首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
为实现无接触、低成本的马铃薯根系图像快速准确分割,以阐明内蒙古阴山北麓地区马铃薯的根系时空动态分布特征为目的,该研究提出一种基于改进DeepLabv3+语义分割网络的马铃薯根系图像分割方法,并对其输出的图像进行根系长度计算,获得了马铃薯不同生育时期内不同土层下的根系长度。试验结果表明,改进的DeepLabv3+模型的均交并比(mean intersection over union,MIoU)和平均像素精度(mean pixel accuracy, MPA)分别为94.05%和95.72%,MIoU相较SegNet、PSPNet、U-Net和标准DeepLabv3+分别提高了6.67、4.92、8.80和4.21个百分点;MPA相较SegNet、PSPNet、U-Net和标准DeepLabv3+分别提高了6.7、4.86、8.25、4.53个百分点;训练时间为9.52 h,相较SegNet、PSPNet、U-Net和标准DeepLabv3+分别缩短了6.8、3.99、4.56和3.94 h;浮点运算次数(floating point operations,FLOPs)较SegNet、P...  相似文献   

2.
番茄辣椒微型根系形态原位采集系统设计与实现   总被引:1,自引:1,他引:0  
为实时获取浅根系作物的根系生长形态,设计了一种可用于多点测量的微型根系形态实时原位采集系统。系统主要由微型摄像头和光学放大元件等组成(体积1.5cm3),采集的图像通过无线模块发送至终端。采用基于区域生长的根系图像分析方法,以腐蚀图像为出发点,膨胀图像为终止点,结合相似性准则进行区域生长、区域标记和区域保留,来滤除土壤孔隙和杂质等对图像产生的干扰,从而提取根系轮廓,并通过图像形态学计算得到根长密度、根系平均直径等形态参数。以此系统采集樱桃番茄、辣椒根系形态参数,试验结果表明,根系长度测定值的绝对误差不超过1.5 mm,相对误差不超过5.3%;根系平均直径绝对误差不超过0.09 mm,相对误差不超过6.7%。与土壤采样法测定值相比,在0~10、10~20、20~30和30~40 cm 4个土壤层内2种测定方法根系平均直径决定系数R20.87(P0.01),根长密度在30 cm深度以内的土壤层决定系数R20.81(P0.01)。证明本文设计的微型根系形态实时原位采集系统具有较高的准确性,可用于浅根系作物形态的多点观测。  相似文献   

3.
基于玉米根系图像的表型指标获取方法   总被引:1,自引:1,他引:0  
为了快速获取玉米根系表型指标,该研究提出一种基于图像的高通量解决方案。系统整合一套简易可靠的根系图像获取硬件和自动化根系图像处理算法,首先在固定背景下获取玉米根系图像,通过标定物检出、背景分割算法得到根系目标前景图像,识别根系起始点并剪除冗余部分得到根系感兴趣区域后计算颜色、形状、空间分布3大类29个表型指标。应用该系统获取135个玉米自交系材料吐丝期根系图像和表型数据,其中根系分支角度指标与人工测量值回归分析的决定系数为0.85,验证了系统的精度和准确性。采用非监督聚类方法对135个自交系材料根系表型指标分类,获得3种根系形态类型,通过剖面图分析了各指标在分类中的作用以及不同类型根系的主要表型差异。该方法能够快速获取多个玉米根系表型指标,满足了大规模种质资源鉴定和商业化育种对表型数据的需求。  相似文献   

4.
研究水分胁迫下的根系特征对于节水农业的发展具有重大意义。针对现有根系观测与土壤水分监测方法难以满足野外条件下根系和根区水分的同步、原位、高通量监测的不足,该研究研制了一种基于STM32芯片的管道机器人系统。系统由管道机器人、数据基站与PVC透明管道组成,通过在土壤中埋设管道机器人系统,控制机器人搭载的微距相机与土壤水分传感器在巡航时拍摄根系图像,并获取土壤水分数据。由根系图像识别分割与提取程序对图像进行畸变校正与根系识别,获取管道方向上植株的根系面积、长度与密度等特征参数。实验室条件下进行相机拍摄效果、图像畸变校正、识别与分割误差及里程轮测距误差测试,以及土壤水分传感器标定试验。测试结果表明:1)管道机器人能够清晰地拍摄到根系图像,图像畸变校正效果较好,单个像素点长度和面积分别为44μm和0.002 mm2,单张根系图像的拍摄范围为14.17 mm×10.60 mm;2)土壤水分传感器输出电压与土壤体积含水率之间呈现良好线性关系,决定系数R2为0.990;3)自主巡航定位准确度较高,平均相对误差为1.47%。在田间条件下进行的根系生长动态监测...  相似文献   

