首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Reduced lignin concentration in brown mid-rib mutants in both maize and sorghum have resulted in improved dry matter digestibility, increased milk yield and higher energy in lactating cows. However, the mutations were not widely deployed due to concern that reduced lignin concentration might increase vulnerability to lodging and stalk rot incidence. The objective of this study was to determine the effects of the mutations on stalk strength and stalk rot resistance in both sorghum and maize. Six brown midrib (bmr) sorghum, four brown midrib (bm) maize, and their normal isolines were evaluated for stalk strength and stalk rot disease reaction at two locations in four replications. Three randomly selected plants in each plot were inoculated with Macrophomina phaseolina at 14 d after flowering by using the toothpick inoculation technique. On 28 d after inoculation, the plants were rated for disease severity by measuring the length of necrotic lesions in the stalks. Stalk strength was determined from another three random plants in each plot by using a rind penetrometer. The mutations had no effect on stalk rot disease severity in either sorghum or maize though stalks strength was markedly affected by the mutations in both species. While maize bm entries broke easily in response to mild mechanical stress, bmr sorghums did not exhibit sign of stalk collapse in all backgrounds. The result suggests that the bmr genes in both maize and sorghum can be deployed without incurring losses to stalk rot disease.  相似文献   

2.
Cultivars of sweet (Rio, M81E and Della) and forage sorghums (Tato and Thor) were planted in Northeast Mexico in order to estimate optimum harvesting time, sugar production, biomass composition and ethanol yields. The juices were characterized in terms of sugar composition, free amino nitrogen (FAN) and phenolics and then yeast (Saccharomyces cerevisiae)-fermented into ethanol. The cultivars yielded different volumes of sweet juice and total sugars. They also had different optimum harvesting times. Glucose was the most abundant sugar in raw juices, followed by fructose and sucrose. FAN concentration ranged from 19 to 36 mg L−1 therefore, nitrogen supplementation was required for adequate fermentation. After 18 h fermentation, there were no differences in efficiencies among cultivars but the sweet sorghums yielded more ethanol Ha−1 compared to the two forage sorghums (approximately 1000 L Ha−1 versus 770 L Ha−1). Della was the cultivar with the highest productivity with 1051 L Ha−1 ethanol produced after the first cut.  相似文献   

3.
The antioxidant capacity as oxygen radical absorbance capacity (ORAC) and in vitro chemopreventive effect of phytochemicals extracted, partitioned and isolated from the decorticated bran of black Shawaya sorghum (Sorghum bicolor L. Moench) was studied. The chemopreventive effect was evaluated as the induction effect of quinone reductase (QR) using murine hepatoma cells Hepa 1c1c7. The crude methanol extract with an antioxidant capacity of 3.7 μmol Trolox equivalent (TE)/mg was partitioned into 120 fractions with fast centrifugal partition chromatography (FCPC). Fractions with partition coefficients between 0.1 and 0.26 exerted more than 50% of the antioxidant activity of the original crude extract and contained the highest concentration of anthocyanins. No correlation was found for ferulic acid content and ORAC or chemoprevention. A derivative of 7-methoxyapigeninidin at a concentration of 1 μg/ml increased by 31% the QR activity while the original extract reached a maximum of 27% at 40 μg/ml.  相似文献   

4.
Fusarium spp. is among the largest and most important pathogen groups that attack major grain crops including sorghum. The objectives of this study were to compare the virulence of Fusarium spp. associated with sorghum and examine the mode of resistance of genotypes to the disease. Eight Fusarium species – F. verticillioides, F. thapsinum, F. andiyazi, F. proliferatum, F. nyagamai, F. pseudoanthophilum, F. brevicatenulatum, and F. pseudonygamai – were studied using three sorghum genotypes under greenhouse condition. Three of these pathogens (F. verticillioides, F. thapsinum, and F. andiyazi) were selected for genetic analysis of resistance under field conditions. Sorghum genotypes with contrasting stalk rot reactions were selected for use in both the greenhouse and field experiments. Two weeks after flowering, plants were inoculated with liquid inoculum culture (5 × 104 conidia ml−1) of the different pathogens. Plants were harvested 4 weeks after inoculation and rated for disease severity on the basis of lesion length and number of nodes crossed by the lesion. Among the pathogens, F. thapsinum resulted in consistently higher disease scores in all genotypes under all environments. Likewise, genotype SC599 showed the greatest and most stable resistance as inbred as well as in hybrid combinations as shown by consistently high GCA for resistance to all pathogen species. We recommend that future screening exercises for Fusarium stalk rot resistance utilize F. thapsinum as the causal organism and include the resistant genotype SC599 as a control.  相似文献   

