首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Irrigation plays an important role in increasing food production in China. The impact of irrigation on crop yield (Y), crop water productivity (CWP), and production has not been quantified systematically across regions covering the whole country. In this study, a GIS-based EPIC model (GEPIC) was applied to simulate Y and CWP for winter wheat (Triticum aestivum L.) in China at a grid resolution of 5 arc-minutes and to analyze the impacts of reducing irrigation water on wheat production. The findings show that irrigation is especially important in improving CWP of winter wheat in the North China Plain (NCP), the “bread basket” of China. On average, the provincial aggregate CWP was 56% higher under the irrigated than that under the rainfed conditions. The intensification of water stress and the associated increase in environmental problems in much of the NCP require critical thoughts about reducing water allocation for irrigated winter wheat. Two scenarios for irrigation reduction in the NCP provinces are presented: reducing irrigation depth (S1), and replacing irrigated winter wheat by rainfed winter wheat (S2). The simulation results show that S1 and S2 have similar effects on wheat production when the reduction in irrigation water supply is below 20% of the current level. Above this percentage, S2 appears to be a better scenario since it leads to less reduction in wheat production with the same amount of water saving.  相似文献   

2.
The West Asia and North Africa (WANA) region, with a Mediterranean climate type, has an increasing deficit in cereal production, especially bread wheat. Rainfed cropping in the highlands of this region coincides with the severely cold winter with mostly, snow from November to April. Cereal yields, are low and variable mainly as a result of inadequate and erratic seasonal rainfall and associated management factors, such as late sowing (or late crop emergence). In an area where water is limited, small amounts of supplemental irrigation (SI) water can make up for the deficits in seasonal rain and produce satisfactory and sustainable yields. This field study (1999–2002) on a deep clay silty soil in north west of Iran was conducted with four SI levels (rainfed, 1/3, 2/3 and full irrigation requirements) combined with different N rates (0, 30, 60, 90 and 120 kg ha−1) with one wheat variety (Sabalan). Yields of rainfed wheat varied with seasonal rainfall and its distribution. A delay in the crop emergence from October (SI treatment) to November (rainfed) consistently reduced yields. With irrigation, crop responses to nitrogen were generally significant up to 60 kg N ha−1. An addition of only limited irrigation (1/3 of full irrigation) significantly increased yields and maximized water use efficiency (WUE). Use efficiency for water and N was greatly increased by SI. Under deficit irrigation, maximum WUE would be achieved when 60 kg N ha−1 is combined with 1/3 of full SI. Early crop germination is essential to ensure adequate crop stand before the winter frost and to achieve high yield. Early emergence can be achieved by applying a small amount (40–50 mm) of SI after sowing. Thus, when limited SI is combined with appropriate management, wheat production can be substantially and consistently increased in this highland semi-arid zone.  相似文献   

3.
Understanding reference crop evapotranspiration (ET0) is essential in planning the most effective use of water resources in the arid northwest China. The objective of the present work in the middle Heihe River basin were: (1) to determine the best model for calculating the areal distribution of reference crop evapotranspiration in this region, and (2) to estimate the spatial distribution of the irrigation requirements of spring wheat. Note that eight commonly used formulates were tested and that FAO-Penman was the best.The irrigation amount of spring wheat in 2000 was estimated by three steps. First, DEM-based and GIS-assisted methods were employed to estimate the spatial distribution of reference crop evapotranspiration (ET0) according to FAO-Penman model. Then, spring wheat evapotranspiration (ET) was calculated by ET0 and crop-coefficient (Kc). Finally, the maximum irrigation amount of spring wheat was estimated with the spring wheat evapotranspiration and precipitation in the different growing stage. The maximum irrigation has temporal–spatial variation. Temporally the irrigation amount appears the largest in June when it is the peak period of spring wheat development. The irrigation amount is the smallest in July because spring wheat was in late-season stage. In April, spring wheat was in seedling stage during which the water demand is also small. Spatially the irrigation amount increases from southeast to northwest.  相似文献   