5.
利用径向生长修复算法检测玉米根系表型   总被引:2,自引:2,他引:0  
针对根系图像中的断根易导致根系表型信息难以精确获取的问题,该研究提出一种根系径向生长修复算法,并基于此进行不同抗性玉米种子根系表型对比研究。首先,采用自适应对比度增强、直方图灰度查找、椒盐去噪等对采集的根系图像进行预处理,从复杂背景中分离出根系图像;再通过YOLO-V3检测模型进行根系图像中主根根尖识别;最后,自根尖开始进行径向生长,通过分叉点主根提取策略、端点自适应修复策略实现主根图像修复,并提取主根和侧根表型信息。将普通、抗旱、抗涝、抗盐4种不同抗性的玉米种子种植于槽型扁平容器中培养14 d后取出,冲洗得到完整根系并进行图像采集。采用径向生长修复算法进行根系修复后提取根系长度和直径与根系图像修复前相比,根系长度和直径的提取精度分别由83.6%和84.4%提高至97.4%和94.8%,径向生长修复算法提取精度优于区域生长算法,适用于不同胁迫环境下玉米根系表型参数提取。在干旱环境和盐腌环境下,径向生长修复算法精度提升更明显。结果表明,本研究所提算法所提出的根系径向生长修复算法可有效提高根系图像表型信息精度,为根系表型快速提取提供参考。  相似文献   

6.
为实现温室番茄植株多模态三维重建,解决多光谱反射率配准和多视角点云三维重建问题,基于相位相关原理将多光谱反射率配准至RGB-D图像坐标系中,建立了基于Kinect传感器测量位姿自主标定的多视角RGB-D图像三维重建方法,实现植株RGB三维点云模型和多光谱反射率点云模型重建,通过归一化灰度相似系数、配准区域光谱重叠率、互信息值3个指标客观评价二维多光谱图像配准质量,采用豪斯多夫距离客观评价植株三维点云重建精度。结果表明:30株温室番茄,每株4个重建视角,视角间隔为90°,配准区域光谱重叠率和归一化灰度相似系数的平均值分别为0.920 6和0.908 5,异源图像配准后互信息值比配准前互信息值平均提升了9.81%,植株冠层多光谱图像能够准确配准至深度坐标系,番茄植株三维重建点云距离集小于0.6 cm的比例为78.39%,小于1.0 cm的比例为91.13%,番茄距离集均值的平均值为0.37 cm,表明植株三维点云模型重建精度较高,能够应用于温室番茄植株多模态三维重建。植株多模态三维模型是实现三维形态测量与生理诊断的关键要素,为高通量植株表型测量提供高效精准的测量方法,对植物表型组学等研究领域的发展具有重要的意义。  相似文献   

7.
为提高鱼类表型分割精度和准确度,实现鱼类表型智能监测,该研究基于深度学习算法构建了VED-SegNet模型用于鱼类表型分割和测量。该模型将cross stage partial network和GSConv结合作为编码器(VoV-GSCSP),保持足够精度的同时降低网络结构复杂性。另一方面,该模型采用EMA(efficient multi-scale attention module with cross-spatial learning)建立强化结构,加强编码器和解码器之间的信息传递,提高模型精度,并实现了8个表型类别的输出。采用自建的鱼类表型分割数据集对VED-SegNet模型进行了测试,测量结果中鱼类各表型比例与实际测量值相接近,表型最大平均绝对和平均相对误差为0.39%、11.28%,能实现无接触式提取水产养殖中鱼类表型比例。对比其他常见语义分割模型,平均交并比mean intersection over union,mIoU和平均像素准确率mean pixel accuracy,m PA最高,分别到达了87.92%、92.83%。VED-SegNet模型在环境复杂、多鱼重叠的...  相似文献   

