首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pre-harvest glyphosate is applied to cereal grains to control weed growth. However, it has been claimed that oat (Avena sativa L.) composition is affected by pre-harvest glyphosate application. The research was conducted to evaluate differences in properties of β-glucan in grains of pre-harvest glyphosate treated versus untreated oat plants. Two oat cultivars (Rockford and Souris) were grown at Minot and Prosper, ND, in 2015, and glyphosate was sprayed during the soft dough stage, hard dough stage, or not applied. β-glucan viscosity was not significantly (p > 0.05) affected by treatment at soft dough (1082 cP) or mature (1166 cP) stages compared with untreated (1150 cP) controls. Applying glyphosate at the soft dough stage significantly (p < 0.05) reduced the content and solubility of the β-glucan versus untreated samples. β-glucan content and solubility in oat treated at soft dough were 4.35% and 52.1%, respectively, while in untreated samples were 4.65% and 60.6%, respectively. Treatment at soft dough and hard dough stages significantly (p < 0.05) increased weight average molecular weight (Mw) of the high molecular weight fraction of soluble β-glucan (4.4 × 106 and 3.8 × 106, respectively), compared with untreated controls (3.5 × 106). The Mw of the low molecular weight fraction of soluble β-glucan fraction significantly (p < 0.05) increased at soft and hard dough treatments (5.5 × 105 and 3.3 × 105, respectively), versus untreated samples (3.0 × 105). Therefore, glyphosate can be applied when the grain has reached physiological maturity or thereafter.  相似文献   

2.
This study examined the antioxidant properties of the ethanolic extracts of wheat milling fractions (wheat flour type 500 and type 850, and bran) and their polyphenol and tocopherol content, and rheological characteristics of wheat dough supplemented with buckwheat flours (light and wholegrain). The results obtained in this study were correlated with our previously published data on wheat flour type 400, wholegrain wheat flour and buckwheat flours.Buckwheat flours exhibited significantly higher (P < 0.05) antiradical activity on hydroxyl (OH), superoxide anion (O2) and (1,1-diphenyl-2-picrylhydrazyl) DPPH radicals, antioxidant activity and reducing power than all investigated wheat milling fractions when their corresponding IC50 values were compared.The rheological parameters of wheat dough supplemented with light and wholegrain buckwheat flour (0-50%) were obtained by using Mixolab. Results indicated changes in protein and starch properties of dough.The obtained results indicate the benefit of using buckwheat flours in wheat-based food products, i.e. their contribution in functional and tailor-made-food production.  相似文献   

3.
The quality of bread made from frozen dough is diminished, and staling rate is increased by changes that occur during freezing and storage. New cultivars of waxy wheat flour (WWF), containing higher levels of amylopectin, may help improve the quality of baked products. Bread quality and staling were investigated for bread containing 0–45% WWF and 55–65% water after freezing and 90-day frozen storage. The specific volume was highest with 15% WWF substitution and 60% water in bread made from both unfrozen and frozen dough. With higher levels of WWF and lower water content, bread staling rates decreased. Bread with higher levels of WWF were darker and had greater color variation. 1H NMR studies showed that bread with greater WWF and water had higher transverse relaxation (T2) times (9–11 ms), but less change in T2 during storage. This research demonstrated that specific combinations of WWF and water produced a better quality of bread after dough freezing.  相似文献   

4.
A cost-effective, faster and efficient way of screening wheat samples suitable for tortilla production is needed. This research aimed to develop prediction models for tortilla quality (diameter, specific volume, color and texture parameters) using grain, flour and dough properties of 16 wheat flours. Another set of 18 samples was used to validate the models. The prediction models were developed using stepwise multiple regression. Dough rheological tests had higher correlations with tortilla quality than grain and flour chemical tests. Mixograph mixing time and dough resistance to extension (from extensibility test using a texture analyzer) were correlated best with tortilla quality, particularly tortilla diameter (r = −0.87 and −0.86 respectively, P < 0.01). Insoluble polymeric proteins (IPP) and gluten index were significantly correlated with tortilla diameter (r = −0.70 and −0.67 respectively, P < 0.01) and specific volume (r = −0.73, P < 0.01). Tortilla diameter was the quality parameter best explained (R2 = 0.86) by the prediction models using mixing time and dough resistance to extension. Rheological parameters such as rupture distance and maximum force were also successfully predicted. These prediction models, developed from linear equations, will be an easy and fast tool for breeders to advance or eliminate wheat lines specifically bred for tortilla production.  相似文献   