4.
The methods for estimating temporal and spatial variation of crop evapotranspiration are useful tools for irrigation scheduling and regional water allocation. The purpose of this study was to develop a method for mapping spatial distribution of crop evapotranspiration and analyze the temporal and spatial variation of spring wheat evapotranspiration in the Shiyang river basin in Northwest China in the last 50 years. DEM-based methods were employed to estimate the spatial distribution of spring wheat evapotranspiration (ETc). Reference crop evapotranspiration (ET0) was calculated with the Penman–Monteith equation using meteorological data measured from eight stations in the basin. Crop coefficient (Kc) was determined from measured evapotranspiration in spring wheat season in the region. The results showed that ETc gradually increased in the upper reaches of the basin in the last 50 years, while the middle reaches showed a significant decreasing trend, and in other regions, no significant trend was found. These changes can be attributed to expansion of irrigation areas and climate change. The multiple regression analysis between ETc and altitude, latitude, and aspect were carried out for eight weather stations and the relationships were used to map ETc for the basin. The spatial variations of ETc were analyzed for three typical growing seasons based their precipitation. Results showed that long-term average ETc over cultivated land was increasing from 270 mm in southwest mountainous area to 591 mm in northeast oasis of the basin, and the relative error between the estimated ETc in spring wheat growing season by reference evapotranspiration (ET0) and crop coefficient (Kc), and the interpolated ETc was within 11.1%.  相似文献   

5.
A field study was conducted from 2002 to 2007 to investigate the influence of row spacing of winter wheat (Triticum aestivum L.) on soil evaporation (E), evapotranspiration (ET), grain production and water use efficiency (WUE) in the North China Plain. The experiment had four row spacing treatments, 7.5 cm, 15 cm, 22.5 cm, and 30 cm, with plots randomly arranged in four replicates. Soil E was measured by micro-lysimeters in three seasons and ET was calculated from measurements of soil profile water depletion, irrigation, and rainfall. The results showed that E increased with row spacing. Compared with the 30-cm row spacing (average E = 112 mm), the reduction in seasonal E averaged 9 mm, 25 mm, and 26 mm for 22.5 cm, 15 cm, and 7.5 cm row spacings, respectively. Crop transpiration (T) increased as row spacing decreased. The seasonal rainfall interception and seasonal ET were relatively unchanged among the treatments. In three out of five seasons, the four different treatments showed similar grain yield, yield components and WUE. We conclude that for winter wheat production in the North China Plain, narrow row spacing reduced soil evaporation, but had minor improvements on grain production and WUE under irrigated conditions with adequate nutrient levels.  相似文献   

6.
Crop water requirements for rainfed and irrigated wheat in China and Korea   总被引:2,自引:0,他引:2  
The parametric crop water use model (WATER) was applied for winter wheat to China and its environs in order to examine the evapotranspiration requirements under rainfed conditions and the associated irrigation water applications necessary for optimal production. A network of 241 stations provided climatic data averaged over a 20 year period. Highest ET under full irrigation (first growing season) was observed in the northwestern inland sections of China and the eastern portions of the Tibetan Plateau, while lowest ET occurred in the southeast; under rainfed conditions, these tendencies nearly reversed. About 400 mm of irrigation water was required in the northwest in order to achieve near-optimum yields in contrast with no such water requirements in the central east of China. A sensitivity analysis was conducted to determine the errors introduced by faulty, uncertain, or missing station data.  相似文献   

7.
Spatial and temporal patterns of water depletion in the irrigated land of Khorezm, a region located in Central Asia in the lower floodplains of the Amu Darya River, were mapped and monitored by means of MODIS land products. Land cover and land use were classified by using a recursive partitioning and regression tree with 250 m MODIS Normalized Difference Vegetation Index (NDVI) time series. Seasonal actual evapotranspiration (ETact) was obtained by applying the Surface Energy Balance Algorithm for Land (SEBAL) to 1 km daily MODIS data. Elements of the SEBAL based METRIC model (Mapping Evapotranspiration at high Resolution and with Internalized Calibration) were adopted and modified. The upstream–downstream difference in irrigation was reflected by analyzing agricultural land use and amounts of depleted water (ETact) using Geographical Information Systems (GIS). The validity of the MODIS albedo and emissivity used for modeling ETact was assessed with data extracted from literature. The r 2 value of 0.6 indicated a moderate but significant association between ETact and class-A-pan evaporation. Deviations of ETact from the 10-day reference evapotranspiration of wheat and cotton were found to be explainable. In Khorezm, seasonal maximum values superior to 1,200 and 1,000 mm ETact were estimated for rice and cotton fields, respectively. Spatio-temporal comparisons of agricultural land use with seasonal ETact disclosed unequal water consumption in Khorezm. Seasonal ETact on agricultural land decreased with increasing distance to the water intake points of the irrigation system (972–712 mm). Free MODIS data provided reliable, exhaustive, and consistent information on water use relevant for decision support in Central Asian water management.  相似文献   

