首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rice proteins, as a cheap plant protein source from the by-products of rice dreg processing, could potentially replace commonly used proteins such as soy and whey proteins in selected food products. In this study, the functional properties, surface hydrophobicity (H0), sulfhydryl and disulfide bond contents, thermal properties, as well as secondary structures of native rice endosperm protein (REP) and processed rice dreg protein (RDP) extracted from long-grain indica rice, were compared. RDP was found to have a higher solubility associated with its relatively higher emulsifying and foaming properties than REP, as well as its water/oil holding capacity, although it was a denatured protein. The emulsifying properties were dependent on the solubility and H0, while solubility was also related to the disulfide bond contents. Distinct differences in H0, thermal properties, and disulfide bond contents between REP and RDP could be due to the conformational changes, as the industrial processing steps in the production of rice syrups caused an increase in β-turns at the expense of β-sheets and random coils of REP, leading to the unfolding of β-sheets into higher-ordered supramolecular structures for RDP, which could be responsible for its better functional properties.  相似文献   

2.
The study of food-grade isolated kafirin proteins has increased recently due to the interest of their potential applications in gluten-free products. However, functionality of extracted proteins and fractions have been poorly characterized. In this investigation, kafirins were extracted from whole or decorticated sorghum genotypes (white-regular, white-waxy, red-regular and high-tannin) with 70% aqueous ethanol with metabisulfite. Chemical composition, color parameters, functionality and molecular characterization of kafirin extracts were determined. When kafirin extracts were obtained from decorticated sorghums, higher protein purities (81.5–93.3%), lower lipid contents (1.9–12.6%), better color parameters, and higher yields were obtained compared to counterparts extracted from whole caryopses. Functional properties of the extracted kafirins showed low water solubility, free amino nitrogen, and emulsifying activity, but adequate water holding and fat absorption capacities and in vitro protein digestibility. Differences in functionality were attributed to sorghum genotype. SDS-PAGE showed extraction of α1-, α2-, β-, and γ-kafirins with no contamination of other protein fractions. FTIR indicated a reduction in α-helix:β-sheet after extraction, especially in proteins obtained from decorticated sorghums. High correlations found from Pearson analysis could be used to optimize protein yield and the functionality (emulsifying activity and solubility) of the extracted proteins to be applied in gluten-free food systems.  相似文献   

3.
Albumin, globulin, glutelin and prolamin fractions were isolated from an Australian rice variety (cv. Langi) and characterised by yield, protein content and molecular weight profile using both capillary electrophoresis (SDS-CE) and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The influence of pre-extraction enzymatic hydrolysis of starch and heating to 70 °C was also investigated, as was the extraction of the glutelin fraction without prior removal of the albumin and globulin fractions. Pre-extraction treatment affected mainly the albumin fraction, increasing dry matter yield but reducing protein content. SDS-CE was able to separate the protein fractions over a wider molecular weight range than SDS-PAGE, and the peaks from SDS-CE showed slightly higher molecular weight compared to equivalent bands from SDS-PAGE. The glutelin fraction extracted without prior removal of albumin and globulin fractions had different characteristics compared to those obtained by conventional extraction methods. Pre-extraction hydrolysis of starch did not significantly affect the emulsifying, foaming and gelling properties of extracted protein. Although rice glutelin had poor solubility, emulsifying and foaming properties in aqueous systems, it had good gelling properties which could be important for food applications.  相似文献   

