首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pre-harvest sprouting (PHS) in wheat (Triticum aestivum L.) can be a significant problem, causing deleterious effects on grain quality. However, the adverse impacts of PHS can be reduced by introgressing genes controlling grain dormancy into white-grained bread wheat. Screening for grain dormancy typically involves germination testing of harvest-ripe grain grown in a glasshouse or field. However, the more uniform environmental conditions provided by temperature controlled glasshouses (i.e. controlled environmental conditions—CEC) may provide significant benefits for the assessment of grain dormancy. In this study, the dormancy phenotype of grain grown under CEC incorporating an extended photoperiod, was compared with 2 years of data from field grown material. Four dormant double haploid lines (derived from SW95-50213 and AUS1408) and two locally adapted non-dormant cultivars EGA Gregory and EGA Wills were compared in three replicated experiments grown under CEC (22 ± 3°C and 24 h photoperiod). The germination response of harvest-ripe grain was examined to assess the expression of grain dormancy. Two measures of germination, the predicted time to 50% germination (G 50) and a weighted germination index, both clearly differentiated dormant and non-dormant lines grown under CEC. In addition, levels of grain dormancy were similar to field-grown plants. These results demonstrated that CEC with an extended photoperiod can be used for rapid and reliable characterisation of grain dormancy in fixed lines of bread wheat.  相似文献   

2.
Genetic male sterility (GMS) genes in wheat (Triticum aestivum L.) can be used for commercial hybrid seed production. A new wheat GMS mutant, LZ, was successfully used in the 4E-ms system for producing hybrid wheat, a new approach of producing hybrid seed based on GMS. Our objective was to analyse the genetic mechanism of male sterility and locate the GMS gene in mutant LZ to a chromosome. We firstly crossed male sterile line 257A (2n = 42) derived from mutant LZ to Chinese Spring and several other cultivars for determining the self-fertility of the F1 hybrids and the segregation ratios of male-sterile and fertile plants in the F2 and BC1 generations. Secondly, we conducted nullisomic analysis by crossing male sterile plants of line 257A to 21 self-fertile nullisomic lines as male to test the F1 fertilities and to locate the GMS gene in mutant LZ to a chromosome. Thirdly, we conducted an allelism test with Cornerstone, which has ms1c located on chromosome 4BS. All F1s were male fertile and the segregation ratio of male-sterile: fertile plants in all BC1 and F2 populations fitted 1:1 and 1:3 ratios, respectively. The male sterility was stably inherited, and was not affected by environmental factors in two different locations or by the cytoplasm of wheat cultivars in four reciprocal cross combinations. The results of nullisomic analysis indicated the gene was on chromosome 4B. The allelism test showed that the mutant LZ was allelic to ms1c. We concluded that the mutant LZ has common wheat cytoplasm and carries a stably inherited monogenic recessive gene named ms1g.  相似文献   

3.
A recombinant inbred line (RIL) population with 305 lines derived from a cross of Hanxuan 10 × Lumai 14 was used to identify the dynamic quantitative trait loci (QTL) for plant height (PH) in wheat (Triticum aestivum L.). Plant heights of RILs were measured at five stages in three environments. Total of seven genomic regions covering PH QTL clusters on different chromosomes identified from a DH population derived from the same cross as the RIL were used as the candidate QTLs and extensively analyzed. Five additive QTLs and eight pairs of epistatic QTLs significantly affecting plant height development were detected by unconditional QTL mapping method. Six additive QTLs and four pairs of epistatic QTLs were identified using conditional mapping approach. Among them, three additive QTLs (QPh.cgb-1B.3, QPh.cgb-4D.1, QPh.cgb-5B.2) and three pairs of epistatic QTLs (QPh.cgb-1B.1QPh.cgb-1B.3, QPh.cgb-2A.1QPh.cgb-2D.1, QPh.cgb-2D.1QPh.cgb-5B.2) were common QTLs detected by both methods. Three QTLs (QPh.cgb-4D.1, QPh.cgb-5B.3, QPh.cgb-5B.4) were expressed under both drought and well-water conditions. The present data are useful for wheat genetic manipulations through molecular marker-assisted selection (MAS), and provides new insights into understanding the genetic mechanism and regulation network underlying the development of plant height in crops. Our result in this study indicated that combining unconditional and conditional mapping methods could make it possible to reveal not only the stable/conserved QTLs for the developmental traits such as plant height but also the dynamic expression feature of the QTLs.  相似文献   