8.
Determination of temporal and spatial distribution of water use (WU) within agricultural land is critical for irrigation management and could be achieved by remotely sensed data. The aim of this study was to estimate WU of dwarf green beans under excessive and limited irrigation water application conditions through indicators based on remotely sensed data. For this purpose, field experiments were conducted comprising of six different irrigation water levels. Soil water content, climatic parameters, canopy temperature and spectral reflectance were all monitored. Reference evapotranspiration (ET0), crop coefficient Kc and potential crop evapotraspiration (ETc) were calculated by means of methods described in FAO-56. In addition, WU values were determined by using soil water balance residual and various indexes were calculated. Water use fraction (WUF), which represents both excessive and limited irrigation applications, was defined through WU, ET0 and Kc. Based on the relationships between WUF and remotely sensed indexes, WU of each irrigation treatments were then estimated. According to comparisons between estimated and measured WU, in general crop water stress index (CWSI) can be offered for monitoring of irrigated land. At the same time, under water stress, correlation between measured WU and estimated WU based on CWSI was the highest too. However, canopy-air temperature difference (Tc − Ta) is more reliable than others for excessive water use conditions. Where there is no data related to canopy temperature, some of spectral vegetation indexes could be preferable in the estimation of WU.  相似文献   

9.
Cotton (Gossypium hirsutum L.) is the most important industrial and summer cash crop in Syria and many other countries in the arid areas but there are concerns about future production levels, given the high water requirements and the decline in water availability. Most farmers in Syria aim to maximize yield per unit of land regardless of the quantity of water applied. Water losses can be reduced and water productivity (yield per unit of water consumed) improved by applying deficit irrigation, but this requires a better understanding of crop response to various levels of water stress. This paper presents results from a 3-year study (2004-2006) conducted in northern Syria to quantify cotton yield response to different levels of water and fertilizer. The experiment included four irrigation levels and three levels of nitrogen (N) fertilizer under drip irrigation. The overall mean cotton (lint plus seed, or lintseed) yield was 2502 kg ha−1, ranging from 1520 kg ha−1 under 40% irrigation to 3460 kg ha−1 under 100% irrigation. Mean water productivity (WPET) was 0.36 kg lintseed per m3 of crop actual evapotranspiration (ETc), ranging from 0.32 kg m−3 under 40% irrigation to 0.39 kg m−3 under the 100% treatment. Results suggest that deficit irrigation does not improve biological water productivity of drip-irrigated cotton. Water and fertilizer levels (especially the former) have significant effects on yield, crop growth and WPET. Water, but not N level, has a highly significant effect on crop ETc. The study provides production functions relating cotton yield to ETc as well as soil water content at planting. These functions are useful for irrigation optimization and for forecasting the impact of water rationing and drought on regional water budgets and agricultural economies. The WPET values obtained in this study compare well with those reported from the southwestern USA, Argentina and other developed cotton producing regions. Most importantly, these WPET values are double the current values in Syria, suggesting that improved irrigation water and system management can improve WPET, and thus enhance conservation and sustainability in this water-scarce region.  相似文献   