4.
This investigation determined the functional properties of protein in Lesquerella fendleri seed and press cake from oil processing. L. fendleri seeds were heat-treated at 82 °C (180 °F) during 120 min residence time in the seed conditioner, and then screw-pressed to extract the oil. Unprocessed ground, defatted lesquerella seeds and press cakes were analyzed for proximate composition and protein functional properties. Protein from unprocessed lesquerella seed showed the greatest solubility (≥60%) at pH 2 and 10 and was least soluble (25%) at pH 5.5–7. Unprocessed lesquerella protein also had high surface hydrophobicity index (So), as well as, excellent foaming capacity and stability, emulsifying properties, and water-holding capacity (WHC) at pH 7. Protein solubility profile of the press cake showed up to 50% reduction in soluble proteins at nearly all pH levels, indicating heat denaturation during cooking and screw-pressing. Foaming capacity of the press cake protein decreased slightly, but foam stability was completely lost. Press cake protein also had markedly reduced values for So, emulsifying properties and WHC, further confirming lesquerella protein’s sensitivity to heat treatment.  相似文献   

5.
This study assessed the effects of thermal (40, 60, 80, 100 and 127 °C) and high hydrostatic pressure (HHP, 200, 400 and 600 MPa) treatments on the in vitro digestibility and structural properties of sweet potato protein (SPP). The results showed that the in vitro digestibility of SPP increased significantly with increasing heating temperature and heating time (0–60 min), while HHP treatment had little or no effect. Native SPP denaturation temperature (T d ) and enthalpy change (ΔH) were 89.0 °C and 9.6 J/g, respectively. Thermal and HHP treated SPP had T d of 84.6–88.9 °C and 86.4–87.6 °C, respectively. ΔH of thermal treated SPP was 3.6–6.4 J/g, while that of HHP treated SPP was 5.9–7.8 J/g. The differential scanning calorimetry (DSC) results demonstrated that HHP and thermal treatments both significantly reduced SPP thermodynamic stability. Circular dichroism analyses revealed that native SPP contains α-helixes, β-sheets and random coils (4.3, 48.0 and 47.7 %, respectively). After thermal treatment at 127 °C for 20 min, the content of α-helixes and turns increased significantly (13.2 and 27.6 %, respectively), whereas the content of β-sheets decreased significantly (12.3 %). In contrast, HHP treatment increased the content of β-sheets, but decreased the content of random coils. This study suggested that the SPP structure changes might be the main reason affecting the in vitro digestibility of SPP, and thermal treatment was more effective at changing SPP secondary structures and improving in vitro SPP digestibility than HHP treatment.  相似文献   

6.
Changes of RVA viscosity and texture properties of waxy rice (n=9) and non-waxy rice (n=10) were analyzed through protein removal or disulfide bond disruption. Protease or DTT had similar effects on the pasting behavior of the waxy rice, but affected differently that of non-waxy rice. For all waxy rice flour treated with DTT or protease, the peak, breakdown and consistency viscosity values all significantly decreased, and the viscosity curves barely rose from the baseline. Pre-incubation of flours with a protease increased RVA pasting temperatures, decreased viscosities along all the points of the curves and the slopes of the linear parts of the curves for all non-waxy cultivars. DTT decreased RVA pasting temperatures and peak viscosities of all non-waxy flour, but increased breakdown viscosities in six non-waxy rice cultivars. With DTT-added cooking water, the hardness of cooked waxy and non-waxy rice, as determined by Instron, generally decreased. With DTT-added cooking water, the adhesiveness of all cooked waxy rice significantly decreased, while it increased significantly or remained the same in all cooked non-waxy rice. The above results indicated that the protein agent of a network linked by disulfide bonds increased the RVA gelatinized paste rigidity, the hardness and adhesiveness of cooked rice of all waxy cultivars, while in non-waxy cultivars, both the network and the increase of the gelatinized paste concentrations resulting from protein hydration contributed to the enhancements of the RVA paste rigidity and the cooked rice hardness.  相似文献   