4.
Grain yield under post-anthesis drought stress is one of the most complex traits, which is inherited quantitatively. The present study was conducted to identify genes determining post-anthesis drought stress tolerance in bread wheat through Quantitative Trait Loci (QTLs) analysis. Two cultivated bread wheat accessions were selected as parental lines. Population phenotyping was carried out on 133 F2:3 families. Two field experiments and two experiments in the greenhouse were conducted at IPK-Gatersleben, Germany with control and post-anthesis stress conditions in each experiment. Thousand-grain weight was recorded as the main wheat yield component, which is reduced by post-anthesis drought stress. Chemical desiccation was applied in three experiments as simulator of post-anthesis drought stress whereas water stress was applied in one greenhouse experiment. Analysis of variance showed significant differences among the F2:3 families. The molecular genetic linkage map including 293 marker loci associated to 19 wheat chromosomes was applied for QTL analysis. The present study revealed four and six QTLs for thousand-grain weight under control and stress conditions, respectively. Only one QTL on chromosome 4BL was common for both conditions. Five QTLs on chromosomes 1AL, 4AL, 7AS, and 7DS were found to be specific to the stress condition. Both parents contributed alleles for drought tolerance. Taking the known reciprocal translocation of chromosomes 4AL/7BS into account, the importance of the short arms of homoeologous group 7 is confirmed for drought stress.  相似文献   

5.
The spikes of club wheat are significantly more compact than spikes of common wheat due to the action of the dominant allele of the compactum (C) locus. Little is known about the location of C on chromosome 2D and the relationship between C and to other spike-compacting genes. Thus, a study was undertaken to place C on linkage maps and a chromosome deletion bin, and to assess its relatedness to the spike compacting genes zeocriton (Zeo) from barley and soft glume (Sog) from T. monococcum. Genetic mapping was based on recombinant inbred lines (RILs) from a cross between the cultivars Coda (club) and Brundage (common) and F2 progeny from a cross between the club wheat Corrigin and a chromosome 2D substitution line [Chinese Spring (Ae. tauschii 2D)]. The C locus was flanked by Xwmc144 and Xwmc18 in the RIL population and it was completely linked to Xcfd116, Xgwm358 and Xcfd17 in the F2 population. C could not be unambiguously placed to a chromosome bin because markers that were completely linked to C or flanked this locus were localized to chromosome bins on either side of the centromere (C-2DS1 and C-2DL3). Since C has been cytogenetically mapped to the long arm of chromosome 2D, we suspect C is located in bin C-2DL3. Comparative mapping suggested that C and Sog were present in homoeologous regions on chromosomes 2D and 2Am, respectively. On the other hand, C and Zeo, on chromosome 2H, did not appear to be orthologous.  相似文献   

6.
M. Yamamori 《Euphytica》2009,165(3):607-614
In common and durum wheats (Triticum aestivum L. and T. durum Desf.), variant waxy (Wx) alleles have been reported for three Wx proteins (Wx-A1, -B1 and -D1), responsible for amylose synthesis in flour starch. Five variant alleles, Wx-A1c, -A1e, -B1c, -B1d and -D1c, were examined to elucidate their effects on amylose content in flour starch. Common wheat lines carrying a Wx protein produced by one variant (e.g., Wx-A1c) and one control (e.g., Wx-A1a) allele were bred and their starches were compared. Results showed that Wx-A1e did not produce amylose (waxy phenotype), whereas three alleles (Wx-A1c, -B1c and -B1d) reduced amylose, and -D1c might have increased it slightly. Most data on blue value, swelling power and starch paste clarity in water and dimethyl sulphoxide also suggested the variant Wx alleles either reduced or increased amylose content.  相似文献   