10.
Consumptive water use and crop coefficients of irrigated sunflower   总被引:2,自引:1,他引:1  
In semi-arid environments, the use of irrigation is necessary for sunflower production to reach its maximum potential. The aim of this study was to quantify the consumptive water use and crop coefficients of irrigated sunflower (Helianthus annuus L.) without soil water limitations during two growing seasons. The experimental work was conducted in the lysimeter facilities located in Albacete (Central Spain). A weighing lysimeter with an overall resolution of 250 g was used to measure the daily sunflower evapotranspiration throughout the growing season under sprinkler irrigation. The lysimeter container was 2.3 m × 2.7 m × 1.7 m deep, with an approximate total weight of 14.5 Mg. Daily ET c values were calculated as the difference between lysimeter mass losses and lysimeter mass gains divided by the lysimeter area. In the lysimeter, sprinkler irrigation was applied to replace cumulative ET c, thus maintaining non-limiting soil water conditions. Seasonal lysimeter ET c was 619 mm in 2009 and 576 mm in 2011. The higher ET c value in 2009 was due to earlier planting and a longer growing season with the maximum cover coinciding with the maximum ET o period. For the two study years, maximum average K c values reached values of approximately 1.10 and 1.20, respectively, during mid-season stage and coincided with maximum ground cover values of 75 and 88 %, respectively. The dual crop coefficient approach was used to separate crop transpiration (K cb) from soil evaporation (K e). As the crop canopy expanded, K cb values increased while the K e values decreased. The seasonal evaporation component was estimated to be about 25 % of ET c. Linear relationships were found between the lysimeter K cb and the canopy ground cover (f c) for the each season, and a single relationship that related K cb to growing degree-days was established allowing extrapolation of our results to other environments.  相似文献   

11.
A validated agro-hydrological model soil water atmosphere plant (SWAP) was applied to formulate guidelines for irrigation planning in cotton–wheat crop rotation using saline ground water as such and in alternation with canal water for sustainable crop production. Six ground water qualities (4, 6, 8, 10, 12 and 14 dS/m), four irrigation schedules with different irrigation depths (4, 6, 8 and 10  cm) and two soil types (sandy loam and loamy sand) were considered for each simulation. The impact of the each irrigation scenario on crop performance, and salinization/desalinisation processes occurring in the soil profile (0–2 m) was evaluated through Water Management Response Indicators (WMRIs). The criterion adopted for sustainable crop production was a minimum of pre-specified values of ETrel (≥0.75 and ≥0.65 for wheat and cotton, respectively) at the end of the 5th year of simulation corresponding to minimum deep percolation loss of applied water. The extended simulation study revealed that it was possible to use the saline water upto 14 dS/m alternatively with canal water for cotton–wheat rotation in both sandy loam and loamy sand soils. In all situations pre-sown irrigation must be accomplished with canal water (0.3–0.4 dS/m). Also when the quality of ground water deteriorates beyond 10 dS/m, it was suggested to use groundwater for post-sown irrigations alternately with canal water. Generally, percolation losses increased with the increase in level of salinity of ground water to account for leaching and thus maintain a favourable salt balance in the root zone to achieve pre-specified values of ETrel.  相似文献   

12.
Water productivity (WP) expresses the value or benefit derived from the use of water, and includes essential aspects of water management such as production for arid and semi-arid regions. A profound WP analysis was carried out at five selected farmer fields (two for wheat–rice and three for wheat–cotton) in Sirsa district, India during the agricultural year 2001–02. The ecohydrological soil–water–atmosphere–plant (SWAP) model, including detailed crop simulations in combination with field observations, was used to determine the required hydrological variables such as transpiration, evapotranspiration and percolation, and biophysical variables such as dry matter or grain yields. The use of observed soil moisture and salinity profiles was found successful to determine indirectly the soil hydraulic parameters through inverse modelling.Considerable spatial variation in WP values was observed not only for different crops but also for the same crop. For instance, the WPET, expressed in terms of crop grain (or seed) yield per unit amount of evapotranspiration, varied from 1.22 to 1.56 kg m−3 for wheat among different farmer fields. The corresponding value for cotton varied from 0.09 to 0.31 kg m−3. This indicates a considerable variation and scope for improvements in water productivity. The average WPET (kg m−3) was 1.39 for wheat, 0.94 for rice and 0.23 for cotton, and corresponds to average values for the climatic and growing conditions in Northwest India. Including percolation in the analysis, i.e. crop grain (or seed) yield per unit amount of evapotranspiration plus percolation, resulted in average WPETQ (kg m−3) values of 1.04 for wheat, 0.84 for rice and 0.21 for cotton. Factors responsible for low WP include the relative high amount of evaporation into evapotranspiration especially for rice, and percolation from field irrigations. Improving agronomic practices such as aerobic rice cultivation and soil mulching will reduce this non-beneficial loss of water through evaporation, and subsequently will improve the WPET at field scale. For wheat, the simulated water and salt limited yields were 20–60% higher than measured yields, and suggest substantial nutrition, pest, disease and/or weed stresses. Improved crop management in terms of timely sowing, optimum nutrient supply, and better pest, disease and weed control for wheat will multiply its WPET by a factor of 1.5! Moreover, severe water stress was observed on cotton (relative transpiration < 0.65) during the kharif (summer) season, which resulted in 1.4–3.3 times lower water and salt limited yields compared with simulated potential yields. Benefits in terms of increased cotton yields and improved water productivity will be gained by ensuring irrigation supply at cotton fields, especially during the dry years.  相似文献   

