首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rice (Oryza sativa L.) is a semi-aquatic member of the grass family that is poorly adapted to dry environments and has greater sensitivity to water-deficits than other important cereals in this family. To increase productivity in aerobic or water-limited environments rice must overcome its adaptations to flooded environments. Deletion mutants offer an alternative genetic resource for improving drought tolerance. Almost 3500 IR64 deletion mutants were screened under vegetative and reproductive stage drought stress in the field and evaluated for leaf drying and/or grain yield. Seven novel conditional mutants of rice which showed gain of function through continued growth as drought stress developed compared to the wild type were identified. Mutant recovery rate was 0.1%. Further evaluation of putative drought mutants revealed that their average shoot biomass at maturity and grain yield per plant under stress exceeded those of the wild type by two-fold. Studies under controlled conditions confirmed mutants to have continued growth of both roots and shoots as drought developed compared to the wild type, and a tendency for greater water extraction. We propose that deletions in these mutants have affected a regulator of the highly conservative growth response common to irrigated lowland rice cultivars. Our results suggest that screening deletion mutants for performance under managed drought stress in the field could be a highly effective way to identify valuable genetic resources for improved drought response and aerobic adaptation in rice.  相似文献   

2.
Improvement of rice storage proteins is important in rice breeding for high nutritional quality. Seventy-one recombinant inbred lines (RIL) derived from a cross between japonica variety Asominori and indica variety IR24 were used to study the inheritance of crude protein and protein fraction contents in rice. A total of 16 QTL were identified and mapped on eight chromosomes. Several QTL affecting contents of different protein fractions were mapped in the same chromosomal region. In particular, two QTL with a significant contribution were identified to simultaneously affect prolamin and glutelin contents. One QTL denoted as qCP-12 affecting crude protein content (CP) was located in the same region as QTL qGLT-12 affecting glutelin content, in agreement with the positive correlation between glutelin level and protein content. QTL with larger genetic effects were further confirmed using two sets of chromosome segment substitution lines (CSSL), where Asominori and IR24 were used as the recurrent parents. By QTL comparative analysis, two QTL for CP, three for globulin content and one for prolamin content were located in the vicinity of CP QTL previously identified in polished rice. Application of these results in rice breeding is discussed.  相似文献   

3.
The degree of red coloration (DRC) in pericarp of rice depends on the content of flavonoid compounds which have beneficial health effects for humans. In this study, 182 backcross-recombinant inbred lines (BILs) derived from Koshihikari (white pericarp)/Kasalath (red pericarp)//Koshihikari were used to detect the genomic regions associated with DRC through the QTL mapping approach. As a result, a total of four genomic regions were found to associate with DRC on chromosomes 1, 7, 9 and 11, respectively. Interestingly, the two genomic regions having the largest effects corresponded to previously characterized Rc and Rd genes on chromosome 7 and 1, respectively. In addition, two novel genomic regions having minor effects on DRC and located on chromosomes 9 and 11, respectively, are reported here for the first time. These results and the identification of tightly linked molecular markers that flank the genomic regions provide an opportunity for marker-aided improvement of red coloration in pericarp of rice.  相似文献   

4.
A set of near-isogenic lines for blast resistance genes was developed by using an Indica-type elite rice variety, IR49830-7-1-2-2, suitable for the rainfed lowland conditions in the tropics, as a genetic background. Initially, we revealed that IR49830-7-1-2-2 harbors five blast resistance genes - Pia, Pib, Pik-s, Pita, and Pi11(t) - by using a differential system involving 19 selected standard blast isolates from the Philippines. Based on this result, we developed nine near-isogenic lines (NILs) targeting eight resistance genes - Pik, Pi7(t), Pi3, Pi5, Pita-2, Piz-5, Pish, and Pi9 - by recurrent backcrossing. The introgression of each resistance gene in the NILs was confirmed by reaction patterns to the blast isolates, allelism tests, and DNA marker analysis. In addition, a genome-wide DNA marker survey revealed that most of the chromosome regions in each NIL were of the IR49830-7-1-2-2 type. The agricultural characteristics of most of the developed NILs were almost the same as those of IR49830-7-1-2-2. Moreover, with one exception, they showed submergence tolerance similar to IR49830-7-1-2-2. The developed NILs could be used as a multiline variety suitable for the rainfed lowland in the tropics.  相似文献   