5.
The cropping systems model APSIM (Agricultural Production Systems sIMulator) was applied to assess the response of sorghum grain yield to inorganic fertilizers applications and residue retention in diverse farmers’ management systems (homestead fields and bush farms). The model was parameterized using data collected from experiments under optimum growth conditions (limited water or nutrient stress). Independent data from field experiments with three levels of P and four levels of N fertilizers conducted at two different locations and soils were used to evaluate the model. Soil water and fertility parameters measured were used for simulations while same starting conditions were assumed for unmeasured parameters for all trials. APSIM predicted the grain yield response of sorghum to both N and P applications with an overall modified internal coefficient of efficiency of 0.64. Following model parameterization, a long-term simulation study was conducted using a stochastic weather data derived from historical weather data to assess the effects of crop residue management on grain production. A gradual decline in sorghum grain yield was simulated over the 30-year simulation period in both the homestead fields and the bush farms, with yields being much lower in the latter under farmers’ management practices. Half the amount of mineral N fertilizer used in the bush farms was needed in the homestead fields to produce the average grain yields produced on the bush farm with full fertilization, if crop residues were returned to the fields in the homestead. Year-to-year variability in grain yield was consistently higher with the removal of crop residues, irrespective of management systems. APSIM was responsive to both organic and inorganic fertilizer applications in the study area and also highlighted the essential role of crop residues and inorganic fertilizer in influencing the temporal sorghum grain production and hence the impact of farmers’ management practices on food security. This was evident in the rapid decline in soil organic carbon (SOC) accompanied by a decline in grain yield over the 30 years of cropping. The use of inorganic fertilizer and retention of crop residues (SOC) are critical for attaining food security in the study area.  相似文献   

6.
7.
The effect of addition of three commonly used emulsifiers namely GMS (glycerol monostearate), SSL (sodium stearoyl lactylate) and DATEM (diacetyl tartaric acid esters of monoglycerides) on complexation, thermal, pasting and textural properties of OWSS (oxidized white sorghum starch) was studied. The study is of interest as both oxidized starches and emulsifiers are present as co-ingredients in different food products and thus their complexation could affect the textural characteristics of foods. The complexation index (CI) reduced on oxidation of sorghum starch. The CI for native white sorghum starch (NWSS) was in the order GMS > SSL > DATEM whereas for OWSS, CI was in the order GMS > SSL > DATEM. Presence of emulsifiers significantly reduced gelatinization enthalpies of starches. Types I and II amylose–lipid complexes were observed in NWSS and OWSS on addition of GMS. Pasting temperature of NWSS increased while peak viscosity reduced on addition of SSL and GMS. Cold paste and setback viscosities of OWSS increased significantly (p ≤ 0.05) on addition of emulsifiers. Emulsifiers reduced firmness and rupture strength of NWSS and OWSS gels. Increase in firmness of gels on storage increased in NWSS and decreased in OWSS on addition of emulsifiers. Elasticity of OWSS on cold storage was higher in the presence of SSL and GMS.  相似文献   

8.
Epidemiological studies support the belief that whole grains are protective against several chronic diseases. The health benefits of whole grains are attributed in part to their unique phytochemical composition. Major phytochemicals in grains include various classes of phenolic compounds, flavonoids and coumarin derivatives, etc. Phenolic compounds present in grains possess antioxidant properties that are associated with the health benefits of grains and grain products. Sorghum is one of the main staple cereal grains in hot dry tropics and ranks fifth among cereal crops in the world. Although sorghum is rich in phenolics and tannins which are proven anticancer and cardioprotective constituents, human consumption of sorghum is limited. To our knowledge, there is limited literature on the profile of antioxidant phytochemicals in the local white variety of sorghum. Hence, the objective of this study was to investigate the antioxidant property of white sorghum flour extracts in vitro and also to identify the fractions responsible for the antioxidant activity. In the present study, we analyzed the antioxidative properties of various extracts (water, 60% methanol, 60% ethanol, and 60% t-butanol) of white sorghum flour employing the 1,1-diphenyl-2-picrylhydrazyl (DPPH) model system. Phenolics, antiradical and antioxidant activities were also examined in chromatographic sub-fractions of the soxhlet methanolic extract. Our results indicated that the various extracts exhibited significant antioxidant activity that did not correlate with the phenolic content. Further, two sub-fractions eluted with methanol and acetone/methanol were found to possess strong antioxidant activity in two assay systems. Our results suggest that a diet rich in sorghum may be useful in combating diseases in which free radical production plays a key role.  相似文献   

