首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
2.
3.
In recent years, the avian influenza has brought not only serious economic loss to the poultry industry in China but also a serious threat to human health because of the avian influenza virus(AIV) gene recombination and reassortment. Until now, traditional RT-PCR, fluorescence RT-PCR and virus isolation identification have been developed and utilized to detect AIV, but these methods require high-level instruments and experimental conditions, not suitable for the rapid detection in field and farms. In order to develop a rapid, sensitive and practical method to detect and identify AIV subtypes, 4 specific primers to the conserved region of AIV M gene were designed and a loop-mediated isothermal amplification(RT-LAMP) method was established. Using this method, the M gene of H1–H16 subtypes of AIV were amplified in 30 min with a water bath and all 16 H subtypes of AIV were able to be visually identified in presence of fluorescein, without cross reaction with other susceptible avian viruses. In addition, the detection limit of the common H1, H5, H7, and H9 AIV subtypes with the RT-LAMP method was 0.1 PFU(plaque-forming unit), which was 10 times more sensitive than that using the routine RT-PCR. Further comparative tests found that the positivity rate of RT-LAMP on detecting clinical samples was 4.18%(14/335) comparing with 3.58%(12/335) from real-time RT-PCR. All these results suggested that the RT-LAMP method can specifically detect and identify AIV with high sensitivity and can be considered as a fast, convenient and practical method for the clinic test and epidemiological investigation of AIV.  相似文献   

4.
To determine if the maternal antibody from breeders vaccinated with cell culture-adapted reticuloendotheliosis virus (REV) could protect chicks from early REV infection, one-day-old chicks with or without anti-REV maternal antibodies were inoculated with REV, and then their growth rates and antibody titers to Newcastle disease virus (NDV) and avian influenza virus (AIV), after vaccination with inactivated vaccines, were compared. This study indicated that REV infection could cause growth retardation and severely inhibit immune reactions to inactivated vaccines against NDV and Avian influenza virus (AIV, H9 and H5) in one-day-old broilers without maternal antibodies specific to REV. Maternal antibody from breeders vaccinated with an attenuated REV vaccine effectively protected REV-challenged birds from growth retardation and immunosuppression on antibody reactions to NDV and AIV vaccines. Four weeks after vaccination, the HI titers to NDV, AIV-H9, and AIV-H5 in maternal antibody positive and negative groups were 3.36 +- 2.04 versus 1.58± 1.69 (P〈0.01), 6.27±3.87 versus 0.71 ± 1.60 (P〈0.01), and 6.72±3.92 versus 0.54± 1.44 (P〈0.01). Maternal antibodies from breeders vaccinated with REV vaccine could successfully protect chicks from REV infection and effectively prevent REV-induced growth retardation and immunosuppression in antibody responses to NDV and AIV.  相似文献   

5.
[Objective] The research aimed to design primers that are suitable for detecting H5 and H7 subtypes of avian influenza virus(AIV);[Method] DNAStar was used to analyze the homology of the sequences of H5 and H7 subtypes of AIV accessed in GenBank,and design primers(by Primer Premier 5.0)on high homologous region of these sequences,and then amplified by RT-PCR.[Result] The multiplex RT-PCR amplification,agarose gel electrophoresis and sequencing results showed that the self-designed primers are successful for detecting AIV.[Conclusion] It is feasible to rapidly diagnose AIV through this method.  相似文献   

6.
In this study, in situ hybridization (ISH) was developed to detect avian influenza'virus (AIV) in Madin-Darby canine kidney (MDCK) cells and formalin-fixed, paraffin-embedded chicken tissues. A cDNA probe corresponding to a region of AIV nucleoprotein (NP) gene was synthesized and labeled with digoxigenin. Probe specificity was determined by AIV infected MDCK cells in vitro and the results showed that strong cytoplasmic staining was only detected in AIV-infected cells. Various tissues were collected from 12 h to 35 days post-infection (PI) following inoculation with the H9N2 subtype A1V. AIV was localized in the epithelial cells of the duodenum and cartilage of the throat and trachea at 12 h PI. Tissues from uninfected chickens were negative. The finding of this study indicated ISH was a sensitive and specific technique to detect and localize AIV as well as to study AIV pathogenesis.  相似文献   