5.
Drought is a major constraint for rice production and yield stability in rainfed ecosystems, especially when it occurs during the reproductive stage. Combined genetic and physiological analysis of reproductive-growth traits and their effects on yield and yield components under drought stress is important for dissecting the biological bases of drought resistance and for rice yield improvement in water-limited environments. A subset of a doubled haploid (DH) line population of CT9993-5-10-1-M/IR62266-42-6-2 was evaluated for variation in plant water status, phenology, reproductive-growth traits, yield and yield components under reproductive-stage drought stress and irrigated (non-stress) conditions in the field. Since this DH line population was previously used in extensive quantitative trait loci (QTLs) mapping of various drought resistance component traits, we aimed at identifying QTLs for specific reproductive-growth and yield traits and also to validate the consensus QTLs identified earlier in these DH lines using meta-analysis. DH lines showed significant variation for plant water status, reproductive-growth traits, yield and yield components under drought stress. Total dry matter, number of panicles per plant, harvest index, panicle harvest index, panicle fertility, pollen fertility, spikelet fertility and hundred grain weight had significant positive correlations with grain yield under drought stress. A total of 46 QTLs were identified for the various traits under stress and non-stress conditions with phenotypic effect ranging from 9.5 to 35.6% in this study. QTLs for panicle exsertion, peduncle length and pollen fertility, identified for the first time in this study, could be useful in marker-assisted breeding (MAB) for drought resistance in rice. A total of 97 QTLs linked to plant growth, phenology, reproductive-growth traits, yield and its components under non-stress and drought stress, identified in this study as well as from earlier published information, were subjected to meta-analysis. Meta-analysis identified 23 MQTLs linked to plant phenology and production traits under stress conditions. Among them, four MQTLs viz., 1.3 for plant height, 3.1 for days to flowering, 8.1 for days to flowering or delay in flowering and 9.1 for days to flowering are true QTLs. Consensus QTLs for reproductive-growth traits and grain yield under drought stress have been identified on chromosomes 1 and 9 using meta-QTL analysis in these DH lines. These MQTLs associated with reproductive-growth, grain yield and its component traits under drought stress could be useful targets for drought resistance improvement in rice through MAB and/or map-based positional analysis of candidate genes.  相似文献   

6.
Glutelin, a major protein in rice grains, is encoded by a multigene family. However, its protein composition is not well characterised. Here, we identified and characterised two novel glutelin subunits, GluBX and GluC. The individual glutelin subunits of japonica cv. Nipponbare and indica cv. 93-11 rice were analysed using 2-dimensional gel electrophoresis, LC–MS/MS, and Western blotting. Comparison of the glutelin profiles between three japonica and three indica cultivars indicated two distinct subunits (GluA-1 and GluA-3 isomers) and a distinction in the subunit composition (notably GluA-3 and Lys-rich GluB-1 components) of these two subspecies. Sequence alignment revealed different nutritional (Lys residues) and functional (Cys residues) characteristics between the type-A and type-B glutelin subfamilies. We also analysed amino acid and total protein contents of the grains in thirty-five cultivars, and we demonstrated that the Lys-rich glutelin composition of indica cultivars is superior to that of japonica cultivars. The Lys-rich and Cys-poor GluBX subunit is a native protein and is a high nutritional protein in grains. Our combined approaches for the identification of glutelin subunits have revealed the nutritional characteristics of individual subunits in rice, and this knowledge will provide new insights for improving grain quality during rice breeding.  相似文献   