9.
Topramezone is a new herbicide for post-emergence control of broadleaf and grass weeds in maize. Two field experiments were conducted in northern Greece in 2008 and 2009 to determine the response of grain maize to topramezone applied with the adjuvant DASH at 2–4, 4–6 and 6–8 maize leaf stage. In both years, plant height, cob number and yield were not differently affected with the use of herbicide at these growth stages, indicating no difference in selectivity and a similar response of maize to the three post-emergence applications of topramezone. Slight injury symptoms of leaf bleaching were observed in the second year, however, they were transient with no lasting injury on maize growth.  相似文献   

10.
Volunteer winter cereals are found sporadically in maize (Zea mays L.) fields across southern Ontario. Seven field trials were conducted over a two-year period (2006 and 2007) at four locations to determine the efficacy of five acetolactate synthase (ALS)-inhibiting herbicides for the control of volunteer cereals applied at two post-emergence application timings (2–4 and 4–7 maize leaf tips). The volunteer cereals were a hard red winter wheat (Triticum aestivum L.) (‘Hyland AC Morley’), soft red winter wheat (‘Pioneer 25R47’), soft white winter wheat (‘Pioneer 25W41’), and a autumn rye (Secale cereale L.) (‘FR’) cultivar. Volunteer cereal competition in maize resulted in a yield reduction of up to 44%. Foramsulfuron, nicosulfuron, nicosulfuron/rimsulfuron provided greater than 70% control of the volunteer cereals at 56 days after treatment (DAT), while primisulfuron and rimsulfuron provided greater than 60% control. Volunteer cereal control with early and late application was greater than 82 and 61%, respectively. Hard red winter wheat was the most sensitive to the ALS-inhibiting herbicides with control of 84–93%. Soft red and soft white winter wheat cultivars were intermediate in sensitivity with control of 76–87%, while autumn rye was the least sensitive with control of at 56–71% control at 56 DAT. Maize yields were improved when volunteer cereals were controlled with the use of herbicides compared to the weedy control, but were lower than the weed-free control. Early herbicide application resulted in improved control of volunteer cereals and higher maize yield.  相似文献   

11.
Grain mould causes qualitative and quantitative loss to grain in sorghum. Grain mould resistance is a complex problem as grain mould is caused by complex of fungi and the resistance is governed by many traits. Breeding efforts during the last 3 decades to develop grain mould resistance in high yielding genotypes have not paid many dividends. We developed a strategy to breed for grain mould resistance in high yielding back ground. Twenty five crosses between elite lines and grain mould resistant genetic stocks (susceptible × resistant/moderately resistant and moderately resistant × resistant crosses) were evaluated in F1, and derivatives performing superiorly for grain mould resistance in F2-F4 at physiological maturity were advanced. The early generation material F2s (10) and F3s (125) in 6 locations (representing rainy-season-sorghum growing 6 states of India where grain mould is one of the major biotic stresses), and later generations F4s and F5s in 3 locations (one location, Parbhani is a hot spot for grain moulds and 2 locations, Hyderabad and Coimbatore in epiphytotic conditions) were evaluated. Only 25 selections out of 384 derivatives in F4 were superior over locations for grain mould resistance at physiological maturity and harvest maturity (Our simultaneous studies in RILs for grain mould resistance across years and locations have shown that the variation obtained for grain mould resistance at physiological maturity is genetically governed and the grain mould score further gets compounded at harvest maturity depending on rainfall received after physiological maturity). These superior lines were advanced and further evaluated in F5 and F6 for grain mould resistance and grain yield. During 2007, out of 25 F5 derivatives, 12 were on par (scored 3.1-4.4) with resistant check, B 58586 (3.2 score) where as susceptible check, 296 B registered a score of 7.5. GMN nos. 41, 52, 59, and 63 performed on par with resistant check, B 58586 for grain mould resistance over 9 environments. Since we selected for grain mould resistance in early generations at physiological maturity in multi-locations, we could identify superior lines for grain mould resistance. Most of these lines are high yielding and on par with elite check, C43 for grain yield. These lines are distinct for DUS testing traits from grain mould resistant check, B 58586.  相似文献   