5.
Starch, as the main component of flour products, determines the physicochemical properties of dough. This work investigated the relationship of the physical properties of seven types of starches from various cereals with the structural features of reconstituted dough. Results of mixing and tensile properties analysis and scanning electron microscopy displayed that rice reconstituted flour exhibited maximum water absorption; pea reconstituted flour had higher dough stability; sweet potato dough had higher tensile resistance; highland barley dough had the greatest extensibility. Moisture distribution analysis revealed that various model dough showed remarkably different water distribution, which was distributed at T21 (0.07–0.11 ms), T22 (0.8–2.66 ms) and T23 (10.0–20.82 ms). Correlation analysis indicated that large starch granules associated with good dough stability; amylose content of starch positively affected tensile resistance of dough; crystallinity of starch showed negative effects on water absorption; starch with higher crystallinity associated with greater dough stability.  相似文献   

6.
Wheat (Triticum aestivum L.) flour is able to form dough with unique rheological properties that allow bread making. It is well known that wheat protein content affects dough rheological properties, but there is not enough evidence about the role of other minor flour constituents. One such minor constituent is non-starch flour polysaccharides, which are mainly pentosans formed by a xylopyranosyl linear chain branched with arabinofuranosyl residues. Their spatial distribution and branching pattern can affect their relationship with gluten forming proteins and thus influence their functional properties, the dough rheological properties, and thereby the flour baking quality. In this study the content and structural characteristics of non-starch polysaccharides were investigated, as well as their influence on some dough physicochemical parameters. Five different wheat flours samples milled from Uruguayan wheat varieties with diverse rheological and breadmaking properties were used in this study. Water soluble flour polysaccharides were extracted and the amount of pentosans was determined by the orcinol-HCl method. The pentoses composition was determined before and after acidic hydrolysis of the water soluble polysaccharide fractions by GC. No free pentoses were detected in any of the assayed flour samples, so the pentoses composition found in the hydrolyzed samples was attributed to the non-starch water soluble polysaccharides. Water unextractable non-starch polysaccharides were determined by difference between the total and the soluble non-starch polysaccharides flour content.An improved method for the quantification of water extractable and non-extractable non-starch polysaccharides, using baker's yeast, was developed. Using this method, total and soluble non-starch polysaccharides content could reliably be determined both in whole flour and in pentosans enriched fractions. Free monosaccharide content was in the range from 0.03% to 0.06% (w/w), while the arabinose/xylose (Ara/Xyl) ratios varied from 0.8 to 1.4 in soluble non-starch polysaccharides and from 0.7 to 0.9 in total non-starch polysaccharides. The different Ara/Xyl ratios found for water extractable and unextractable arabinoxylans clearly indicates different substitution degrees in the polymers. Analysis of the dough rheological parameters in relation to the water soluble and non-soluble non-starch polysaccharides and the Ara/Xyl ratios from different wheat varieties was performed. A clear relation between some of these parameters could be inferred, since a direct relationship between total unextractable (AXi) content and resistance of dough to extension (P), as well an inverse relationship between the same parameter and dough extensibility (L) were observed. These results suggest that the flour non-starch polysaccharide content, as well the Ara/Xyl ratios may be used as additional parameters to estimate some of the wheat flours dough properties.  相似文献   