7.
To compare the helper activities of different avian viruses for propagation of recombinant avian adeno-associated virus (rAAAV), AAV-293 cells were cotransfected with the AAAV vector pAITR-GFP containing green fluorescent protein (GFP) gene, the AAAV helper vector pcDNA-ARC expressing the rep and cap genes, and the adenovirus helper vector pHelper expressing Ad5 E2A, E4, and VA-RNA genes. Chicken embryonic fibroblast (CEF) or chicken embryonic liver (CEL) cells were cotransfected with the AAAV vector and the AAAV helper vector, followed by infection with Marek's disease virus (MDV), avian adenovirus, chicken embryo lethal orphan (CELO) virus or infectious bursal disease virus (IBDV). Infectious rAAAV particles generated by the two strategies were harvested and titrated on CEF and CEL cells. A significantly higher viral titer was obtained with the helper activity provided by the pHelper vector than by MDV or CELO virus. Further experiments showed that rAAAV-mediated green fluorescent protein (gfp) expression was overtly enhanced by MDV or CELO virus super infection or treatment with sodium butyric acid, but not by IBDV super infection. These data demonstrated that MDV and CELO viruses could provide weak helper activity for propagation of rAAAV, and rAAAV- mediated transgene expression could be enhanced by super infection with the helper viruses.  相似文献   

8.
H9N2 avian influenza virus(AIV) infection is a major problem in poultry industry worldwide. In this study, molecular characterizations and phylogenetic relationships of hemagglutinin(HA) gene sequences of H9N2 AIV of 5 Chinese isolates in 2014 recently available in Gen Bank, 3 widely used vaccine strains, and 52 novel isolates in China from 2013 to 2015 were analyzed. The homology analysis showed that the nucleotide sequences of HA gene of these recent Chinese H9N2 AIV isolates shared homologies from 94.1 to 99.9%. Phylogenetic analysis showed that all isolates belonged to AIV lineage h9.4.2.5. Fifty-six out of the 57 recent Chinese H9N2 AIV isolates had the motifs PSRSSR↓GLF at the cleavage sites within the HA protein, while one isolate PWH01 harbored LSRSSR↓GLF. Remarkably, all of the recent Chinese H9N2 AIV strains had the Q216 L substitution in the receptor binding site, which indicated that they had potential to infect humans. Most of recent Chinese H9N2 AIV isolates lost the potential N-linked glycosylation site at residues 200–202 compared with vaccine strains. This present study demonstrated that AIV lineage h9.4.2.5 was more predominant in China than other lineages as it harbored all the H9N2 AIV isolated between 2013 and 2015. Also we showed the importance of continuous surveillance of emerging H9N2 AIV in China and update of vaccine formulation accordingly in order to prevent and control H9N2 AIV.  相似文献   

9.
Thirteen strains of monoclonal antibodies(McAbs) against infections bursal disease virus(IBDV) were obtained by using hydridoma technique and their characteristics were studied by double immunodiffusion,enzyme-linked immunosorbent assay(ELISA),virus neutralization test(VNT) and Western-blotting assay (WBA).The result showed that nine of the thirteen McAbs belonged to IgG class and four of them belonged to IgM class.No crossreactions were detected betwween the McAbs and Newscastle disease virus (NDV),infectious bronchitis virus(IBV) and Marek‘s disease virus(MDV).All of McAbs were positively specific reactive with IBDV and five of them can neutralize viral infectivity.Their recognized epitopes of the neutralizing McAbs were all presented on VP2 of the IBDV.  相似文献   

10.
11.
禽流感(AI)是由A型禽流感病毒(AIV)引起的一种发生于禽类的病毒性传染病。笔者以杂交瘤技术研制抗AIV共同抗原的特异单克隆抗体,旨在建立一种双抗体夹心ELISA方法快速检测AIV,以便为A型AIV的快速诊断技术的研究提供理论依据。  相似文献   