7.
Microfluidization followed by density-based separation was employed to extract protein from broken rice by disrupting protein-starch agglomerates. Follow-up enzyme treatments (amylase and glucoamylase) were performed to further improve the purity of the protein-rich fraction. High protein recovery (81.87%) and purity (87.89%) were obtained. The protein composition, solubility, structural properties, and in vitro digestibility of rice proteins prepared by enzyme-assisted microfluidization (EM-RP) and alkaline extraction (AE-RP) were compared. EM-RP was mainly composed of glutelin, which had low solubility and native structure. By contrast, large quantities of prolamin and globulin appeared in the AE-RP except glutelin, leading to the richness of glutamic acid/glutamine, leucine, aromatic and charged amino acids in the AE-RP. Compared to AE-RP, EM-RP showed higher digestibility due to the richness of glutelin (an easy-to-digest protein), as evidenced by higher nitrogen release during pepsin-trypsin digestion. The presence of prolamin (an indigestible protein) in AE-RP decreased protein digestibility although alkaline extraction improved its hydrolysis. These results suggest that enzyme-assisted microfluidization could be an effective technique to non-destructively and selectively extract rice glutelin.  相似文献   

8.
Total phenolics, flavonoid contents and antioxidant capacity from a wide collection of rice germplasm were measured, and their relations to grain color, grain size and 100-grain weight were investigated. Highly significant genotypic differences were observed in total phenolics, flavonoid contents and 2,2-azino-bis-(3-ehylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) radical cation antioxidant capacity. They displayed an increasing order in the white rice, red rice and black rice, yet several white rice had higher phenolics and flavonoids contents than the red rice. Significant positive pair-wise correlations were found among the phenolics, flavonoid contents and antioxidant capacity, and the coefficient between the phenolic contents and antioxidant capacity was extremely high (r = 0.96). Among all rice accessions, the grain color parameters had negative correlations with the phenolics, flavonoid contents and antioxidant capacity (p < 0.001). The negative correlation between a* and antioxidant capacity, and the positive correlation between H° and antioxidant capacity were consistent within the respective white rice and red rice groups. Flavonoid contents had positive correlation with grain length and length to width ratio, and had negative correlation with the 100-grain weight among all rice accessions. It was also found that 100-grain weight still had negative correlations with phenolics, flavonoid contents and antioxidant capacity within the white rice genotypes. These relationships may serve as indexes to indirectly select breeding lines high in the phenolics, flavonoids and antioxidant capacity. Principal component analysis including the information for phenolics, flavonoids, antioxidant capacity, grain color parameters, grain size and 100-grain weight extracted five principal components that explained 83.7% of the total variances. The results of this study may provide new opportunities for rice breeders and eventually commercial rice growers to promote the production of rice with enhanced nutritional quality.  相似文献   

9.
The effects of putrescine on improving rice growth under aluminum(Al) toxicity conditions have been previously demonstrated, however, the underlying mechanism remains unclear. In this study, treatment with 50 μmol/L Al significantly decreased rice root growth and whole rice dry weight, inhibited Ca~(2+) uptake, decreased ATP synthesis, and increased Al, H_2O_2 and malondialdehyde(MDA) contents, whereas the application of putrescine mitigated these negative effects. Putrescine increased root growth and total dry weight of rice, reduced total Al content, decreased H_2O_2 and MDA contents by increasing antioxidant enzyme(superoxide dismutase, peroxidase, catalase and glutathione S-transferase) activities, increased Ca~(2+) uptake and energy production. Proteomic analyses using data-independent acquisition successfully identified 7 934 proteins, and 59 representative proteins exhibiting fold-change values higher than 1.5 were randomly selected. From the results of the proteomic and biochemical analyses, we found that putrescine significantly inhibited ethylene biosynthesis and phosphorus uptake in rice roots, increased pectin methylation, decreased pectin content and apoplastic Al deposition in rice roots. Putrescine also alleviated Al toxicity by repairing damaged DNA and increasing the proteins involved in maintaining plasma membrane integrity and normal cell proliferation. These findings improve our understanding of how putrescine affects the rice response to Al toxicity, which will facilitate further studies on environmental protection, crop safety, innovations in rice performance and real-world production.  相似文献   