12.
Large field to field variability restricts efficient fertilizer N management when broad based blanket recommendations are used in maize (Zea mays L.). To achieve higher yields and to avoid nitrogen (N) deficiency risks, many farmers apply fertilizer N in excess of crop requirement in maize. Field experiments were conducted for five years (2005–2009) to establish and evaluate threshold leaf colour to guide in-season need based fertilizer N topdressings in four maize genotypes. Colour (of the first top maize leaf with fully exposed collar) as measured by comparison with different shades of green colour on a leaf colour chart (LCC) and maize grain yield was significantly correlated. The Cate–Nelson plot of chlorophyll (SPAD) meter/leaf colour chart values against relative grain yield of 0.93 for the experiments conducted during first two years indicated that LCC shade 5 during vegetative growth stages and LCC shade 5.5 at silking stage (R1) can guide crop demand driven N applications in maize. Evaluation of the established threshold leaf greenness during the next three years revealed that fertilizer N management using LCC 5 starting from six-leaf (V6) stage to before R1 stage resulted in improved agronomic and N recovery efficiency in different maize genotypes. There was no response to fertilizer N application at R1 stage. The study revealed that in maize, fertilizer N can be more efficiently managed by applying fertilizer N dose based on leaf colour as measured by LCC than blanket recommendation.  相似文献   

13.
To evaluate row spacing and seeding rate effects on yield and plant stand characteristics of high-biomass sorghum, a photoperiod-sensitive cultivar was sown at three different row spacings (76, 38, and 19 cm) and seeding rates (218,000, 306,000, and 393,000 seeds ha−1 for one site-year and 116,000, 204,000, and 291,000 seeds ha−1 for three site-years) from 2009 to 2010 in Alabama and Arkansas, USA. Measurements included above-ground dry matter production, plant height, stem density, and stem diameter. Narrower row spacing (i.e. 19 cm) produced the highest biomass for all site-years. Increasing seeding rate did not affect yield for three of the site-years, and decreased yield for one. The 19 cm row spacing produced the highest stem densities. Plant height increased with increasing seeding rates at one site and decreased with higher seeding rates at another site. At one location, stem diameter declined as seeding rates and stem density increased. It was concluded that narrower row spacing (19 cm) provides the maximum yield benefit by significantly increasing stem density, and low seeding rates (116,000 seeds ha−1) are preferable because higher seeding rates do not positively affect yield and may cause morphological changes (i.e. taller plants with thinner stems) conducive to lodging.  相似文献   

14.
The goal of the present work was to test if there is genetic variability between precocious and superprecocious cycle maize genotypes in terms of grain productivity and energy profile. Data from two separate experiments were used. An experiment was conducted with 36 precocious cycle genotypes and another experiment was conducted with 22 superprecocious cycle genotypes. The following variables were measured: grain productivity (PROD), ethereal extract (EE), starch (ST), amylose (AML), and nitrogen-corrected apparent metabolizable energy (AMEn). For all variables, basic statistics and analysis of variance was performed. For each experiment, the genotypic correlation matrix was calculated and the multicollinearity was evaluated. Then, the Mahalanobis generalized distance matrix was calculated, the clustering of the genotypes was performed and the averages of the groups formed were compared, separately for each experiment. There was genetic divergence between precocious genotypes, as well as between superprecocious genotypes, especially in terms of grain PROD, EE concentration, and AML concentration. Groups of more productive genotypes presented lower EE and higher AML grain concentrations. The results of the present study indicated that it is possible to plan crossings between groups of genotypes in terms of PROD, EE and AML, with the goal of maximizing heterosis.  相似文献   