7.
Screening of wheat genotypes as salt tolerance through seed germination and early seedling growth is crucial for their evaluation. Seeds of 20 wheat genotypes were germinated in Petri dishes on a sand bed irrigated with saline (15 dS m-1) and control solutions for 10 days and also tested at different salinity levels (control, 4, 6, 8, and 10 dS m-1) which were artificially developed in the soil for 30 days. At 10 days, germination percentage, rate of germination, co-efficient of germination, germination vigor index, shoot length, root length, and seedling dry weight were found to be affected due to salinity. Salt tolerance index (STI) for seedling dry weight maintained a significant positive correlation with rate of germination, germination vigor index, shoot length, and root length, which indicates that these parameters could be used as selection criteria for screening wheat genotypes against salt stress. Significant differences in shoot length, root length, and seedling dry weight in 30-day-old seedlings were observed among selected wheat genotypes as well. From the overall observation of germination characters and early seedling growth, it was concluded that the wheat genotypes including Gourab, Shatabdi, Bijoy, Prodip, BARI Gom 26, BAW 1186, and BAW 1189 showed better salt tolerance as compared to others.  相似文献   

8.
Genetic architecture of seedling drought tolerance is complex and needs to be better understood. To address this challenge, we developed a protocol to identify the most promising drought-tolerant genotypes at the seedling stage in winter wheat. A population of 146 recombinant inbred lines (F9) derived from a cross between wheat cultivars, ‘Harry’ (seedling drought tolerant) and ‘Wesley’ (seedling drought susceptible) were used in this study. All genotypes were sown in three replications in a randomized complete block design under controlled conditions in a greenhouse. Seven traits were scored and grouped into tolerance traits; days to wilting, leaf wilting, and stay green and survival traits; days to regrowth, regrowth, drought survival rate, and recovery after irrigation. Three selection indices were calculated (1) tolerance index, (2) survival index, and (3) drought tolerance index (DTI). The same set of genotypes were also tested for grain yield in two low rainfall environments for two seasons. High genetic variation was found among all genotypes for all seedling traits scored in this study. Correlations between tolerance and survival traits were weak or did not exist. Heritability estimates ranged from 0.53 to 0.88. DTI had significant phenotypic and genotypic correlations with all seedling traits. Genotypes were identified with a high drought tolerance at the seedling stage combined with high grain yield in low rainfall. Breeding for tolerance and survival traits should be taken into account for improving winter wheat drought tolerance at seedling stage. The selected genotypes can be used for to further improve drought tolerance in high yielding wheat for Nebraska.  相似文献   

9.
Flour color is an important trait in the assessment of flour quality for the production of many end products. In this study, quantitative trait loci (QTLs) with additive effects, epistatic effects, and QTL × environment (QE) interactions for flour color in bread wheat (Triticum aestivum L.) were studied, using a set of 168 doubled haploid (DH) lines derived from a Huapei 3 × Yumai 57 cross. A genetic map was constructed using 283 simple sequence repeats (SSR) and 22 expressed sequence tags (EST)-SSR markers. The DH and parents were evaluated for flour color in three environments. QTL analyses were performed using QTLNetwork 2.0 software based on a mixed linear model approach. A total of 18 additive QTLs and 24 pairs of epistatic QTLs were detected for flour color, which were distributed on 19 of the 21 chromosomes. One major QTL, qa1B, closely linked to barc372 0.1 cM, could account for 25.64% of the phenotypic variation of a* without any influence from the environments. So qa1B could be used in the molecular marker-assisted selection (MAS) in wheat breeding programs. The results showed that both additive and epistatic effects were important genetic basis for flour color, and were also sometimes subject to environmental modifications. The information obtained in this study should be useful for manipulating the QTLs for flour color by MAS in wheat breeding programs. Kun-Pu Zhang and Guang-Feng Chen contributed equally to this study.  相似文献   

10.
Heat stress adversely affects wheat production in many regions of the world and is particularly detrimental during reproductive development. The objective of this study was to identify novel quantitative trait loci (QTL) associated with improved heat tolerance in wheat (Triticum aestivum L.) and to confirm previous QTL results. To accomplish this, a recombinant inbred line (RIL) population was subjected to a three-day 38°C daytime heat stress treatment during early grain-filling. At maturity, a heat susceptibility index (HSI) was calculated from the reduction of three main spike yield components; kernel number, total kernel weight, and single kernel weight. The HSI, as well as temperature depression (TD) of the main spike and main flag leaf during heat stress were used as phenotypic measures of heat tolerance. QTL analysis identified 14 QTL for HSI, with individual QTL explaining from 4.5 to 19.3% of the phenotypic variance. Seven of these QTL co-localized for both TD and HSI. At all seven loci, the allele for a cooler flag leaf or spike temperature (up to 0.81°C) was associated with greater heat tolerance, indicated by a lower HSI. In a comparison to previous QTL results in a RIL population utilizing the same source of heat tolerance, seven genome regions for heat tolerance were consistently detected across populations. The genetic effect of combining three of these QTL, located on chromosomes 1B, 5A, and 6D, demonstrate the potential benefit of selecting for multiple heat tolerance alleles simultaneously. The genome regions identified in this study serve as potential target regions for fine-mapping and development of molecular markers for more rapid development of heat tolerant germplasm.  相似文献   