7.
Since protein aggregation and formation of a continuous protein matrix in rye dough is very limited, an enzyme-induced protein aggregation method to improve the baking properties was investigated. The effects of microbial transglutaminase (TG) on the properties of rye dough were studied by rheological tests, confocal laser scanning microscopy (CSLM), standard-scale baking tests and crumb texture profile analysis. Addition of TG in the range of 0-4000 Ukg−1 rye flour modified the rheological properties of rye flour dough, resulting in a progressive increase of the complex shear modulus (|G∗|) and in a decrease of the loss factor (tan δ) due to protein cross-linking or aggregation. CLSM image analysis illustrated a TG-induced increase of the size of rye protein complexes. Standard baking tests showed positive effects on loaf volume and crumb texture of rye bread with TG applied up to 500 Ukg−1 rye flour. Higher levels of TG (500 U ≤ TG ≤ 4000 U) had detrimental effects on loaf volume. Increasing TG concentration resulted in an increase of crumb springiness and hardness. In conclusion, the results of this work demonstrated that TG can be used to improve the bread making performance of rye dough by creating a continuous protein network.  相似文献   

8.
Effect of adding flaxseed flour (10%, 20% and 30% w/w) to wheat flour on rheological properties of dough, including water absorption, stability and development time, extensibility and resistance to extension, was studied at 45, 90 and 135 min proving time. Qualitative properties of toast regarding staling (after 24 and 72 h) were determined. Phenolic compounds, peroxide values, sensory characteristics and color indices of the breads were evaluated. The results indicated that water absorption and development time increased as the proportion of flaxseed increased in dough. Stability decreased with the increment of flax flour compared to control sample (100% wheat flour). Extensibility and resistance to extension of flaxseed samples respectively decreased and increased comparing to those of control sample. Staling in toast with 20% flaxseed flour was seen to be lower than that of the control. Adding flax flour caused phenolic compounds to increase, however it decreased peroxide value. Bread color parameters L and a reduced by adding flax flour, while parameter b did not show significant different compared to the control (p < 0.05). Results of sensory evaluation indicated that brightness of the toasts decreased with increasing flaxseed flour and that 30% flaxseed toast had the lowest score for overall acceptability.  相似文献   

9.
The aim of this study was to improve the baking quality of whole-wheat saltine cracker (WWSC) using endoxylanases, vital wheat gluten (VWG), and gum Arabic. SRC results showed both water-SRC and sucrose-SRC of soft white whole-wheat flour (SWWW) were significantly reduced by gum Arabic (r = 0.94, P < 0.05). Alveograph results indicated that the tenacity and extensibility of the whole-wheat dough (WWD) were increased by VWG. Rheometer G′ and G″ moduli increased with higher addition levels of endoxylanases, VWG, and gum Arabic. Low-field nuclear magnetic resonance (LF-NMR) detected three CPMG proton populations (T21, T22, and T23) in WWD. T21 peak area ratio (tightly bound water) reduced and T22 peak area ratio (less tightly bound water) increased with the levels of each additive. LF-NMR results revealed increased water mobility from T21 population to T22 population with addition of these additives, which was beneficial for gluten to form a continuous network. Both stack height and specific volume of WWSC were improved by the use of endoxylanases, VWG, and gum Arabic, but the breaking strength varied. The results of Orthogonal experimental design showed that the most-improved quality WWSC could be produced by combining 0.035% endoxylanases, 1.5% VWG, and 1.5% gum Arabic into SWWW flour.  相似文献   

10.
Arabinoxylans (AXs) are the major dietary fiber (DF) component in wheat and their consumption has been associated with several health benefits. Genetic improvement of the AX in refined wheat flour could be a good solution to improve the DF daily consumption while maintaining the flour desirable quality. In this study, 193 common wheat lines were analyzed for their AX content in refined flour and end-use quality. Wide variation in both the total arabinoxylan (TOT-AX) (10.8–16.5 mg/g) and water-extractable arabinoxylan (WE-AX) (3.2–7.6 mg/g) was identified and, in both cases, the genotype had the greatest impact on the observed phenotypes. Variation in the endogenous AX fractions appeared to have a moderate effect on wheat quality. The WE-AX, specifically, were positively correlated with gluten strength (r = 0.11 to 0.32) and bread loaf volume (r = 0.16), whereas the TOT-AX were negatively correlated with dough extensibility (r = −0.11) and bread making quality (r = −0.11). Overall, results of this study show that the genetic improvement of grain AX is feasible and that the AXs present in refined flour do not dramatically alter wheat quality indicating that it is possible to select varieties with high AX endosperm content end desired end-use quality.  相似文献   