10.
Improvement of rice storage proteins is important in rice breeding for high nutritional quality. Seventy-one recombinant inbred lines (RIL) derived from a cross between japonica variety Asominori and indica variety IR24 were used to study the inheritance of crude protein and protein fraction contents in rice. A total of 16 QTL were identified and mapped on eight chromosomes. Several QTL affecting contents of different protein fractions were mapped in the same chromosomal region. In particular, two QTL with a significant contribution were identified to simultaneously affect prolamin and glutelin contents. One QTL denoted as qCP-12 affecting crude protein content (CP) was located in the same region as QTL qGLT-12 affecting glutelin content, in agreement with the positive correlation between glutelin level and protein content. QTL with larger genetic effects were further confirmed using two sets of chromosome segment substitution lines (CSSL), where Asominori and IR24 were used as the recurrent parents. By QTL comparative analysis, two QTL for CP, three for globulin content and one for prolamin content were located in the vicinity of CP QTL previously identified in polished rice. Application of these results in rice breeding is discussed.  相似文献   

11.
Milled rice from 11 varieties, with amylose levels from 1.2 to 35.6% dry base, were collected to study the impacts of amylose content on starch retrogradation and textural properties of cooked rice during storage. The relationship between amylose content and different properties was determined using Pearson correlation. Starch retrogradation enthalpy (ΔHr) of cooked rice was determined by differential scanning calorimetry. ΔHr values were found to be positively correlated with amylose content (0.603 ≤ r ≤ 0.822, P < 0.01) during storage. Textural properties were determined by a Texture Analyser. The hardness of cooked rice showed a positive correlation with amylose content (0.706 ≤ r ≤ 0.866, P < 0.01) and a positive correlation with ΔHr of cooked rice (r = 0.650, P < 0.01) during storage. The adhesiveness showed a negative correlation with amylose content (−0.929 ≤ r ≤ −0.678, P < 0.01) and a negative correlation with ΔHr of cooked rice (r = −0.833, P < 0.01) during storage. Hardness showed a negative correlation with adhesiveness (r = −0.820, P < 0.01). These results indicated that amylose content has significant effects on starch retrogradation and textural properties of cooked rice. The cooked rice with high amylose content is easy to retrograde, the cooked rice with low amylose content retrograded slowly. Sarch retrogradation contributes to the changes of textural properties of cooked rice during storage.  相似文献   

12.
Proteins in brown rice (BR), white rice (WR) and rice bran (RB) were extracted from the same paddy rice and investigated for their components, functional properties and chemical characteristics by SDS-PAGE methodology. BR and WR proteins possessed a poor solubility under weak acid conditions due to a high content of glutenin and richness in higher molecular-weight (MW) protein fractions. Rice bran protein contained significantly lower molecular-weight components (MWs < 50 kDa) than those in WR and BR. Nitrogen solubility, foaming and emulsification properties of their rice protein preparations were affected not only by pH (3–11), but also by the concentrations of NaCl (0.4–2.0%) and sucrose (4.0–20.0%). All of them, particularly rice bran protein, had favorable functional properties in the medium with a high salt or sugar concentration. Therefore, they have a good potential for development in the food industry.  相似文献   

13.
Starch is a major component of rice grain and thus plays an important role in grain quality. For breeding rice with improved quality, the thermal and retrogradation properties of starch may be routinely measured. Since direct measurement is time-consuming and expensive, rapid predictive methods based on near-infrared spectroscopy (NIRS) can be applied to measure these quality parameters. In this study, calibration models for measurement of thermal and retrogradation properties were built from the spectra of grain and flour samples. The results indicated that both grain and flour spectra could give similar accuracy (r2=∼0.78) in determining the peak temperature (Tp) and conclusion temperature (Tc) of gelatinization. However, flour spectra (r2=0.80) were superior to the grain spectra (r2=0.73) in measuring onset temperature (To). Furthermore, the thermal properties of width at half peak height (ΔT1/2) and enthalpy of gelatinization (ΔHg), and retrogradation properties of enthalpy of retrogradation (ΔHr) and retrogradation percentage (R%) could only be successfully modeled with the flour spectra. The models reported in the present study are usable for routine screening of a large number of samples in early generation of selection in breeding programs. For accurate assay of the thermal and retrogradation properties, however, direct instrumental measurement should be employed in later generations.  相似文献   