7.
Aromatic quality of rice grains is known to vary greatly with environmental factors and cultivation methods. Among the environmental factors, soil salinity is thought to have a positive impact on the content of 2-acetyl-1-pyrroline (2AP) in grains, the key volatile compound of rice aroma. This study compared 2AP content in grains of three improved fragrant rice (Oryza sativa L.) varieties grown in two fields, differing mainly in their soil salinity level. The impact of salinity on yield and main yield components was also investigated to understand the relationship between aromatic quality and yield build-up. Soil salinity was monitored by measuring the electrical conductivity (EC) of soil solution samples extracted every week. 2AP content in grains was determined by a newly developed stable isotope dilution method involving solid-phase microextraction (SPME) and GC MS/MS analysis. The results showed an increase of 2AP content in grains with salinity for the three varieties. The relationship between 2AP and mean EC of the crop fitted a single model for the three varieties (R2 = 0.728). In contrast, the impact of salinity on yield and yield components differed greatly between the three varieties. One variety appeared to be very sensitive to salt stress, with significant yield loss up to 40%, while the two other varieties proved to be resistant to the salinity levels experienced by the plants, with no significant yield loss or even higher yields in saline conditions. Nevertheless, the three varieties presented a significant negative correlation between 1000 grain weight (TGW) and the mean EC of the crop, and between TGW and 2AP content. It was concluded that the increase of 2AP content with salinity resulted partially from a 2AP concentration mechanism in smaller size grains. The direct effect of salinity on 2AP synthesis through stimulation of the proline metabolism is further discussed.  相似文献   

8.
II-32B is a key maintainer line used for hybrid rice breeding in China. However, it is of poor quality for most Chinese consumers because of its high apparent amylose content (AAC), high gelatinization temperature (GT) and non-fragrance. It is well known that the AAC, GT and fragrance traits are largely controlled by the Wx, starch synthase IIa (SSIIa), and fragrance (fgr) genes, respectively. With the aid of functional markers, we improved the quality of II-32B by introgressing the Wx, SSIIa, and fgr genes from Yixiang B, a fragrant maintainer line that has low AAC and low GT. The microsatellite allele (CT)17 of Wx, the contiguous single nucleotide polymorphism TT allele of SSIIa and the 8-bp deletion allele of fgr were transferred to II-32B by two backcrosses and three selfings. Molecular marker assisted selection was applied in the series to select for individuals carrying Wx-(CT)17, SSIIa-TT, and fgr-deletion alleles. According to the marker genotypes, seventeen homozygous lines for Wx-(CT)17, SSIIa-TT, and fgr gene markers were finally selected. The improved II-32B lines were fragrant with reduced AAC and GT.  相似文献   

9.
In this paper, we demonstrate a novel and environmentally-conscious approach to the isolation of oil bodies (OBs) from the bran arising from the milling of Oryza sativa (Basmati rice). We have used several physical techniques to determine the effect of the steps of the process on the OBs, and describe an isolation process that is scalable to an industrial level. The physical techniques [microscopy, particle size determination (diameter 1.9–5.8 μm), ζ-potential (−40 mV at pH 8.0, 0 mV at pH 4.0, 17 mV at pH 2.0), and relative turbidity measurements (pH 3.0–5.0 unstable, pH 6.0–8.0 stable)] and chemical analyses (lipid 83.7%, protein 11.5% dry basis) also give us an insight into the physical properties of OBs in general. This understanding has implications for the use of OBs in food manufacturing, and on the isolation of OBs from a variety of cereal crops.  相似文献   