13.
Water use of spring wheat to raise water productivity   总被引:1,自引:0,他引:1  
In semi-arid environments with a shortage of water resources and a risk of overexplotation of water supplies, spring wheat (Triticum aestivum L.) is a crop that can reduce water use and increase water productivity, because it takes advantage of spring rainfall and is harvested before the evaporative demands of summer. We carried out an experiment in 2003 at “Las Tiesas” farm, located between Barrax and Albacete (Central Spain), to improve accuracy in the estimation of wheat evapotranspiration (ETc) by using a weighing lysimeter. The measured seasonal ETc averages (5.63 mm day−1) measured in the lysimeter was 417 mm compared to the calculated ETc values (5.31 mm day−1) calculated with the standard FAO methodology of 393 mm. The evapotranspiration crop coefficient (Kc) derived from lysimetric measurements was Kc-mid: 1.20 and Kc-end: 0.15. The daily lysimeter Kc values were fit to the evolution linearly related to the green cover fraction (fc), which follows the crop development pattern. Seasonal soil evaporation was estimated as 135 mm and the basal crop coefficient approach was calculated in this study, Kcb which separates crop transpiration from soil evaporation (evaporation coefficient, Ke) was calculated and related to the green cover fraction (fc) and the Normalized Difference Vegetation Index (NDVI) obtained by field radiometry in case of wheat. The results obtained by this research will permit the reduction of water use and improvement of water productivity for wheat, which is of vital importance in areas of limited water resources.  相似文献   

14.
Northeast Thailand has a semi-humid tropical climate which is characterized by dry and rainy seasons. In order to stabilize crop production, it may be necessary to develop new water resources, such as soil moisture and groundwater, instead of rainfed resources. This is because rainfed agriculture has already been unsuccessfully tried in many areas of this region. In this study, we investigate the soil water content in rainfed fields in Khon Kaen in Northeast Thailand, where rice and sugarcane were planted, over a 1-year period that contained both dry and rainy seasons, and estimate the actual evapotranspiration (ETa) using micrometeorological data. In addition, we assess the water balance from the results of the soil water content investigation and the actual evapotranspiration. Although the soil water content at depths above 0.6 m in both the lower and the sloping fields gradually decreased during the dry season, the soil water content at a depth of 1.0 m was under almost constant wet conditions. Two-dimensional profiles of the soil water content demonstrated that at the end of the dry season, the soil layers below a depth of 0.4 m showed a soil water content of more than 0.10-0.15 m3 m−3, thus suggesting that water was supplied to the sugarcane from those layers. The range in ETa rates was almost the same as that in the previous study. The average ETa rates were 3.7 mm d−1 for the lower field and 4.2 mm d−1 for the sloping field. In the dry season, an upward water flow of 373 mm (equivalent to a flux of 1.9 mm d−1) was estimated from outside the profile. The source of this upward water flow was the sandy clay (SC) layer below a depth of 1 m. It was this soil water supply from the SC layer that allowed the sugarcane to grow without irrigation.  相似文献   