14.
Protease has been shown to be an effective food additive for improving the quality of gluten-free rice bread. In this study, we found that bacillolysin (Protin SD-NY10, metallo protease), papain (cysteine protease), and subtilisin (Protin SD-AY10, serine protease) increased the specific volume of gluten-free rice breads by 30–60% compared with untreated breads. These proteases also decreased crumb hardness by 10–30% compared with untreated breads. Many fine bubble cells were observed in the crumb of the protease-treated rice breads using scanning electron microscopy. Optical microscopic observation revealed fine networks of small protein aggregates stained by Coomassie Brilliant Blue (CBB) in the rice batter of the improved gluten-free rice breads. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of protein in the rice batter suggested that the amount of low molecular weight proteins (less than 10 kDa) increased with the use of Protin SD-NY10, Protin SD-AY10 and papain treatments compared with untreated rice batter. Thus, we considered that the small proteins aggregates were formed through disulfide bonds. This fine network was effective for retaining CO2 gas during the fermentation process, resulting in an increase in the specific volume and a decrease in the crumb hardness of gluten-free rice bread.  相似文献   

15.
The physicochemical properties and in-vitro digestibility of extruded rice noodles with different amylose contents were characterized from a rheological point of view. Thermo-mechanical measurements showed that the rice flour with higher amylose contents exhibited greater stability to dual-mixing and higher degrees of starch gelatinization and retrogradation. In addition, greater elastic properties were clearly observed in the high amylose rice samples. The use of high amylose rice flour produced noodles with a harder texture, consequently contributing to reduced cooking loss. Furthermore, the rheological changes of extruded rice noodles were monitored in real time during the in-vitro starch digestion. The rice noodle digesta with higher amylose contents exhibited greater viscosities throughout the simulated oral-gastric-intestinal digestion steps. The flow behaviors of the rice noodle digesta consisted of the Power-law region and infinite shear plateau that were satisfactorily characterized by the Sisko model (R2 > 0.99).  相似文献   

16.
Cryomilling of rice starch was evaluated as a non-chemical way to modify starch structure and properties. Cryomilling in a liquid nitrogen bath (63–77.2 K) was done to Quest (10.80% amylose) and Pelde (20.75% amylose) rice starch at five different time frames (0, 15, 30, 45, and 60 min). The viscosity of the cryomilled rice starch decreased significantly (p < 0.05) with increasing milling duration, including peak viscosity, hot-paste viscosity, cold-paste viscosity, breakdown, and consistency. Increasing milling time significantly increased (p < 0.05) water solubility index and water absorption index. Infra-red spectroscopy and X-ray diffraction crystallography both showed that the crystallinity of the cryomilled starch decreased with increasing milling time. Differential scanning calorimetry (DSC) analyses showed that after 60 min cryomilling there was partial loss of crystallinity (86% for Quest and 91% for Pelde) of both cryomilled starches. The cryomilling process modified the rice starch by causing a loss of crystallinity, that reduced its pasting temperature and increased water absorption, and by fragmentation of starch (probably the amylopectin fraction) that reduced the viscosity and increased solubility.  相似文献   