8.
利用多视角图像法分析番茄幼苗根构型对氮水平的响应   总被引:2,自引:0,他引:2  
【目的】 根系作为植物从环境中获取氮素的重要器官,如何无损并高效地获取其特征参数值是当今研究热点。随着高清成像技术的迅速发展,基于多视角图像法是研究植株根构型无损测量的新型方法。本研究对根系多视角成像系统和 GIARoot 软件平台相结合的多视角图像分析法精度进行了较系统的评估。并利用此套系统动态定量分析了不同氮素水平对番茄幼苗根构型的影响,为进一步研究植物根构型与矿质元素互作提供新的手段和依据。 【方法】 本研究以“中杂 109”番茄为材料进行水培试验,设置 4、12、20 mmol/L 3 个氮处理,分别以 N4、N12、N20 表示,定植于透明玻璃柱中 16 d。利用自行设计的根系多视角成像系统获取每天根系 360°图像序列,并基于 GIARoot 软件平台对图像序列进行根系特征参数的定量计算,在第 16 d 时将根系进行破坏性取样,将 GIARoot 基于无损测定分析的图像系列结果与 WinRHIZO Pro 的破坏性取样根系扫描图的计算结果进行对比评估。 【结果】 GIARoot 与 WinRHIZO Pro 根系特征参数评估结果总体上线性回归斜率在 0.96~0.99, R2 均为 0.99, RE 为 2.95%~12.69%,根总长、根总表面积、根总体积和根平均直径的 RMSE 分别为 44.73 cm、4.96 cm2、0.09 cm3、0.05 mm,各个根系特征参数差异均不显著 ( P > 0.05)。在 N4、N12、N20 3 个氮处理下,番茄幼苗定植 16 d 内各根系特征参数值均为 N12 处理最大,且 N20 的根总长、根总表面积、根垂直投影面积、根总体积分别比 N4 的高 14.2%、13.2%、35.8%、27.7%,而 N4 的横截面最大根个数、一级侧根个数分别比 N20 的高 28.2%、30.4%。不同氮水平间,第 4 d 根总长、根总表面积、根垂直投影面积出现显著性差异 ( P < 0.05),N12 分别比 N20 显著高 113.9%、153.7%、113.8%。第 12 d 根总体积、横截面最大根个数出现显著性差异 ( P < 0.05),N12 分别比 N20 显著高 57.0%、117.9%。而根平均直径 16 d 内无明显差异 ( P > 0.05),均在 0.42~0.54 mm。 【结论】 利用将多视角成像系统和 GIARoot 软件平台结合的多视角图像法,进行无损测量获取根系特征参数值是可行的。通过对不同氮水平下番茄幼苗各根系特征参数分析表明,适当提高氮浓度可以促进番茄幼苗根系生长,20 mmol/L 的高氮对根系生长具有抑制作用,且相对于根总长、根总表面积、根垂直投影面积、根总体积,这种抑制对侧根数量尤为明显,氮素浓度对根平均直径影响最小。   相似文献   

9.
基于三维点云的番茄植株茎叶分割与表型特征提取   总被引:1,自引:1,他引:0       下载免费PDF全文
针对当前温室番茄表型参数难以自动获取的问题,研究提出通过对三维点云进行配准、骨架提取以及分割从而自动获取苗期番茄植株株高、茎粗、叶倾角和叶面积参数的方法。首先通过机器人搭载机械臂在温室中自动获取多视角番茄点云,并通过配准得到完整植株点云;对番茄点云利用拉普拉斯收缩的骨架提取算法获取植株骨架,对骨架进行修正后分解为茎秆和叶片子骨架,实现茎秆叶柄分割;再通过基于区域生长的MeanShift聚类方法对叶片和叶柄进行分割;最后通过番茄点云获取株高、茎粗参数,通过骨架测量叶倾角,对叶片点云进行曲面拟合提取叶面积参数。试验结果表明,茎叶分割与叶片分割的精确率、召回率、F1分数和平均总体准确率分别为0.84、0.91、0.87、0.92和0.92、091、0.91、0.93。株高、茎粗、叶倾角和叶面积参数的提取值与人工测量值的决定系数分别为0.97、0.53、0.90和0.87,均方根误差分别为1.40 cm、1.52 mm、5.14°和37.56 cm2。结果表明该研究方法与人工测量值具有较强的相关性,可以为温室番茄的高通量自动化表型测量提供技术支持。  相似文献   

