The lowest milling yield was obtained in case of hulled oat. Solvent retention capacity profiles were determined for all investigated whole cereals and flours for predicting the contribution of different polymers to the functionality of samples. For all solvents higher values were obtained for the whole cereals compared to the corresponding flour. Thermo-mechanical properties of the whole cereals and refined flours were also investigated. If in case of wheat the gluten proteins play an essential role on dough behaviour during kneading at 30 °C, in case of triticale, rye, hulled barley and hulled oat, the fibers play a major role as well. Thermo-mechanical properties of starch registered a large variation between cereals and/or flours. The lowest torque value corresponding to starch gelatinization (C3) was registered in case of the hulled oat flour, 1.92 Nm, while the highest value in case of rye flour, 2.65 Nm.  相似文献   

8.
The assessment of malting barley to determine if it meets grain quality requirements is an integral step in ensuring an efficient malting process and a good quality malt output. Specific weight (SW) is an industry standard criterion, however links between SW and malting are not well understood. In this study the effect of a changing SW on malting was investigated. Samples were manipulated according to both grain size and weight, creating grain fractions with a range in SW. Prior to malting, grain quality traits were measured, and after malting, malt quality traits were examined. Increased SW resulted in a reduced number of whole, unmodified corns in malt, implying increased levels of modification. Specific weight correlated with both hot water malt extract (r = 0.82, P < 0.01) and predicted spirit yield (r = 0.84, P < 0.01), this highlights an increased malt output. Furthermore peak gelatinisation temperature of extracted starch from the malt correlated with both SW (r = 0.69, P < 0.05) and grain density (r = 0.65, P < 0.05). This could benefit malt efficiency by increased conversion of starch to fermentable sugars, but with the same energy input. The changes in SW and consequently malt output in this study are a result of changing grain density rather than packing efficiency.  相似文献   

9.
Oat is widely consumed by people with celiac disease (CD). Its safety has been disputed because two peptides from oat avenins can be recognized as T cell epitopes by some CD patients. Differential signals of gluten-specific monoclonal antibodies and in-vitro T cells to oat varieties have suggested the existence of differences in immunogenicity. We aimed to clarify the nature of such responses by cloning avenin genes from 13 Avena species. A single oat plant contained up to 10 avenin genes. Avenin proteins clustered in four groups of which two contained the two avenin CD epitopes. All Avena species examined harbored avenins of these two groups, and as a consequence all contained avenins with the two avenin-specific epitopes, which makes it very unlikely to find oat cultivars that are devoid of these sequences. The established gluten epitopes from wheat, rye and barley were not present in oat avenins; some variants with two and three amino acid substitutions occurred, but they were predicted not to resist proteolysis in the gastro-intestinal tract. Perfect recognition sites of antibodies R5 and G12 were also not present in avenins. Thus, their signals to oat should not be interpreted as differences in immunogenicity for CD patients.  相似文献   

10.
Barley grains (9 samples from 7 cultivars) with nitrogen contents (N) ranging from 1.45 to 4.01% of dry matter were analysed for their amino acid (AA) composition with high accuracy from six different hydrolysates per sample. AA levels in grain increased as linear functions ofN with correlation coefficients close to unity. A comparison with literature data confirmed that the AA composition of any grain sample of normal barley can be predicted from itsN for all phenotypes and genotypes. AAs in grain protein changed as hyperbolic functions ofN which increased for Phe, Pro and Glx but more or less strongly decreased for the other AAs. By plotting AA scores againstN, barley proteins were shown to be always richer than wheat and rye in Val and Phe + Tyr; sometimes richer than both other species forN<2 (Lys); 2.2 (Leu and Ile); 3.4 (Thr); sometimes intermediate to wheat and rye above the latterN values. They were also intermediate in sulphur AAs forN<1.9 and drastically poorer forN>1.9. However, they were richer than both other species in Trp forN>1.6. The hyperbolic variations of non-protein nitrogen and nitrogen-to-protein conversion factors were determined as a function ofN and also compared with those of wheat and rye.  相似文献   

11.
Immunological methods based on monoclonal antibodies with varying specifities towards gluten proteins have been used to control the purity of gluten-free products. Commercially available methods have been developed to detect gluten proteins found in wheat. However, difficulties have occurred in quantifying barley proteins with the same accuracy as wheat proteins. Barley is also a common contaminant in oat products. In this study, oat flour samples were deliberately contaminated with known amounts of barley flour and analysed using two commercial enzyme linked immunosorbent assays (ELISA). The methods were based on an ω-gliadin antibody and an R5 antibody. The results obtained with the R5 antibody were overestimates while the ω-gliadin antibody underestimated the higher barley prolamin content. This study showed that inaccuracies in ELISA assays in quantifying barley contaminations can possibly be eliminated by using a hordein standard. However, it is necessary to know the source of contamination. This would prevent overestimation of the hordein content of gluten-free products. Overestimation unnecessarily reduces the variety of gluten-free products and may decrease compliance to a gluten-free diet.  相似文献   