11.
A set of 75 recombinant inbred lines (RILs) of the ITMI mapping population was grown under field conditions in Gatersleben. The lines were evaluated for the domestication traits pre-harvest sprouting and dormancy (germinability). Main QTLs could be localized for pre-harvest sprouting on chromosome 4AL and dormancy on chromosome 3AL. In addition, 85 Triticum aestivum cv. “Chinese Spring”-Aegilops tauschii introgression lines grown under greenhouse conditions were researched. No QTL could be found for pre-harvest sprouting but a major QTL could be detected for dormancy on chromosome 6DL.  相似文献   

12.
Chromosomes of Korean hexaploid wheat were investigated to compare the chromosomal karyotype for cytogenetic diversity. Chromosomal karyotyping was done with in situ hybridization using two types of simple sequence repeats (SSR)s, (AAG)5 and (AAC)5 labeled with tetramethyl-rhodamine-5-dUTP and fluorescein-12-dUPT as a fluorescence, respectively. The two SSRs as cytogenetic markers revealed that the cytogenetic characteristics of the wheat chromosomes were remarkably a B genome. In this study, the chromosomal karyotype of Keumkang, a Korean hexaploid wheat cultivar, was the A, B, and D genomes used as a cytogenetic reference. The expressed signals from the two SSRs showed a difference in the chromosomal karyotype of chromosome 1B among the Korean hexaploid wheat. The distribution pattern and the degree of condensation for the (AAG)5 and (AAC)5 signals on the short arm of chromosome 1B were different in the Korean hexaploid wheat shown in descending order: Keumkang > Joeun > Johan > Olgeuru. Olgeuru had a lower level of distribution and condensation for the two SSRs signals compared to the other Korean hexaploid wheat. In the A genome, chromosome 7A showed an unbalanced expression of the (AAG)5 signal on the distal region of the short and long arms in several Korean hexaploid wheat while Joeun, a Korean hexaploid wheat, showed a definite (AAG)5 signal on the distal region of each arm of chromosome 7A. Among the Korean hexaploid wheat, Shinmichal1, a Korean hexaploid waxy wheat, had a chromosome with a unique expression pattern for (AAG)5 and (AAC)5 compared the other Korean hexaploid wheat. Those cytogenetic differences identified in this study are useful as an indicator to improve the cytogenetic diversity in the Korean wheat breeding program.  相似文献   

13.
Heat stress adversely affects wheat production in many regions of the world and is particularly detrimental during reproductive development and grain-filling. The objective of this study was to identify quantitative trait loci (QTL) associated with heat susceptibility index (HSI) of yield components in response to a short-term heat shock during early grain-filling in wheat. The HSI was used as an indicator of yield stability and a proxy for heat tolerance. A recombinant inbred line (RIL) population derived from the heat tolerant cultivar ‘Halberd’ and heat sensitive cultivar ‘Cutter’ was evaluated for heat tolerance over 2 years in a controlled environment. The RILs and parental lines were grown in the greenhouse and at 10 days after pollination (DAP) half the plants for each RIL received a three-day heat stress treatment at 38°C/18°C day/night, while half were kept at control conditions of 20°C/18°C day/night. At maturity, the main spike was harvested and used to determine yield components. A significant treatment effect was observed for most yield components and a HSI was calculated for individual components and used for QTL mapping. QTL analysis identified 15 and 12 QTL associated with HSI in 2005 and 2006, respectively. Five QTL regions were detected in both years, including QTL on chromosomes 1A, 2A, 2B, and 3B. These same regions were commonly associated with QTL for flag leaf length, width, and visual wax content, but not with days to flowering. Pleiotropic trade-offs between the maintenance of kernel number versus increasing single kernel weight under heat stress were present at some QTL regions. The results of this study validate the use of the main spike for detection of QTL for heat tolerance and identify genomic regions associated with improved heat tolerance that can be targeted for future studies.  相似文献   