15.
Although a principal source of energy and protein for millions of the world's poorest people, the nutritional value of sorghum (Sorghum bicolor L. Moench) is diminished because of low digestibility of grain protein and starch. To address this problem, we analyzed the properties of two sorghum lines that have a common pedigree but differ in digestibility. Consistent with results based on a ruminal fluid assay, the protein and starch of one line (KS48) was more thoroughly digested than that of the other (KS51) using in vitro assays based on pepsin and α-amylase. The indigestibility of KS51 relative to KS48 was shown to be due to (i) a greater abundance of disulfide-bonded proteins; (ii) presence in KS51 of non-waxy starch and the accompanying granule-bound starch synthase; and (iii) the differing nature of the protein matrix and its interaction with starch. The current findings suggest that each of these factors should be considered in efforts to enhance the nutritional value of sorghum grain.  相似文献   

16.
Sorghum shoot fly (Atherigona soccata) is a serious pest that destabilizes the performance of sorghum cultivars and ultimately reduces sorghum production in many parts of the world. Identifying sorghum genotypes with stable resistance to shoot fly is important as it helps to reduce the cost of cultivation and stabilizes yields. In the present study, our objective was to identify stable shoot fly resistant genotypes among 385 recombinant inbred lines (RILs) of a cross between a susceptible parent and a resistant parent. We evaluated this set of RILs in eight environments over three years (2006-2008) for shoot fly resistance and component traits. Non-significant genotype-environment (G × E) linear component and significant pooled deviation for deadheart percentage indicated that the performance of genotypes was unpredictable over the environments. However, five lines had deadheart percentages much less than the population mean with regression coefficient (bi) values close to unity, and non-significant deviation from regression, indicating that they have stable shoot fly resistance and are well adapted to all the environments. Additive main effect and multiplicative interaction (AMMI) analysis partitioned main effects into genotype, environment and G × E interacts with all the components showing highly significant effects (p < 0.001). Environment had the greatest effect (69.2%) followed by G × E interactions (24.6%) and genotype (6.2%). Low heritability and high environmental influence for deadheart percentage suggested that shoot fly resistance is a highly complex character, emphasizing the need for marker assisted selection. We observed transgressive variation in the RIL population for all the traits indicating the contribution of alleles for resistance from both resistant and susceptible parents. Since the alleles for shoot fly resistance are contributed by both resistant and susceptible parents, efforts should be made to capture favourable alleles from resistant and susceptible genotypes.  相似文献   

17.
Nitrogen (N) fertilizers are often applied to maize (Zea mays L.) in excess of economically optimal rates because of the uncertainty of dealing with seasonal and spatial variability. A better understanding of the relationships among field, apparent soil electrical conductivity (ECa), elevation, slope and seasonal characteristics is therefore essential for performing optimal variable-rate N applications. This study focused on responses during the exponential growth phase, when it is critical that N supply be not limited. Measurements at high spatial resolution allowed to understand the effects of the relationships among N, ECa, elevation, slope and season on future yield formation. The study was conducted over three years (2005-2007). Mid-season growth responses to applied N were greatest where ECa levels were high and elevation was low in 2005 and 2007, but not in 2006. Areas with slope ≥1 degree were also more responsive to N rates. Overall best mid-season growth was found in areas of low ECa, high Elevation and low Slope. However, the best responses to in-season N fertilization were found in areas with opposite properties (high ECa, low Elevation and high Slope). Indeed, relatively high rates of in-season N were needed to enhance crop growth in areas of high ECa, low Elevation and high Slope, which are characteristic of unfavourable growth conditions. In counterpart, lower N rates were sufficient for optimal growth in soils at low ECa high Elevation and low Slope. Also, despite the fact that conditions of high soil variability were specifically selected for the study, the effects and interactions reported for soil NO3-N content were small. The interaction of ECa with early seasonal precipitation is likely a key relationship to consider in variable-rate N application: low-lying areas with fine soil texture showed the greatest dependence on weather for optimal N rates. Indeed, the relationships among factors influencing the response to in-season N fertilization were stronger when seasonal conditions were particularly favourable to maize growth. These results are fundamental to the establishment of in-season application rules for spatially variable N algorithms.  相似文献   