10.
基于全景图像的玉米果穗流水线考种方法及系统   总被引:1,自引:1,他引:0  
为提高玉米果穗考种效率和精度,该文提出一种基于全景图像的玉米果穗流水线考种方法和系统。利用托辊传送装置实现果穗自动连续推送,基于工业相机自动检测果穗运动状态并实时采集图像,获取覆盖果穗全表面的图像序列;建立果穗运动、摄像机成像、表面拼接关系,从图像序列中抽取果穗中心畸变最小区域拼接出果穗表面全景图像;最后,结合果穗边界检测、籽粒分割和有效性鉴定等技术提取出果穗表面上有效籽粒。试验结果表明,该文方法和系统较好地平衡了玉米果穗考种的效率和精度,图像采集和计算平均效率达15穗/min和4穗/min,穗长和穗行数指标计算精度可达99%和98.89%,可为研发全自动、高通量玉米果穗表型检测装置提供有益借鉴。  相似文献   

11.
番茄花果的协同识别是温室生产管理调控的重要决策依据,针对温室番茄栽培密度大,植株遮挡、重叠等因素导致的现有识别算法精度不足问题,该研究提出一种基于级联深度学习的番茄花果协同识别方法,引入图像组合增强与前端ViT分类网络,以提高模型对于小目标与密集图像检测性能。同时,通过先分类识别、再进行目标检测的级联网络,解决了传统检测模型因为图像压缩而导致的小目标模糊、有效信息丢失问题。最后,引入了包括大果和串果在内的不同类型番茄品种数据集,验证了该方法的可行性与有效性。经测试,研究提出的目标检测模型的平均识别率均值(mean average precision,m AP)为92.30%,检测速度为28.46帧/s,其中对小花、成熟番茄和未成熟番茄识别平均准确率分别为87.92%、92.35%和96.62%。通过消融试验表明,与YOLOX、组合增强YOLOX相比,改进后的模型m AP提高了2.38~6.11个百分点,相比于现有YOLOV3、YOLOV4、YOLOV5主流检测模型,m AP提高了16.56~23.30个百分点。可视化结果表明,改进模型实现了对小目标的零漏检和对密集对象的无误检,从而达到...  相似文献   

12.
张勤  陈建敏  李彬  徐灿 《农业工程学报》2021,37(18):143-152
采摘点的识别与定位是智能采摘的关键技术,也是实现高效、适时、无损采摘的重要保证。针对复杂背景下番茄串采摘点识别定位问题,提出基于RGB-D信息融合和目标检测的番茄串采摘点识别定位方法。通过YOLOv4目标检测算法和番茄串与对应果梗的连通关系,快速识别番茄串和可采摘果梗的感兴趣区域(Region of Interest,ROI);融合RGB-D图像中的深度信息和颜色特征识别采摘点,通过深度分割算法、形态学操作、K-means聚类算法和细化算法提取果梗图像,得到采摘点的图像坐标;匹配果梗深度图和彩色图信息,得到采摘点在相机坐标系下的精确坐标;引导机器人完成采摘任务。研究和大量现场试验结果表明,该方法可在复杂近色背景下,实现番茄串采摘点识别定位,单帧图像平均识别时间为54 ms,采摘点识别成功率为93.83%,采摘点深度误差±3 mm,满足自动采摘实时性要求。  相似文献   

13.
基于改进密度峰值聚类算法的梨花密度分级   总被引:1,自引:1,他引:0  
精准判断梨花疏密程度是自动疏花的基础。为了更好地判断梨花密度,该研究提出了基于改进密度峰值聚类算法的梨花密度分级方法。该方法首先提取梨花位置坐标,获取需要聚类的数据点。其次,为了实现梨花图像的密度分级,针对原有密度峰值聚类算法在梨花密度分级中的不足,结合梨花密度分级需求,改进了对聚类中心的选取方式,通过4组局部密度和中心偏移距离分割阈值将决策图划分为4部分来选取聚类中心,分别对应高、中、低密度以及无需疏花处理等4个等级,实现了对疏密合理的梨花图像的准确分级。最后,针对只有团状分布、稀疏分布及大尺度特写的梨花分布聚类分级不准确的问题,改进了两点间的距离dij参数的计算方法,统一梨花尺度大小和密度分级标准,对所有分布类型的梨花图像均能实现合理的密度分级。试验结果表明,该研究算法能够适应不同尺度大小的梨花图像,预测准确率为94.89%,密度分级准确率达到94.29%,可实现自然环境下局部花簇的密度分级,为机器智能疏花提供了技术支持。  相似文献   