14.
The objective of this study was to develop diallel population hybrids by crossing selected germplasm and to determine the gene effects and genetic control of yield and yield components using diallel analysis. A complete diallel including reciprocals was made during 2003 and 2004 between five alfalfa cultivars of different geographic origin. For each pairwise cross, five plants were chosen at random from each of the two cultivars (~100 florets per plant) to obtain the F1 generation. A spaced plant field was established in 2006 which included the five alfalfa cultivars (parents) and their 20 diallel hybrids (F1). The results of the diallel analysis suggest that the genetic control of major agronomic traits is determined by both additive gene action (accumulation of frequency of desirable alleles represented by significant GCA effects) and nonadditive gene action (complementary gene interactions represented by significant SCA effects). This type of gene action expression in alfalfa also determines the way in which breeding is carried out and brings about changes in the methods used and has given rise to the idea of the semi-hybrid breeding of this crop. The concept involves: breeding alfalfas within the population, identification of heterotic germplasm, and the production of seed of the population hybrid (PH).  相似文献   

15.
The germplasm with exotic genomic components especially from Sea Island cotton (Gossypium barbadense L. Gb) is the dominant genetic resources to enhance fiber quality of upland cotton (G. hirsutum L., Gh). Due to low efficiency of phenotypic evaluation and selection on fiber quality, genetic dissection of favorable alleles using molecular markers is essential. Genetic dissection on putative Gb introgressions related to fiber traits were conducted by SSR markers with mapping populations derived from a cross between Luyuan343 (LY343), a superior fiber quality introgression line (IL) with genomic components from Gb, and an elite Upland cotton cv. Lumianyan#22 (LMY22). Among 82 polymorphic loci screened out from 4050 SSRs, 42 were identified as putative introgression alleles. A total of 29 fiber-related QTLs (23 for fiber quality and six for lint percentage) were detected and most of which clustered on the putative Gb introgression chromosomal segments of Chr.2, Chr.16, Chr.23 and Chr.25. As expected, a majority of favorable alleles of fiber quality QTLs (12/17, not considering the QTLs for fiber fineness) came from the IL parent and most of which (11/12) were conferred by the introgression genomic components while three of the six (3/6) favorable alleles for lint percentage came from the Gh parent. Validation of these QTLs using an F8 breeding population from the same cross made previously indicated that 13 out of 29 QTLs showed considerable stability. The results suggest that fiber quality improvement using the introgression components could be facilitated by marker-assisted selection in cotton breeding program.  相似文献   

16.
The effects of contrasting soil nitrogen (N) levels on the inheritance of the efficiency of N uptake and N utilization in grain mass formation were examined in winter wheat. Parents of various origins and their diallel F2-hybrids were evaluated in field and pot experiments under varying levels of soil N. The range of additive variance in the components of N efficiency was narrow, especially under N shortage. The soil N-treatments imposed had a substantial influence on gene actions responsible for the efficiency components and modes of inheritance. Genotype × nutrition interactions were common. Under high N-fertilization, the efficiency components were inherited in a manner favourable for wheat selection (preponderance of additive effects). However, the enhanced contribution of non-additive gene effects and increased dominance under N-limited conditions could impede wheat selection to improve the N efficiency and adaptation to less luxurious fertilization regimes. Selection methods that eliminate masking non-additive influences and take advantage of the additive variance should be employed to improve these traits.  相似文献   