18.
Finger millet and sorghum flours were used as vehicles for double fortification with ferrous fumarate, zinc stearate and EDTA. The iron and zinc salts were added at levels that provided 60 mg iron and 50 mg zinc per kg of flour. EDTA was added at levels equimolar to the added iron. The double-fortified finger millet and sorghum flours contained bioaccessible zinc contents of 0.83 and 1.63 mg/100 g, respectively, while the respective bioaccessible iron contents were 2.39 and 2.63 mg/100 g. The exogenous iron and zinc did not mutually interfere with their bioaccessibility. The shelf-life of the fortified flours was also satisfactory up to a period of 60 days, as indicated by the moisture and free fatty acid contents in the fortified flours. Double fortification of the millet flours did not negatively alter the sensory quality of the products prepared from them. The RDA for iron and zinc of Indian children, women and men can be sufficiently met with approximately 4 dumplings or 9 rotis. The use of such qualitatively and quantitatively rich flours can be promoted through welfare programs to reduce and subsequently eradicate iron and zinc deficiency.  相似文献   

19.
Excessive moisture (EM) stress during the summer–rainy season is one of the major production constraints for maize (Zea mays L.) in large areas of South and South-East Asia. A key question in breeding for tolerance to excessive moisture is the extent to which the performance of maize hybrids can be predicted on the basis of per se performance of inbred lines under excessive moisture. We attempted to identify the relationship between morpho-physiological traits and grain yield measured on inbred parents and their single cross progenies under EM stress. Responses of various morpho-physiological traits, except days to 50% anthesis, differ significantly under normal versus EM stress. Superiority of hybrid progenies over parental inbred lines increased under EM stress, suggesting that hybrids were comparatively more tolerant to EM stress than inbred progenies. Across moisture regimes, all morpho-physiological traits of hybrids, except lodging and root porosity under normal moisture, were found to be positively and significantly correlated with mid-parent traits. Our data suggest that per se performance of lines was a relatively more important factor in determining hybrid performance under EM stress, while under optimum soil moisture conditions mid-parent heterosis was relatively more important than per se performance of mid-parent. Phenotypic correlation between hybrid and mid-parent yields showed a strong relationship under EM stress (r = 0.66**). The relationship was statistically significant under normal moisture as well, though it was comparatively weak (r = 0.41*). Our findings suggest that performance of hybrid progenies under excessive moisture can be predicted and improved to some extent on the basis of their inbred parents that have been systematically selected and improved for EM stress.  相似文献   

20.
Phosphorus (P) deficiency is a major constraint for maize production in many low-input agroecosystems. This study was conducted to evaluate genotypic variation in both root (root architecture and morphology, including root hairs) and plant growth traits associated with the adaptation of maize landraces to a P-deficient Andisol in two locations in the Central Mexican highlands. Two hundred and forty-two accessions from the Purhepecha Plateau, Michoacan were grown in Ponzomaran with low (23 kg P2O5 ha−1) and high (97 kg P2O5 ha−1) P fertilization under rain-fed field conditions, and subsequently a subset of 50 contrasting accessions were planted in the succeeding crop cycle in Bonilla. Accessions differed greatly in plant growth, root morphology and P efficiency defined as growth with suboptimal P availability. The accessions were divided into 3 categories of P efficiency using principal component and cluster analyses, and 4 categories according to the retained principal component and their relative weight for each genotype in combination with growth or yield potential. The distribution of accessions among three phosphorus efficiency classes was stable across locations. Phosphorus-efficient accessions had greater biomass, root to shoot ratio, nodal rooting, nodal root laterals, and nodal root hair density and length of nodal root main axis, and first-order laterals under P deficiency. Biomass allocation to roots, as quantified by the allometric partitioning coefficient (K) was not altered by P availability in the efficient accessions, but inefficient accessions had a lower K under low P conditions. Accessions with enhanced nodal rooting and laterals had greater growth under low P. Dense root hairs on nodal root main axes and first-order laterals conferred a marked benefit under low P, as evidenced by increased plant biomass. Late maturity improved growth and yield under low P. These results indicate that landraces of the Central Mexican highlands exhibit variation for several root traits that may be useful for genetic improvement of P efficiency in maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号