14.
为改善在农田环境下无人机图像计算速度和效率,该研究提出了一种农田环境下无人机图像并行拼接识别算法。利用倒二叉树并行拼接识别算法,通过提取图像拼接中的变换矩阵,实现拼接识别同时进行。根据边缘设备的CPU核心数和图像数量自动将图像拼接识别任务划分为多个子进程,并分配到不同核心上执行,以提高在农田环境下的计算效率。试验结果表明:相同试验环境和数据集条件下,倒二叉树并行拼接算法的拼接耗时相较于商业软件平均减少了60%~90%左右;在农田环境下,倒二叉树并行拼接识别相较于串行拼接识别的耗时减少了70%,图像识别的平均像素交并比提升了10.17个百分点,说明在农田环境下采用多线程倒二叉树并行算法可以更好地利用农田环境下边缘设备的计算资源,大幅提升无人机图像的拼接和识别的速度,为无人机的快速实时监测提供技术支撑。  相似文献   

15.
深度估计是智能农机视觉系统实现三维场景重建和目标定位的关键。该文提出一种基于自监督学习的番茄植株图像深度估计网络模型,该模型直接应用双目图像作为输入来估计每个像素的深度。设计了3种面向通道分组卷积模块,并利用其构建卷积自编码器作为深度估计网络的主体结构。针对手工特征衡量2幅图像相似度不足的问题,引入卷积特征近似性损失作为损失函数的组成部分。结果表明:基于分组卷积模块的卷积自编码器能够有效提高深度估计网络的视差图精度;卷积特征近似性损失函数对提高番茄植株图像深度估计的精度具有显著作用,精度随着参与损失函数计算的卷积模块层数的增加而升高,但超过4层后,其对精度的进一步提升作用不再明显;当双目图像采样距离在9.0 m以内时,该文方法所估计的棋盘格角点距离均方根误差和平均绝对误差分别小于2.5和1.8 cm,在3.0 m以内时,则分别小于0.7和0.5 cm,模型计算速度为28.0帧/s,与已有研究相比,2种误差分别降低了33.1%和35.6%,计算速度提高了52.2%。该研究可为智能农机视觉系统设计提供参考。  相似文献   

16.
水果全表面图像信息是否完整,直接影响水果表面颜色和缺陷检测的结果。该文提出了一种基于尺度不变特征转换(SIFT,scale invariant feature transform)算子的图像拼接方法,实现多视角水果图像的拼接以获取完整的水果表面信息。首先以15°固定间隔旋转水果以获取各视角下的连续图像,在图像2R-G-B通道下实现图像目标和背景分离,并对目标图像进行灰度直方图均衡化以增强其纹理信息,有利于特征点的提取。运用SIFT算法提取图像特征点,因为特征向量数量多、维数高,采用普通的K-D树算法搜索匹配点将消耗大量时间,因此将图像划分为16个区域,通过多次试验可知中间4个区域为特征点是最容易匹配的区域,这样就缩小匹配点可能存在的区域。采用极线几何约束法和改进型随机抽样一致(random sample consensus,RANSAC)算法以提高图像拼接精度,减少匹配时间。根据平移矩阵,对前后图像进行拼接,从而实现水果表面图像的完整拼接。试验结果表明:该算法平均匹配精度提高35.0%,平均拼接时间为2.5 s,较传统K-D树算法缩短67.8%时间,拼接效果还原率为93.9%。该文算法具有一定的尺度、旋转以及仿射变换不变性,适用于随机呈现的不同姿态球状水果图像拼接。该研究可为基于机器视觉的农产品品质检测和等级划分提供科学参考。  相似文献   