12.
抗A型禽流感病毒核蛋白特异性单克隆抗体研究   总被引:6,自引:4,他引:2  
利用禽流感H9亚型病毒(AIV-H9)免疫Balb/c小鼠,取其脾细胞与骨髓瘤细胞进行融合,经免疫荧光试验(IFA)检测,以研制抗禽流感病毒(AIV)单克隆抗体。结果获得了5株特异性抗AIV核蛋白(NP)的单克隆抗体细胞株,分别命名为AIV-NP-2C3、AIV-NP-6A5、AIV-NP-3H9、AIV-NP-7B4、AIV-NP-2H4。这5株单克隆抗体能与所有试验的AIV-H9病毒反应,Western blotting方法鉴定结果表明,单克隆抗体仅识别60 ku的蛋白抗原,而不与新城疫病毒、禽网状内皮组织增殖症病毒、传染性法氏囊病毒等反应。初步应用结果显示,以这些单克隆抗体建立的间接免疫荧光试验或ELISA方法可迅速检测出禽流感病毒,这些单克隆抗体在禽流感的预防监测中将发挥重要的作用。  相似文献   

13.
抗禽流感病毒H9亚型血凝素特异性单克隆抗体的研制   总被引:7,自引:4,他引:7  
以H9亚型禽流感病毒免疫Balb/C小鼠,细胞融合后用血凝抑制试验检测细胞培养上清,结果获得3株阳性细胞株,分别命名为6E6、6B6、5B4。经2次亚克隆后,所有杂交瘤细胞保持了分泌抗禽流感H9亚型特异抗体的能力。特异性试验证明,3株单克隆抗体仅与试验的H9病毒株反应,与H5亚型禽流感病毒、鸡新城疫病毒和鹅源腺病毒等不反应。间接免疫荧光试验(IFA)结果表明,3株单克隆细胞的上清均能与感染H9亚型病毒的鸡成纤维细胞呈特异性绿色荧光反应。实验性病毒检测结果表明,IFA方法检测H9禽流感比鸡胚接种分离病毒的效果好、灵敏度高,是一种经济实用的方法。获得的单克隆抗体可在禽流感流行病学的监测及预警预报中发挥重要作用。  相似文献   

14.
本试验利用蔷薇科植物提取物(SHY)分别与新城疫、禽流感H9、H5亚型病毒作用后,接种10 d SPF鸡胚,评价SHY对病毒的抑制作用;给21 d SPF鸡连续口服该中药提取物5 d后,分别用新城疫、禽流感病毒攻击,观察对SPF鸡的保护作用.结果表明:SHY测试剂量对SPF鸡胚没有毒性;20、10、5和2.5 mg/mL提取物与一定量的新城疫、禽流感H9亚型病毒作用后,鸡胚全部存活,病毒测定为阴性;与禽流感H5亚型病毒作用后,2.5 mg/mL组不能完全保护鸡胚存活(6/8),病毒分离阳性.在攻毒试验中,SPF鸡分别按60、50、40和20 mg口服后,用新城疫和禽流感H9亚型攻毒保护分别为5/5、5/5、5/5和4/5.显示SHY不但能显著抑制新城疫、禽流感H9和H5亚型在鸡胚上增殖,而且能保护新城疫、禽流感H9亚型病毒的攻击.对SHY深入的研究,有望开发出有效抗禽流感药物.  相似文献   

15.
为了评估家禽密切接触人群感染新城疫和禽流感病毒的风险,分别采集21份规模化养禽场和20份从事禽产品加工的屠宰场工作人员血清样品,采用微量中和试验检测人血清样品中新城疫和禽流感(H5和H9亚型)病毒抗体。结果发现,养禽场工作人员新城疫病毒抗体阳性率为33.3%,禽流感(H5和H9亚型)病毒抗体均为阴性;屠宰场工作人员新城疫病毒抗体阳性率为5%,禽流感(H5和H9亚型)病毒抗体均为阴性。结果表明新城疫病毒能够感染人,而目前国内流行的禽流感病毒感染人群的可能性较小。但是,由于禽流感病毒很容易发生变异和持续进化,有必要对家禽密切接触人群进行血清学监测。  相似文献   

16.
李娜  张保平  秦爱建 《安徽农业科学》2011,39(28):17330-17331,17333
采用饱和硫酸铵初步纯化的兔抗AIV-H9高免血清中的IgG作为包被抗体,利用抗AIV-NP-7B4单抗作为ELISA的第二抗体,建立了检测禽流感病毒(AIV)抗原的双抗体夹心ELISA方法。经方阵滴定试验测定反应的最佳工作条件:兔抗AIV-H9高免血清IgG包被稀释度为1:8000(浓度为3.531μg/ml),抗AIV-NP-7B4单抗腹水最佳使用稀释度为1:800,酶标二抗的工作浓度为1:4000。与其他禽易感病毒(NDV、IBV、EDS-76V)等均没有交叉反应。结果表明,该方法具有快速、敏感、特异等优点,可应用于AIV的检测和流行病学调查。  相似文献   