10.
Five transgressive variants (advanced breeding lines from BC2F5 and BC2F6 generation) were derived from a cross between the wild relative, O. rufipogon Griff. and O. sativa L. subsp. indica cv. MR219, a popular high yielding Malaysian rice cultivar. The aim of the study was to evaluate the pericarp colour of the grains along with yield potential and to validate quantitative trait loci (QTLs) for agronomic traits. The variants were screened against blast disease. Background marker analysis was also done for the promising variants. The field trials were carried out at a single location (due to containment purposes) over two seasons using randomized complete block design (RCBD) with three replications. A trait-based marker analysis was used to identify QTLs for validation in BC2F5 generation. Analysis of variance (ANOVA) showed that the seasonal factors influenced different agronomic traits. Variant G33 produced significantly (p < 0.05) higher yield (5.20 t/ha) than the control, MR219 (4.53 t/ha). Eighteen QTLs for different agronomic traits were identified in BC2F2 population in a previous study. Among them 14 QTLs were found in BC2F5 population of the present study. The yield of variant G33 was influenced by several QTLs viz. qGPL-1, qSPL-1-2, qSPL-8 and qYLD-4, which were introgressed from the donor parent revealed by background marker analysis using BC2F7 generation. Percentage (99%) of red pericarp grain of G33 and G34 in BC2F5 and BC2F6 generations indicated the stability of pericarp colour which was transferred from the wild relative. Variant G33 showed resistance against two pathotype of blast disease (Magnaporthe oryzae). Among the evaluated variants, G33 could be considered for inclusion in the cultivar development program for red rice with high yield potential and resistance to blast disease. This study demonstrated that the alleles from wild relative could improve the yield and yield related traits through allelic interaction, even though the phenotypic traits were inferior to the recurrent parent.  相似文献   

11.
HPLC analysis of dehulled red, black and non-colored indica and japonica rice subspecies revealed significant differences in the contents of the anthocyanins cyanidin-3-glucoside and peonidin-3-glucoside. The rice materials were subjected to a comparative capillary gas chromatography-based metabolite profiling approach. The employed extraction and fractionation protocol enables the analysis of a broad spectrum of lipophilic and hydrophilic low molecular weight constituents from different chemical classes. The method covers not only primary metabolites (e.g. sugars, fatty acids) but also nutritionally relevant constituents (e.g. α-tocopherol, γ-aminobutyric acid). Statistical assessment of the data via principal component analysis and agglomerative hierarchical clustering revealed a distinct grouping of the different colored rice subspecies on the basis of their metabolite profiles. Compared to non-colored and red rice, black rice exhibited, in particular, higher levels of fatty acid methyl esters, free fatty acids, organic acids and amino acids.  相似文献   

12.
Fibre hemp can be grown under a wide range of agro-ecological conditions, but it requires special attention for several physiological features and crop management. A management strategy in order to reduce inputs and thus achieve acceptable yield could be achieved optimizing sowing time. With this respect, the effects of sowing date on hemp biology and yield was studied, using two monoecious and two dioecious genotypes. Field experiments were carried out in two subsequent years (2003-2004) in South of Italy, using drip irrigation system. Sowing time, in the two year period, ranged between March 10th and July 22nd. Optimal sowing time was observed between the end of April and the first three weeks of May; in that range, the dioecious Fibranova yielded the most in terms of aboveground biomass and stem dry yield, followed by Tiborszallasi, while the two monoecious showed the lowest yield. On the contrary, before and after that period, the shorter day length caused an early floral induction that strongly reduced stem and fibre elongation, and thus aboveground dry biomass and consequently stem yields. Based on this study a simulation model focusing on flowering prediction in Mediterranean environment was developed.  相似文献   

13.
Weedy rice (Oryza sativa L.), characterised by competitiveness, seed longevity, and dormancy is a troublesome weed to rice fields. Furthermore, its close botanical affinity to cultivated rice makes its control particularly difficult. However, winter flooding of rice fields can be an efficient technique to control weedy rice infestation by promoting weed seed decay, animal predation, or germination.  相似文献   