17.
灌水下限与毛管埋深对温室番茄生长的影响   总被引:1,自引:0,他引:1  
为探明番茄根系生长与水分分布之间的互反馈机制,通过日光温室地下滴灌试验,设置了4种毛管埋深(0 cm、10 cm、20 cm和30 cm)和3种灌水下限(保持土壤含水量为50%、60%和75%田间持水量),研究了不同灌水下限与毛管埋深对番茄根系生长及干物质分配的影响。研究结果表明,轻度、中轻度水分亏缺(灌水下限为75%和60%田间持水量)时,毛管埋深对番茄耗水量有显著影响,10~20 cm毛管埋深提高番茄耗水量。毛管埋深增加会减少0~20 cm土层根系分布,促进20~60 cm土层根系生长;毛管埋深对0~10 cm、20~30 cm、30~40 cm土层根系生长影响显著,对50~60 cm土层根系生长无显著影响。灌水下限对细根(d1 mm)、粗根(d1mm)的根长与根表面积影响显著,毛管埋深对细根的根长与根表面积有显著影响;轻度水分亏缺及20 cm毛管埋深有利于细根根长和根表面积生长,减少粗根比例。本研究结果表明,轻度水分亏缺及毛管埋深为20 cm更有利于全株干物质积累,灌水下限为75%田间持水量能够增加根系干物质分配比例,而20 cm毛管埋深则能促进干物质向茎叶转移且减少根系干物质的分配比例。  相似文献   

18.
基于小波分解的油菜多光谱图像与深度图像数据融合方法   总被引:2,自引:2,他引:0  
将多源数据融合分析可以降低单一图像造成的误判读,利用多源数据之间的冗余部分进行配准,利用互补信息完成融合,能够提高数据的信息量和可靠性。该文利用近地面遥感模拟平台分别获取油菜的多光谱图像和深度图像,将2种图像进行配准和融合。该文分别针对多光谱图像和光程差深度图像的成像特点,进行相机内外参计算与图像矫正。采用 SIFT(scale invariant feature transform)算法计算2源图像上的 SIFT 点,并依据关键点描述子进行匹配,之后通过关键点位置计算仿射变换矩阵对图像进行缩放、平移和旋转,从而实现变换后图像的配准。分别对 harr,Db2,Db4,Sym2, Sym4,Bior2.2,Bior2.4,Coif2,Coif 等9种小波基融合后的结果计算其相应的交叉熵、峰值信噪比和互信息量等5个参量进行评价,得出小波基 harr 和 sym4融合效果较好,各项指标均衡性较好。用 haar 小波基对配准后图像在3、4、5、6层分解融合,通过观察得出在多光谱与深度图像融合中第3层小波分解和第4层分解的融合效果较好。最终将深度图像的高程数据归一化之后进行植株三维构建,得到三维点云并进行可视化。  相似文献   

19.
为了研究高分立体像对测量黄土丘陵区切沟参数的适用性,选取陕北黄土区合沟小流域,以三维激光扫描全站仪获取的数据为参照值,分析使用GeoEye-1高分遥感立体像对测量切沟参数的精度,得到如下研究结果.1)刃沟面积、周长、沟长和沟宽等线状和面状参数平均测量误差分别为3.58 m2,0.55 m,0.13m和-0.10 m,其中面积、周长和沟长的百分误差主要集中在5%以内,沟宽百分误差主要分布在10%以内.2)切沟三维参数沟底宽、最大沟深、平均沟深的平均测量误差分别为-0.67、0.14和-0.46 m.截面积和体积的平均误差分别为-6.30 m2和-54.01 m3.最大沟深的百分误差主要集中在30%以内,沟底宽、平均沟深、截面积和体积的百分误差则主要分布在50%以内;相较于三维激光扫描的切沟,立体像对提取的切沟沟底形态误差较大,主要是沟底宽和平均沟深偏小.3)切沟规模越大,切沟体积、截面积和沟底宽的测量值偏小的幅度越大.但是,切沟体积测量误差与切沟体积之间可以建立较好的线性回归模型,在缺少其他测量手段时,可以使用该模型对测量误差进行校正.总体上看,高分立体遥感为切沟线状和面状参数测量以及切沟体积测量提供了新的方法,为黄土丘陵区沟蚀监测提供了便捷、且相对可靠的数据源.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号