12.
Dietary intake of whole-grain foods is associated with a decreased risk of chronic diseases such as diabetes, obesity and heart disease. In addition to dietary fibre, various phytochemicals have been suggested to contribute to the health effects of whole grain products. This review focuses on phenolic compounds in rye (Secale cereale L.), which is one of the major bread grains in Europe. Data on phenolic concentrations in rye grain and foods, their bioavailability to tissues and effects in vivo, and their potential contributions to health are presented. Phenolic compounds in rye, such as phenolic acids, alkylresorcinols and lignans, are concentrated in the outer layers of the grain. Phenolic acids are the major phenolic compounds in whole grain rye (103–300 mg/100 g grain), ferulic acid being the most abundant. Rye lignans are present at concentrations of 2 mg/100 g grain and had been shown to be converted by the intestinal microflora to the mammalian lignans enterodiol and enterolactone in human intervention studies. Alkylresorcinols (36–320 mg/100 g grain), which have been found to be incorporated into human erythrocyte membranes, are of particular interest due to their potential use as biomarkers of the intake of rye and wheat.  相似文献   

13.
Celiac disease (CD) is a chronic inflammatory disease affecting the small intestinal mucosa. The causative agents have been identified as gluten proteins from wheat, barley, and rye, and the only available treatment for CD patients is a lifelong gluten-free diet. Non-gluten containing cereals would be a valuable contribution to the gluten-free diet. In this respect, oats are a good choice. However, commercial lots of oat flakes and flour frequently are contaminated with wheat, barley, and rye, and two studies have reported that some peptides derived from the gluten-like avenin storage proteins of oat can trigger an immune response in some CD patients. In the present study we have initiated the investigation whether all oat varieties contain similar amounts of potentially harmful sequences by biochemical and immunological methods. We confirm that commercial oat preparations are contaminated with other cereals that contain gluten or gluten-like proteins. Moreover, our results demonstrate that contamination-free oat varieties differ in their capacity to stimulate an avenin-sensitive gamma-gliadin specific T cell line derived from a patient with CD, indicative for differences in the two known avenin epitopes among oat varieties, implying that selection and breeding of completely safe oat varieties for all CD patients may be a realistic possibility.  相似文献   

14.
A rising global population necessitates continued genetic improvement of wheat (Triticum spp.), but not without monitoring of unintended consequences to processors and consumers. Our objectives were to re-establish trends of genetic progress in agronomic and milling traits using a generational meter stick as the timeline rather than cultivar release date, and to measure correlated responses in flour quality and human wheat-sensitivity indicators. Grain yield and kernel size showed stepwise increases over cycles, whereas wheat protein content decreased by 1.1 g/100 g. Reduced protein content, however, did not result in lower dough strength pertinent to bread baking. A novel method of directly testing gluten elasticity via the compression-recovery test indicated a general increase in gluten strength, whereas the ratio of total polymeric to total monomeric proteins remained stable. Also showing no change with genetic progress in yield were flour levels of gluten epitopes within the key immunotoxic 33-mer peptide. The oligosaccharide fructan, present in milled and wholemeal flours, increased with increasing grain yield potential. While yield improvement in U.S. bread wheat was not accompanied by a decline in gluten strength or systematic shift in a key wheat sensitivity parameter, the unanticipated rise in total fructans does implicate potentially new dietary concerns.  相似文献   

15.
Coeliac disease (CD) is a chronic intolerance to gluten, contained mainly in wheat, rye and barley. The only therapy at present is the lifelong exclusion of gluten from the diet.Whether oats can be considered safe for CD patients has long been debated, and oats have been included among gluten-free ingredients only recently (EU Regulation 41/2009), provided the gluten content does not exceed 20 ppm.The aim of this study was to evaluate the suitability of 36 different oat cultivars for CD patients using biochemical and immunochemical approaches. The cross-reactivity between avenins and gliadins was evaluated by both SDS-PAGE/Immunoblotting and ELISA.The protein pattern of each oat cultivar showed both qualitative and quantitative differences that correlated with different binding affinity for specific anti-gliadin antibodies in immunoblotting. In most oat samples, the content of cross-reactive proteins measured by ELISA was below 20 ppm, but in a few varieties was above 80 ppm.Although the taxonomic and biochemical characteristics of oats allow to conclude that their use could be safe for CD patients, it is essential to select those cultivars having the lowest level of gluten-like proteins.  相似文献   