17.
The study based on pretreatment, hydrolyzation and separation processes with the raw material rice hull, provides a comprehensive utilization of the hydrolyzed productions, such as glucose (C6H12O6) from cellulose, silica (SiO2), and byproduct crystalline sodium sulfate (Na2SO4·10H2O). The optimum hydrolysis conditions are as follows: the concentration of H2SO4 is 72% (wt.%), the temperature is 50 °C, the ratio of H2SO4 solution volume (mL) to the rice hull mass (g) is 10:1 and the time is 5 min, the glucose yield rate reaches 45.6% (wt.%). The concentration of glucose solution could be 0.1 g/mL after neutralization measured by ultraviolet spectrophotometer (UV-VIS). Silica powder was below 50 nm characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The main byproduct crystalline sodium sulfate was featured by XRD and photographs.  相似文献   

18.
Microwave-assisted extraction (MAE) was applied for extracting rice bran protein with a response surface methodology (RSM). The optimal condition was 1000 W of microwave power, 90 s of extraction time, and a solid to liquid ratio of 0.89 g rice bran/10 mL of distilled water. The protein yield of MAE was higher than that of alkaline extraction (ALK) by about 1.54-fold (P < 0.05), while the protein digestibility was similar. The protein hydrolysates (PHs) with at different degrees of hydrolysis (DH) (5.04, 10.37 and 15.04%) were produced by alcalase. The molecular weight (MW) of the rice bran protein concentrates (RBPC) and the PHs ranged between <11 kDa and 100 kDa. The excessive enzymatic hydrolysis resulted in a negative effect on water and oil absorption capacities. The PHs with DH15.04% acted as the strongest DPPH radical scavenger, ferric reducing agent, and also metal ion chelator (P < 0.05). However, a DH of 5.04% was sufficient for improving the functional properties of RBPC, especially foam ability and the emulsion activity index. This study suggests that the desirable properties of rice bran protein can be controlled with enzymatic modification.  相似文献   

19.
为了除去油茶粕蛋白的色素,添加体积分数为4%的双氧水在40℃下作用蛋白提取液1h可取得较好的脱色效果,但双氧水脱色对油茶粕蛋白结构和功能的影响需要进一步研究。本文通过测定变性温度、表面疏水性和巯基的含量,分析红外光谱、X射线衍射峰、微观形貌等研究脱色前后油茶粕蛋白结构和功能的变化。结果显示:双氧水脱色使油茶粕蛋白的表面疏水性上升,巯基含量下降,二硫键含量基本不变;通过红外光谱分析,双氧水脱色减弱了油茶粕蛋白化学键强度,但没有影响油茶粕蛋白基本骨架,微观结构基本相似,油茶粕蛋白的X射线衍射峰的位置和强度基本一致,热变性温度升高,双氧水没有改变油茶粕蛋白的等电点,但油茶粕蛋白的溶解度、乳化性、乳化稳定性、起泡能力和泡沫稳定性均下降,持油性和持水性上升。本研究结果表明双氧水脱色未明显改变油茶粕蛋白的结构,但其功能性质受到一定影响。  相似文献   

20.
Antioxidative properties of proteins from barley and rice bran and their hydrolysates were examined. Three major hordein fractions of barley, B, C and D hordeins, were partially purified by gel filtration. Albumin, globulin, prolamin and glutelin fractions of rice bran were fractioned by the Osborne method. Hydrolysates of these protein fractions were prepared by digesting with pepsin followed by trypsin. Antioxidant properties in terms of antioxidative activity against linoleic acid peroxidation and reducing activity without the lipid adjuvant were investigated. The globulin fraction from rice bran protein revealed the strongest antioxidative activity throughout the incubation time of 7 days (p ≤ 0.05). The albumin fraction of rice bran protein showed the highest reducing activity (6964 μmol of Fe2+) followed by globulin, prolamin, glutelin and hordein fractions with activities of 2904, 2017, 1809 and 1333 μmol of Fe2+, respectively (p ≤ 0.05). Partially purified C hordein exhibited the highest reducing activity compared with B and D hordeins. Protein hydrolysates obtained after digestion with pepsin and trypsin exhibited much greater antioxidative, as well as reducing, activities than those from before digestion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号