11.
The protein content and the content of protein-related parameters of both flour and dough were related to the maximum resistance (Rmax) and extensibility (E) of dough, as determined in a Brabender Extensograph, and to loaf volume. The glutenin macropolymer (GMP) content of flour and dough was more strongly related toRmaxthan protein content or the content of the group of Osborne fractions (glutenin, gliadin, albumin/globulin). Within each group of protein-related parameters, the contents of the Osborne glutenin fractions explained the variation in all quality parameters better than the contents of the gliadin or albumin/globulin fraction. The GMP content of dough after 45 min rest was more strongly related toRmax, whereas the GMP content of flour was more strongly related toEand loaf volume. This demonstrates that, during mixing and resting of dough, changes occur in the GMP that are important forRmaxbut not forEor loaf volume. Although limited numbers of wheat cultivars (15), harvest years (2), flour blends (8) and resting times (3) were investigated, the relationship between the GMP content of dough andRmaxwas independent of these variables.  相似文献   

12.
The quality of bread made from frozen dough is diminished, and staling rate is increased by changes that occur during freezing and storage. New cultivars of waxy wheat flour (WWF), containing higher levels of amylopectin, may help improve the quality of baked products. Bread quality and staling were investigated for bread containing 0–45% WWF and 55–65% water after freezing and 90-day frozen storage. The specific volume was highest with 15% WWF substitution and 60% water in bread made from both unfrozen and frozen dough. With higher levels of WWF and lower water content, bread staling rates decreased. Bread with higher levels of WWF were darker and had greater color variation. 1H NMR studies showed that bread with greater WWF and water had higher transverse relaxation (T2) times (9–11 ms), but less change in T2 during storage. This research demonstrated that specific combinations of WWF and water produced a better quality of bread after dough freezing.  相似文献   

13.
The effects of aging from t = 0–108 h at two different temperatures (4 and 25 °C) on the non-linear viscoelastic rheological properties and secondary protein structure of hard wheat flour dough (HWD) were investigated using large amplitude oscillatory shear tests (LAOS) coupled with Fourier transform infrared spectroscopy (FTIR) and SDS-PAGE. Storage (G') and loss (G'') moduli rapidly decreased during aging at 25 °C. Subjecting HWD to progressively longer aging times at 25 °C caused dramatic changes in the non-linear viscoelastic properties demonstrated by strain softening (negative values of e3/e1) and shear thinning (negative values of v3/v1) behavior. Elastic Lissajous curves of the unaged control dough showed clockwise turn and wider elliptical trajectories as dough aging proceeds especially at higher temperatures. Other non-linear LAOS parameters (G'M-G''L, η'M-η'L, S and T) supported that aging process at higher temperature caused a progressive change in dough structure from strain stiffening to strain softening behavior while dough samples aged at 4 °C showed fairly close behavior with the control dough sample. FTIR spectra indicated that the relative content of β-sheet and β-turn structures decreased while the content of α-helix structure increased for all dough samples as a result of dough aging. SDS-PAGE results supported the breakdown of high molecular weight (HMW) and low molecular weight (LMW) glutenin subfractions. Aging at the higher temperature of 25 °C decreased the HMW/LMW ratio from 0.77 to 0.59, while the ratio was 0.73 for the dough aged at 4 °C which is fairly close to the control sample. Our results show that the degradation rate of gluten/starch network was triggered by aging at higher temperature, longer aging time, and natural fermentation which resulted in increasing acidity and increase in endogenous proteolytic and amylolytic activity, and also increasing gluten solubility and break down of intermolecular disulfide bonds at acid pH.  相似文献   