15.
The monitoring of crop production and irrigation at a regional scale can be based on the use of ecosystem process models and remote sensing data. The former simulate the time courses of the main biophysical variables which affect crop photosynthesis and water consumption at a fine time step (hourly or daily); the latter allows to provide the spatial distribution of these variables over a region of interest at a time span from 10 days to a month. In this context, this study investigates the feasibility of using the normalised difference vegetation index (NDVI) derived from remote sensing data to provide indirect estimates of: (1) the leaf area index (LAI), which is a key-variable of many crop process models; and (2) crop coefficients, which represent the ratio of actual (AET) to reference (ET0) evapotranspiration.A first analysis is performed based on a dataset collected at field in an irrigated area of the Haouz plain (region of Marrakesh, Central Morocco) during the 2002–2003 agricultural season. The seasonal courses of NDVI, LAI, AET and ET0 have been compared, then crop coefficients have been calculated using a method that allows roughly to separate soil evaporation from plant transpiration. This allows to compute the crop basal coefficient (Kcb) restricted to the plant transpiration process. Finally, three relationships have been established. The relationships between LAI and NDVI as well as between LAI and Kcb were found both exponential, with associated errors of 30% and 15%, respectively. Because the NDVI saturates at high LAI values (>4), the use of remotely-sensed data results in poor accuracy of LAI estimates for well-developed canopies. However, this inaccuracy was not found critical for transpiration estimates since AET appears limited to ET0 for well-developed canopies. As a consequence, the relationship between NDVI and Kcb was found linear and of good accuracy (15%).Based on these relationships, maps of LAI and transpiration requirements have been derived from two Landsat7-ETM+ images acquired at the beginning and the middle of the agricultural season. These maps show the space and time variability in crop development and water requirements over a 3 km × 3 km irrigated area that surrounds the fields of study. They may give an indication on how the water should be distributed over the area of interest in order to improve the efficiency of irrigation. The availability, in the near future, of Earth Observation Systems designed to provide both high spatial resolution (10 m) and frequent revisit (day) would make it feasible to set up such approaches for the operational monitoring of crop phenology and irrigation at a regional scale.  相似文献   

16.
Borkhar district is located in an arid to semi-arid region in Iran and regularly faces widespread drought. Given current water scarcity, the limited available water should be used as efficient and productive as possible. To explore on-farm strategies which result in higher economic gains and water productivity (WP), a physically based agrohydrological model, Soil Water Atmosphere Plant (SWAP), was calibrated and validated using intensive measured data at eight selected farmer fields (wheat, fodder maize, sunflower and sugar beet) in the Borkhar district, Iran during the agricultural year 2004-2005. The WP values for the main crops were computed using the SWAP simulated water balance components, i.e. transpiration T, evapotranspiration ET, irrigation I, and the marketable yield YM in terms in terms of YMT−1, YM ET−1 and YM I−1.The average WP, expressed as $ T−1 (US $ m−3) was 0.19 for wheat, 0.5 for fodder maize, 0.06 for sunflower and 0.38 for sugar beet. This indicated that fodder maize provides the highest economic benefit in the Borkhar irrigation district. Soil evaporation caused the average WP values, expressed as YM ET−1 (kg m−3), to be significantly lower than the average WP, expressed as YMT−1, i.e. about 27% for wheat, 11% for fodder maize, 12% for sunflower and 0.18 for sugar beet. Furthermore, due to percolation from root zone and stored moisture content in the root zone, the average WP values, expressed as YMI−1 (kg m−3), had a 24-42% reduction as compared with WP, expressed as YM ET−1.The results indicated that during the limited water supply period, on-farm strategies like deficit irrigation scheduling and reduction of the cultivated area can result in higher economic gains. Improved irrigation practices in terms of irrigation timing and amount, increased WP in terms of YMI−1 (kg m−3) by a factor of 1.5 for wheat and maize, 1.3 for sunflower and 1.1 for sugar beet. Under water shortage conditions, reduction of the cultivated area yielded higher water productivity values as compared to deficit irrigation.  相似文献   

17.
A sensitivity analysis of irrigation water requirements at the regional scale was conducted for the humid southeastern United States. The GIS-based water resources and agricultural permitting and planning system (GWRAPPS), a regional scale, GIS-based, crop water requirement model, was used to simulate the effect of climate, soil, and crop parameters on crop irrigation requirements. The effects of reference evapotranspiration (ETo) methods, available soil water holding capacities (ASWHC), crop coefficients (Kc), and crop root zone depths (z) were quantified for 203 ferneries and 152 potato farms. The irrigation demand exhibited a positive relationship with Kc and z, a negative relationship with ASWHC, and seasonal variations depending on the choice of ETo methods. The average irrigation demand was most sensitive to the choice of Kc with a 10% shift in Kc values resulting in approximately 15% change in irrigation requirements. Most ETo methods performed reasonably well in estimating annual irrigation requirements as compared to the FAO-56 PM method. However, large differences in monthly irrigation estimates were observed due to the effect of the seasonal variability exhibited by the methods. Our results suggested that the selection of ETo method is more critical when modeling irrigation requirements at a shorter temporal scale (daily or monthly) as necessary for many applications, such as daily irrigation scheduling, than at a longer temporal scale (seasonal or annual). The irrigation requirements were more sensitive to z when the resultant timing of irrigation coincided with rainfall events. When compared with the overall average of the irrigation requirements differences, the site-to-site variability was low for Kc values and high for the other variables. In particular, soil properties had considerable average regional differences and variability among sites. Thus, the extrapolation of site-specific sensitivity studies may not be appropriate for the determination of regional responses crop water demand.  相似文献   