14.
Biocontrol capacity of two plant growth-promoting rhizobacteria (PGPR) strains, against blast disease in rice paddy fields in Southern Spain was studied in three cropping seasons. Both strains (Pseudomonas fluorescens Aur 6 and Chryseobacterium balustinum Aur 9) had already shown biocontrol capacity against pathogens, ability to induce systemic resistance against leaf pathogens and against salt stress in different plant species. Bacterial treatments were carried out on seeds and/or on leaves. Strains were inoculated individually and in combination. Protection against natural disease incidence was evaluated, and rice production and quality measured in 2005 and 2006 trials. In 2004, natural disease incidence was low (between 0.1% and 0.35% of damaged leaf surface) due to environmental conditions; under these conditions, both strains significantly protected plants against rice blast. In 2005, disease incidence was higher than in 2004, reaching higher values of affected leaf surface in controls. In these conditions, each strain individually protected rice against rice blast, although the combination of both strains was the most effective treatment. All three treatments (Aur 6, Aur 9 and Aur 6 + Aur 9) reached 50% protection in panicles, with Aur 9 being the most effective. In 2006, the most effective treatment was the combination of both strains on leaves in three physiological stages, suggesting a biocontrol mediated protection. On the other hand, when bacteria were applied to seeds, disease incidence decreased up to 50%, suggesting induction of systemic resistance. Finally, a direct relation between protection mediated by the PGPR and the increase in rice productivity (mT/ha) and quality (weight of 1000 seeds and number of intact grains after milling) was found.  相似文献   

15.
The Waxy (Wx) gene is responsible for the synthesis of amylose, a key determinant of the cooking and processing qualities of rice. Polymorphisms of CT-microsatellite and G–T single-nucleotide polymorphism (SNP) in the Wx gene and their relationship to amylose content (Ac) were explored using 178 non-waxy rice genotypes. Nine Wx microsatellite alleles, namely (CT)10 and 11, and (CT)14–20 were identified and 11 haplotypes were recognised by different combinations of CT-microsatellite and G–T SNP. Amylose content analysed in a random set of 39 genotypes was correlated with different microsatellite alleles/haplotypes. The highest Ac levels (>30%) correlated with (CT)10 and 16, high (26–30%) with (CT)11, 15 and 20, and intermediate (21–25%) with (CT)14, in all cases with G at the G–T SNP. The CT-classes (CT)17 and 18 (mean Ac value of 21%), could be subdivided into low amylose haplotypes (16–20%) for 17T and 18T and intermediate amylose haplotypes (21–25%) for 17G and 18G. The use of haplotypes proved to discriminate between intermediate and low amylose accessions within the same microsatellite class. Analyses of a segregating population of a cross between low and high Ac parents showed that CT-microsatellite may help to classify breeding lines and identify pollen contamination. We suggest that CT-microsatellite together with G–T SNP may be used as molecular marker by breeders to develop varieties with desired amylose levels.  相似文献   

16.
Early vigour is an important characteristic for direct-seeded rice systems. The genetic control of early vigour was studied using a population of 129 backcross lines derived from a cross between Vandana, an improved indica, and Moroberekan, a traditional japonica. Screening was conducted under controlled conditions in greenhouse and field conditions, and indicators of early vigour, including shoot length, shoot biomass, leaf area, number of roots, root biomass, partitioning coefficients, and growth rates, were measured. Phenotypic correlations suggested that traits that were related and combined could be used to define early vigour. Broad-sense heritability ranged from moderate to high. Many regions were identified containing more than one QTL, suggesting that these traits were controlled by pleiotropic and/or closely linked QTLs. Many QTLs were specific to one environment but G × E interaction analysis showed that the main effects of the environment were large. Differences in temperature between experiments resulted in large differences in seedling age when expressed in thermal time. Different genes (QTLs) may be expected to control growth at different time intervals and thus may partly explain the limited agreement between experiments. However, several regions showed co-location of QTLs from more than one experiment. Comparisons with published studies revealed that these regions were previously identified in different genetic backgrounds and could potentially be used as introgression targets in a marker-assisted breeding program to improve germplasm for direct-seeded environments.  相似文献   

17.
Avena sativa L. (Poaceae) has been reported to have traditional utilization against skin diseases and inflammation. Therefore, in this study, the n-hexane, ethyl acetate, ethanol, and water extracts of A. sativa were investigated for their wound healing and antioxidant activities. Total phenol and flavonoid contents of the extracts were established spectrophotometrically. For the wound healing activity, linear incision and circular excision models on rats and mice were evaluated with a standard ointment Madecassol®. Antioxidant activity was evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferrous ion-chelating, and ferric-reducing antioxidant power (FRAP) assays. Significant wound healing activity was observed with the ointment formulation of the ethanol extract at 1% concentration. The histopathological examination results also supported the outcome of both linear incision and circular excision wound models. All of the extracts exerted low antioxidant activity in the applied assays. The present study provides a scientific evidence for the traditional usage of A. sativa in the management of wound healing.  相似文献   