16.
The effect of acetic acid and hydrochloric acid (HCl) deamidation pretreatment on the susceptibility of wheat gluten to enzymatic hydrolysis by Pancreatin and sensory characteristics of the resultant hydrolysates was investigated. At two degrees of deamidation (24% and 60%, with or without moisture-heating, respectively), wheat gluten pretreated by acetic acid deamidation was more susceptible to be hydrolyzed as evaluated by the hydrolysis degree, nitrogen solubility index, titratable acid amount and free carbohydrate content of the hydrolysates. Wheat gluten pretreated by acetic acid deamidation at a degree of 24% exhibited the highest susceptibility to enzymatic hydrolysis. Moisture-heating (121 °C, 10 min) in the deamidation pretreatment decreased the susceptibility of wheat gluten to enzymatic hydrolysis and the peptide factions of ≤3000 Da in the hydrolysates due to the formation of larger molecule weight aggregates. The hydrolysates prepared from acetic acid deamidated wheat gluten showed more intense glutamate-like and sauce-scented taste and better nutritional characteristics.  相似文献   

17.
In this study, the content of soluble, free forms of phenolic compounds (total phenolics, flavonoids, PVPP (polyvinylpolypyrrolidone) bound phenolics, proanthocyanidins and phenolic acids), as well as the content of carotenoids and tocopherols, were determined in whole grains of bread and durum wheat, rye, hull-less barley and hull-less oat, each represented with four genotypes. Antioxidant activity was evaluated as radical scavenging activity with DPPH (2,2-diphenyl-1-picrylhydrazyl) reagent, as well as by hydrogen transfer reaction (reduction power) based on the reduction of Fe3+. Generally, a considerable variation in antioxidant activities and phytochemical contents was observed between the cereals. Remarkably higher DPPH radical scavenging ability and reducing power were detected in hull-less barley, followed by rye and hull-less oat and durum and bread wheat, indicating that small grain species have different major antioxidants with different properties. Hull-less barley had the highest content of total free phenols, flavonoids, PVPP bound phenolics and contained flavan-3-ols, not found in other species. Hull-less oat had the highest content of tocopherols, very high content of yellow pigments and PVPP bound phenolics. Ferulic acid was the major free phenolic acid in small grain cereals tested. The relationship between the content of soluble phenols, as well as reducing power and DPPH scavenging activity are also considered.  相似文献   

18.
In order to deepen insight into durum wheat prolamin composition in relation to both end use quality and gluten related disorders, a phenotyping of four genotypes of different release date and technological performance was carried out. A proteomic approach integrated with the evaluation of protein aggregation level, amino acid composition and reactivity to G12 monoclonal antibody, was adopted. The degree of polymerization, estimated as unextractable polymeric proteins (UPP), was positively influenced by Cys-rich proteins (Glu-B3 LMW-GS), with Saragolla showing up to 40% higher values than other genotypes. The proteomic assessment allowed to identify proteins involved in gluten related disorders. In particular, ω5-gliadin involved in wheat allergy (WA), resulted markedly over-expressed in the old landrace Dauno III, up to four-fold than in modern Saragolla. A marked influence of genotype on the expression level of gliadins containing toxic epitopes (TECP) was observed with the more recent genotypes showing lower values (−53%). Also, reactivity to G12 moAb resulted higher in the two old genotypes consistently to their higher celiac disease (CD) toxicity evaluated by the proteomic approach. In conclusion a better gluten composition for processing seems to be associated to a lower expression level of CD toxic peptides and Tri a 19.  相似文献   

19.
We report the isolation and characterisation of proteases from germinated wheat, rye and barley, and their ability to degrade gliadin peptides toxic for coeliac patients. It is shown for the first time that these proteases cleave these peptides rapidly into non-toxic fragments with less than nine amino acids. These proteases have distinct advantages when compared to bacterial or fungal proteases, and are promising candidates for the detoxification of gluten containing foods and for oral therapy for celiac patients.  相似文献   

20.
Puffed cereals are commonly used as ready-to-eat breakfast foods or as ingredients in snack formulations. Few investigations have been made on the ultrastructure and physical characteristics of puffed cereals; the properties of the flours milled from them have been even less investigated. The changes associated with the gun puffing process were evaluated for six different grains: common wheat, emmer wheat, rye, barley, rice and buckwheat. The results demonstrate that the effect of the puffing treatment is strongly influenced by the morphology and composition of the kernel. Puffed rye and rice have a very porous matrix, made up of numerous cavities of different sizes separated by a very thin ‘wall’ puffed wheat, emmer wheat and barley on the other hand show a much more compact, homogeneous and less porous structure; puffed buckwheat is characterised by a large number of small and regular cavities. Moreover, puffing induces significant changes in the structure and physical properties of the starch and an increased water holding capacity of both the grains and the flours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号