17.
The non-transgenic manipulation of starch properties in common wheat (Triticum aestivum L.) generally implies combining mutant alleles of the particular gene copies in all three subgenomes (A, B and D). The redundancy of the hexaploid wheat chromosome set substantially complicates the identification of recessive mutations and breeding. Nevertheless, naturally occurring or induced genetic polymorphism has already been successfully exploited for the production of waxy (GBSSI-deficient) and elevated amylose (SSIIa-deficient) wheats. However, in order to achieve the amylose content above 50% of wheat endosperm starch, it may be necessary to inactivate the starch branching enzyme (SBEIIa) isoforms, as the RNAi repression results and gene expression data strongly suggest. The identification of null SBEIIa alleles and their combination in a single genotype is therefore a promising approach to the production of non-transgenic high-amylose wheat; however, wheat SBEIIa polymorphism has not been characterized as of yet. In order to develop an approach to SBEIIa mutation screening, we sequenced the SBEIIa central region (exons 9–12) from the three subgenomes of common wheat cv. Chinese Spring and the A genome of diploid einkorn T. monococcum. The genome-specific primers were developed that amplify the exons downstream from intron 11 selectively from each homeologous gene. Using a single-stranded DNA conformation polymorphism (SSCP) approach, we screened 60 wheat cultivars, landraces, and rare species for naturally occurring SNPs in exons 12, 13 and 14 of the three SBEIIa homeologs. In total, 13 SNPs were discovered in the A and B wheat genomes. Two of these SNPs affect the amino acid sequences of SBEIIa isoforms and may change the enzyme functional properties. The presence of restriction site polymorphism at SNP positions enables their easy genotyping with CAPS assays. Our results indicate that the mining for naturally occurring sequence polymorphism in starch biosynthesis genes of wheat can be successfully performed at the DNA level, providing the starting point for a search for SBEIIa mutants at a larger scale.  相似文献   

18.
Fusarium head blight (FHB) is a serious wheat disease all over the world. In this study, the relationships between plant height (PH) and FHB were investigated across the whole wheat genome by QTL meta-analysis from fifty-six experiments. Coincident meta-QTL (MQTL) for PH and FHB were found on chromosomes 2D, 3A, 4B, 4D and 7A. Rht-B1, Rht-D1, Rht8, MQTLs P7 and P26 were consistent with FHB MQTLs. The meta-analysis results confirmed the negative associations of Rht-B1, Rht-D1, and Rht8 with FHB resistance. The associations of PH and FHB resistance on chromosomes 3A and 7A have not been reported and need further investigation. These regions should be given attention in breeding programs. MQTLs derived from several resistance sources were also observed. Some FHB MQTLs for different types of resistance overlapped. These findings could be useful for improving wheat varieties with resistance to FHB.  相似文献   

19.
A triploid hybrid with an ABC genome constitution, produced from an interspecific cross between Brassica napus (AACC genome) and B. nigra (BB genome), was used as source material for chromosome doubling. Two approaches were undertaken for the production of hexaploids: firstly, by self-pollination and open-pollination of the triploid hybrid; and secondly, by application of colchicine to axillary meristems of triploid plants. Sixteen seeds were harvested from triploid plants and two seedlings were confirmed to be hexaploids with 54 chromosomes. Pollen viability increased from 13% in triploids to a maximum of 49% in hexaploids. Petal length increased from 1.3 cm (triploid) to 1.9 cm and 1.8 cm in the two hexaploids and longest stamen length increased from 0.9 cm (triploid) to 1.1 cm in the hexaploids. Pollen grains were longer in hexaploids (43.7 and 46.3 μm) compared to the triploid (25.4 μm). A few aneuploid offsprings were also observed, with chromosome number ranging from 34 to 48. This study shows that trigenomic hexaploids can be produced in Brassica through interspecific hybridisation of B. napus and B. nigra followed by colchicine treatment.  相似文献   

20.
The objective of this study was to identify allelic variations at Glu-1 loci of wheat (Triticum aestivum L.) advanced lines derived from hybridization of bread wheat and synthetic hexaploid wheats (2n = 6x = 42; AABBDD). Locally adapted wheat genotypes were crossed with synthetic hexaploid wheats. From the 134 different cross combinations made, 202 F8 advanced lines were selected and their HMW-GS composition was studied using SDS-PAGE. In total, 24 allelic variants and 68 HMW-GS combinations were observed at Glu-A1, Glu-B1, and Glu-D1 loci. In bread wheat, the Glu-D1 locus is usually characterized by subunits 1Dx2+1Dy12 and 1Dx5+1Dy10 with the latter having a stronger effect on bread-making quality. The subunit 1Dx5+1Dy10 was predominantly observed in these advanced lines. The inferior subunit 1Dx2+1Dy12, predominant in adapted wheat germplasm showed a comparative low frequency in the derived advanced breeding lines. Its successful replacement is due to the other better allelic variants at the Glu-D1 locus inherited in these synthetic hexaploid wheats from Aegilops tauschii (2n = 2x = 14; DD).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号