18.
Water and nutrient availability are two major constraints in most rice-based rainfed shallow lowland systems of Asia. Both stresses interact and contribute to the low productivity and widespread poverty in this environment. The objective of this study was to improve the understanding of interaction between the two factors and to identify varietal characteristics beneficial for productivity in a water- and nutrient-limited rice environment. For this purpose, we screened 19 rice genotypes adapted to different rice environments under two water and two nutrient treatments during the wet season of 2004 and 2005 in southern Luzon, Philippines. Across all genotypes tested and in comparison with the irrigated control, rainfed conditions reduced grain yield of the treatment without N application by 69% in 2004 and by 59% in 2005. The mean nitrogen fertilizer response was highest in the dryer season of 2004 and the rainfed treatment, indicating that water stress had no effect on fertilizer response. Nitrogen application reduced the relative yield loss to 49% of the irrigated treatment in 2004 and to 52% of the irrigated treatment in 2005. Internal efficiency of N (IEN) and recovery efficiency of applied N (REN) were significantly different between genotypes, but were not affected by water availability (REN) or by water and nutrient availability (IEN). In contrast, grain yield and total N uptake were affected by cultivar, N and water availability. Therefore, germplasm for rainfed environments should be screened under conditions of limited and good nitrogen and water supplies. The four best cultivars, CT6510-24-1-2, IR55423-01, IR72, and IR57514-PMI5-B-1-2, performed well across all treatments and both years. Except for IR72, they were all characterized by medium height, medium duration, high early vigor, and a moderate level of drought tolerance. This combination of characteristics seems to enable the optimal use of limited water and nutrient resources occurring in many shallow rainfed lowlands. We also concluded that moderate drought stress does not necessarily affect the response to moderate N rates, provided that drought does not induce high spikelet sterility and that fertilizer N is properly managed.  相似文献   

19.
Gas-chromatography coupled with time-of-flight mass spectrometry (GC-TOFMS) was used to analyze the relationships between primary metabolites and phenolic acids in rice (Oryza sativa L.), including six black cultivars and one white cultivar. A total of 52 metabolites were identified, including 45 primary metabolites and seven phenolic acids from rice seeds. The metabolite profiles were subjected to data mining processes, including principal component analysis (PCA), Pearson's correlation analysis, and hierarchical clustering analysis (HCA). PCA could fully distinguish between these cultivars. HCA of these metabolites resulted in clusters derived from common or closely related biochemical pathways. There was a positive relationship between all phenolic and shikimic acids. Projection to latent structure using partial least squares (PLS) was applied to predict the total phenolic content based on primary metabolite profiles from rice grain. The predictive model showed good fit and predictability. The GC-TOFMS-based metabolic profiling approach could be used as an alternative method to predict food quality and identify metabolic links in complex biological systems.  相似文献   

20.
Supercritical carbon dioxide (SC-CO2) was employed to extract oil from hemp (Cannabis sativa L.) seeds. For ground seeds, the supercritical extraction was carried out at temperatures of 40, 60 and 80 °C and pressures of 300 and 400 bar. Different solvent-ratios were applied. Supercritical CO2 extractions were compared with a conventional technique, n-hexane in Soxhlet. The extraction yields, fatty acid composition of the oil and oxidation stability were determined. The seed samples used in this work contained 81% PUFAs, of which 59.6% was linoleic acid (ω-6), 3.4% γ-linolenic (ω-3), and 18% α-linolenic (ω-6). The highest oil yield from seeds was 22%, corresponding to 72% recovery, at 300 bar and 40 °C and at 400 bar and 80 °C. The highest oxidation stability corresponding to 2.16 mM Eq Vit E was obtained at 300 bar and 80 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号