17.
用灭菌棉拭共采集蛋鸭和肉鸭的泄殖腔样品 62只 ,鸡胚尿囊腔传代接种法分离到 1株病毒 ,该病毒可凝集鸡红细胞 ,且不能被 ND、EDS-76阳性血清抑制 ,用病变绒毛尿囊膜制备抗原与禽流感琼扩标准阳性血清作用 ,出现明显的白色沉淀线 ,证明该分离株为 A型流感病毒 ,血凝素亚型分析结果为 H9,电镜负染观察可见典型的禽流感病毒粒子 ,致病性试验结果表明该分离株对鸡表现为弱致病性。研究结果还表明 ,环境 (特别是水体 )贮毒可能是禽流感病毒得以长期存在和传播的重要因素和媒介  相似文献   

18.
抗H5N1型禽流感病毒单克隆抗体的制备与鉴定   总被引:2,自引:2,他引:2  
制备抗H5N1型禽流感病毒单克隆抗体并对其进行鉴定.采用纯化抗原免疫BALB/c小鼠,取免疫小鼠脾细胞与骨髓瘤细胞融合,筛选分泌抗AIV-H5N1的单克隆抗体细胞株,将阳性细胞株接种小鼠腹腔制备单克隆抗体腹水并对腹水抗体进行纯化,测定抗体亚类,并对其抗原结合位点进行分析.共获得了5株单克隆抗体杂交瘤细胞株,均为抗AIV-H5N1的特异性单克隆抗体,而且与H9N1型禽流感病毒,H13型禽流感病毒,鸡新城疫病毒,产蛋下降综合征病毒,鸡传染性支气管炎病毒均无交叉反应.  相似文献   

19.
H9亚型AIV型特异性电化学发光免疫检测方法的建立   总被引:2,自引:0,他引:2  
【目的】H9亚型禽流感是重要的人兽共患性传染病,该亚型病毒为H7N9亚型和H10N8亚型流感病毒提供了6个内部基因(PB2、PB1、PA、NP、M、NS),并且一直处于动态重组过程中。因此,建立针对H9亚型禽流感的型特异性电化学发光免疫的高通量快速检测方法,加强H9亚型流感的监测,具有重要意义。【方法】用钌联吡啶标记H9亚型AIV的单克隆抗体,用MPI-E型电致化学发光分析系统评价钌标单抗标记效率;用生物素标记H9亚型AIV的多克隆抗体,HABA法检测抗体生物素化的效率;待测抗原与钌标单抗作用1 h后,将此抗原-抗体复合物与通过生物素-链霉亲和素系统固定在磁微球表面的多克隆抗体反应,最后加入反应底物三丙胺后即可在电化学分析系统进行发光检测。优化生物素化多抗和钌标单抗最佳工作浓度,确定临界值和反应谱,对所建立的方法进行敏感性、特异性和重复性试验。攻毒后3 d和5 d,采集攻毒组和空白对照组鸡只的88份咽拭子和肛拭子,分别用电化学发光免疫检测方法和鸡胚病毒分离法进行检测和比较。【结果】钌标抗H9亚型AIV单克隆抗体的标记效率为每个单抗IgG分子上结合21个Ru2+,且间接免疫荧光方法证明其仍具有生物活性;生物素化兔抗H9N2亚型AIV多克隆抗体的标记效率为每个IgG分子上结合了6个生物素分子,且Western blotting试验证明其仍保持生物活性;该方法的检测临界值为28.3,可疑区间为23.4-33.2;阴性和阳性变异系数均小于10%;检测限为5×104EID50,能够特异性地检测H9亚型AIV,不与其他亚型流感病毒(H1、H3、H4、H5和H6亚型)和其他类型的禽源病毒(NDV、IBV和IBDV)反应。3 h内即可完成检测,与鸡胚病毒分离法的符合率为86.4%。【结论】所建立的H9亚型AIV型特异性电化学发光免疫检测方法可以用于临床样品检测,对H9亚型禽流感的监测和防控具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号