14.
The influence of high molecular weight glutenin subunits (HMW-GS) on wheat breadmaking quality has been extensively studied but the effect of different Glu-1 alleles on cookie quality is still poorly understood. This study was conducted to analyze the effect of HMW-GS composition and wheat-rye translocations on physicochemical flour properties and cookie quality of soft wheat flours. Alleles encoded at Glu-A1, Glu-B1 and Glu-D1 locus had a significant effect over physicochemical flour properties and solvent retention capacity (SRC) profile. The null allele for Glu-A1 locus presented the highest cookie factor observed (CF = 7.10), whereas 1BL/1RS and 1AL/1RS rye translocations had a negative influence on CF. The three cultivars that showed the highest CF (19, 44 and 47) had the following combination: Glu-A1 = null, Glu-B1 = 7 + 8, Glu-D1 = 2 + 12 and no secalins. Two prediction equations were developed to estimate soft wheat CF: one using the HMW-GS composition and the other using physicochemical flour parameters, where SRCsuc, SRC carb, water-soluble pentosans, damaged starch and protein turned out to be better CF predictors. This data suggests that grain protein allelic composition and physicochemical flour properties can be useful tools in breeding programs to select soft wheat of good cookie making quality.  相似文献   

15.
The influence of high molecular weight glutenin subunits (HMW-GS) on wheat breadmaking quality has been extensively studied but the effect of different Glu-1 alleles on cookie quality is still poorly understood. This study was conducted to analyze the effect of HMW-GS composition and wheat-rye translocations on physicochemical flour properties and cookie quality of soft wheat flours. Alleles encoded at Glu-A1, Glu-B1 and Glu-D1 locus had a significant effect over physicochemical flour properties and solvent retention capacity (SRC) profile. The null allele for Glu-A1 locus presented the highest cookie factor observed (CF = 7.10), whereas 1BL/1RS and 1AL/1RS rye translocations had a negative influence on CF. The three cultivars that showed the highest CF (19, 44 and 47) had the following combination: Glu-A1 = null, Glu-B1 = 7 + 8, Glu-D1 = 2 + 12 and no secalins. Two prediction equations were developed to estimate soft wheat CF: one using the HMW-GS composition and the other using physicochemical flour parameters, where SRCsuc, SRC carb, water-soluble pentosans, damaged starch and protein turned out to be better CF predictors. This data suggests that grain protein allelic composition and physicochemical flour properties can be useful tools in breeding programs to select soft wheat of good cookie making quality.  相似文献   

16.
The influence of patent, middle-cut and clear flour grades as native or reconstituted flour blends on both the rheological properties of the dough and the quality of semi-sweet biscuit (flour/sugar/fat/water ratio of 100/30/8/36) was studied. Moving from the central portion (patent) to the peripheral portion (clear) of the grain endosperm increased the dough hardness from 3.77 to 4.84 N, consistency from 19.3 to 25.5 N s, elongational viscosity from 4.13×10−5 to 5.54×10−5 Pa s, half-relaxation time from 0.45 to 0.59 s, but decreased the rate of relaxation from 4.51 to 3.09 s−1 of the biscuit's dough produced with the native flours due to the wide variation in the physico-chemical properties of these fractions. Quantitatively, the fractionation/reconstitution procedure reduced moderately these rheological parameters, and the flour functionality could not be restored completely. Biscuits produced with the patent flour showed the largest length and lowest thickness, whilst the clear fraction led to production of denser biscuits with greater cohesion (mean tearing force) of the biscuit inner structure and also contain more grains or group of grains per unit of penetration (number of spatial ruptures). The biscuits made with the reconstituted flour fractions had almost equivalent dimensional characteristics, and excellent surface appearance, but were also darker in colour than their native flour counterparts.  相似文献   