18.
An accurate estimation of crop evapotranspiration (ET c) is very useful for appropriate water management; hence, an accurate and user-friendly model is needed to support related irrigation decisions. In this view, a study was developed aimed at estimating the ET c of winter wheat–summer maize crop sequence in the North China through eddy covariance measurements, to calibrate and validate the SIMDualKc model, to estimate the basal crop coefficients (K cb) for both crops and to partition ET c into soil evaporation and crop transpiration. Two years of field experimentation of that crop sequence were used to calibrate and validate the SIMDualKc model and to derive K cb using eddy covariance measurements. Various indicators have shown the goodness of fit of the model, with estimated values very close to the observed ones and estimate errors close to 0.5 mm d?1. The initial, mid-season and end basal crop coefficients for wheat were 0.25, 1.15 and 0.30, respectively, and those for maize were 0.15, 1.15 and 0.45, thus close to those proposed in FAO56 guidelines. The soil evaporation represented near 80 % of ET c for the initial stages of winter wheat and summer maize and decreased to only 5–6 % during the mid-season period. Evaporation during the full crop season averaged 28 % for winter wheat and 40 % for summer maize. The importance of wetting frequency and crop ground coverage in controlling soil evaporation was evidenced.  相似文献   

19.
Jilin province is one of the main dryland grain production areas in China. Recently, limited supplemental irrigation, using groundwater in the semi-arid western area of the province, has developed rapidly to improve the low grain productivity caused by rainfall variability. Research was conducted to estimate the actual crop water requirements and identify the timing and magnitude of water deficits of the main crops such as corn (Zea mays L.), soybean (Glycine max L.) and sorghum (Sorghum bicolor L.). Using the guidelines for computing crop water requirements in FAO Irrigation and Drainage paper 56 and historical rainfall distributions, the crop water requirements, ETc and the crop water deficits of corn, soybean and sorghum were calculated. Based on the water deficit analysis, a recommended average supplemental irrigation schedule was developed. Crop production was compared to full irrigation and to a rainfed control in a field experiment.On average, compared to the rainfed control, the full irrigation and the average supplemental irrigation treatments of corn, increased yields 49.0 and 43.9%, respectively; soybean yields of those treatments increased by 41.0 and 34.7%, and sorghum yields of those treatments increased by 55.5 and 46.3%. A supplemental irrigation schedule can be used in the semi-arid western Jilin province to improve crop yields.  相似文献   

20.
Shortage of water is the most important limiting factor for crop production in the arid and semi-arid regions in Iran. More land can become productive by using partial irrigation at strategic times during the growing season. This may be accomplished if a proper index of crop sensitivity to water deficit at various growth stages is used. A theoretical procedure was applied to determine the savings in water and the economic benefit derived from partial irrigation, using a water stress sensitivity index for winter wheat (Triticum aestivum L.) and spring barley (Hordeum vulgare L.) in a dry region of Fars province in Iran. The results indicated that some water reduction is possible. In general, the suggested maximum allowable water reduction was unreasonably high for the sensitivity index (λ i ) proposed by Nairizi and Rydzewski. Their index is not applicable in arid and semi-arid areas. However, the field-derived λ i of Aryan resulted in a reasonable water reduction close to the field-applied water reduction to achieve a corresponding relative yield. Therefore, appropriate values of λ i for different climatic conditions should be used to calculate rational water reductions. The maximum allowable water reduction for spring barley was higher than that for winter wheat. The reduction increased as the benefit to cost ratio (B/C) was increased. Water reductions of 7 and 26% were allowed for winter wheat and spring barley, respectively, at a B/C ratio of 1.5. This corresponded to an 8 and 35% increase in cultivated area, respectively. These results need to be validated in more extensive field experimentation. Received: 9 December 1994  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号