17.
Previously we reported that the SDS insoluble gel-layer: the Glutenin Macro Polymer (GMP) can be considered as a gel consisting of protein particles. These glutenin particles have a size of about 10−1–102 μm and consist of HMW-GS and LMW-GS only. In GMP isolates from flour, the particles are spherical. In isolates from dough, glutenin particles have lost this shape. This seems relevant, since mixing disrupts the particles and the mixing energy required for dough development correlated with the glutenin particle size in flour. The question studied in this paper is how changes at a glutenin particle level affected the subsequent process of gluten network formation during dough rest and if this could be used to explain resulting dough rheological properties. To this end, we studied how various mixing regimes affected the dough properties during and after resting (elasticity). We cannot fully explain the differences in the final dough properties observed using parameters such as the quantity of GMP in flour, the quantity of re-assembled GMP in dough and the size of re-assembled glutenin particles. However, other parameters were found to be important: (1) the Huggins constant K′ reflecting the tendency of glutenin particles to interact at level II of the Hyperaggregation model; (2) the composition of glutenin particles affecting the potential to form smaller or larger particles and (3) for over-mixed dough, covalent re-polymerisation at the so-called level I of hyperaggregation. Using these parameters we can better explain dough viscoelasticity after resting.  相似文献   

18.
Selection for water absorption, a fundamental wheat quality parameter, has been a challenge in wheat breeding programs due to limited wheat materials available for milling and consequent time-consuming farinograph test. Hence, a high shear-based method, which requires 8 g of flour and less than 10 min per test, was proposed to predict flour water absorption using the Brabender GlutoPeak instrument. Highly significant positive linear relationship (r2 = 0.97) was found between GlutoPeak maximum torque and farinograph water absorption for 83 flour samples prepared with Bühler test mill from wheat lines under evaluation in the Canadian wheat variety registration trials. Similar strong correlation (r2 = 0.96) was obtained from flours (n = 63) prepared with Quadrumat Junior laboratory mill using small amount of wheat. Flour prepared either with Bühler test mill or Quadrumat Junior mill can be used for predicting water absorption effectively. GlutoPeak maximum torque was found to be independent of dough strength (r2 = 0.02) as measured by extensigraph. GlutoPeak test can be a powerful tool for rapid and reliable prediction of water absorption of wheat flour.  相似文献   

19.
The effects of Trametes hirsuta laccase alone and in combination with Aspergillus oryzae and Bacillus subtilis xylanases on dough extensibility were studied using the Kieffer test to determine the dough extensibility (Ex) and the resistance to stretching (Rmax). Laccase treatment resulted in dough hardening: the Rmax of dough increased and the Ex at Rmax decreased as a function of dosage (5–50 nkat/g flour). Xylanases softened flour and gluten doughs. Hardening by laccases and softening by xylanases was weaker in gluten doughs. Dough hardening, observed in the laccase treatments, decreased as a function of dough resting time. The softening effect occurred especially at higher laccase dosages (≈50 nkat/g flour). The softening phenomenon was related to the laccase-mediated depolymerization of the cross-linked AX network. In combined laccase and xylanase treatments, the effect of laccase was predominant, especially at low xylanase dosage, but when xylanase was added to flour dough at high concentrations, the hardening effect of laccase on dough was decreased. In combined laccase and xylanase treatments in gluten doughs, similar decreases in laccase-mediated hardening were not seen.  相似文献   

20.
The aim of this study was to determine whether protein body-free kafirins in high digestibility, high-lysine (HDHL) sorghum flour can participate as viscoelastic proteins in sorghum-wheat composite dough and bread. Dough extensibility tests revealed that maximum resistance to extension (g) and time to dough breakage (sec) at 35 °C for HDHL sorghum-wheat composite doughs were substantially greater (p < 0.01) than for normal sorghum-wheat composite doughs at 30 and 60% substitution levels. Functional changes in HDHL kafirin occurred upon exceeding its Tg. Normal sorghum showed a clear decrease in strain hardening at 60% substitution, whereas HDHL sorghum maintained a level similar to wheat dough. Significantly higher loaf volumes resulted for HDHL sorghum-wheat composites compared to normal sorghum-wheat composites at substitution levels above 30% and up to 56%, with the largest difference at 42%. HDHL sorghum-wheat composite bread exhibited lower hardness values, lower compressibility and higher springiness than normal sorghum-wheat composite bread. Finally, HDHL sorghum flour mixed with 18% vital wheat gluten produced viscoelastic dough while normal sorghum did not. These results clearly show that kafirin in HDHL sorghum flour contributes to the formation of an improved protein network with viscoelastic properties that leads to better quality composite doughs and breads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号