首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salt balance methods are generally applied in the root-zone and at local scales but do not provide relevant information for salinity management at irrigation scheme scales, where there are methodological impediments. A simple salt balance model was developed at irrigation scheme and yearly time scales and applied in Fatnassa oasis (Nefzaoua, Tunisia). It accounts for input by irrigation, export by drainage and groundwater flow, and provides novel computation of the influence of biogeochemical processes and variations in the resident amount of salt for each chemical component in the soil and shallow groundwater. Impediments were overcome by limiting the depth of the system so that the resident amount of salt that remained was of the same order of magnitude as salt inputs and allowed indirect and reliable estimation of groundwater flow. Sensitivity analyses as partial derivatives of groundwater salinity were carried out according to non-reactive salt balance under steady-state assumption. These analyses enabled the magnitude of the salinization process to be foreseen as a function of hydrological changes linked to irrigation, drainage, groundwater flow and extension of the irrigated area. From a salt input of 39 Mg ha−1 year−1 by irrigation, 21 Mg ha−1 year−1 (54%) and 10 Mg ha−1 year−1 (26%) were exported by groundwater flow and drainage, respectively. 7 Mg ha−1 year−1 (18%) were removed from groundwater by geochemical processes, while a non-significant 2 Mg ha−1 year−1 were estimated to have been stored in the soil and shallow groundwater where the residence time was only 2.7 years. The leaching efficiency of drainage was estimated at 0.77. With a water supply of 1360 mm by irrigation and 90 mm by rainfall, drainage, groundwater flow and actual evapotranspiration were 130, 230, and 1090 mm, respectively. The current extension of date palm plantations and salinization of groundwater resources are expected to significantly increase the salinity hazard while the degradation of the drainage system is expected to be of lesser impact. The approach was successfully implemented in Fatnassa oasis and proved to be particularly relevant in small or medium irrigation schemes where groundwater fluxes are significant.  相似文献   

2.
干旱区灌排条件下田间土壤盐分动   总被引:3,自引:0,他引:3  
根据干旱地区实测的田间土壤含盐量、地下水埋深和矿化度以及灌溉量,分析了土壤盐分的时间动态变化及空间分布特征,确定了土壤盐分与地下水矿化度的线性正相关关系,建立了土壤盐分与地下水埋深和矿化度的统计模型。  相似文献   

3.
黄土丘陵区退耕还林土壤不同大小颗粒固碳过程与速率   总被引:2,自引:0,他引:2  
为揭示黄土丘陵区退耕还林土壤固碳过程及其变化机制,采用物理分组法探讨了安塞纸坊沟退耕15~45 a刺槐与柠条林地土壤砂粒、粉粒、黏粒截存有机碳的效应与速率。结果表明,对比坡耕地,两种退耕林地土壤颗粒结合碳含量均随退耕年限延长显著增加,并且表层0~10 cm土壤增幅最高,10~60 cm各土层增幅基本接近。退耕15~45 a期间,刺槐与柠条林0~20 cm土层均以粉粒碳密度增速最高,分别达0.21、0.11 Mg/(hm2·a),砂粒碳和黏粒碳增速相近,平均分别为0.13、0.06 Mg/(hm2·a)。同样的变化发生在0~60 cm土层,但各颗粒碳密度增速为0~20 cm土层的1.6~2.5倍。按此增速到退耕45 a时柠条林地砂粒碳、粉粒碳、黏粒碳相比坡耕地分别增大了2.6、1.1、0.8倍,刺槐林地则分别增大了8.3、2.2、2.8倍,并且对总有机碳累积贡献的平均比率为:砂粒碳(23%)等于黏粒碳(26%)且均小于粉粒碳(51%)。此外碳库管理指数比碳库活度与土壤总有机碳库变化有更显著的线性相关性。综上分析,该区域退耕刺槐林比柠条林土壤有更强的固碳效应,两种林地均以粉粒碳为主要固碳组分,以砂粒碳周转速率最快。  相似文献   

4.
Increasing pressure on water resources in Spain is forcing farmers to move from flood to pressurized water application. Initial recommendations for this upgrading require soil survey information, especially in areas prone to soil salinity. In this article a 3158 ha soil survey at a scale of 1:25,000 is presented. Soil series are split in phases based on the texture of the surface layer, slope, and salinity. Available water holding capacity (AWHC), to a depth of 1.5 m or to a lithic or paralithic contact, texture and coarse components in the surface horizons, and salinity mapped as discrete soil units are combined to develop a regional soil suitability map for irrigation upgrade. To minimize soil erosion and salt mobilization in the soils, our recommendations are: (i) maintain and improve flood irrigation on 296 ha, (ii) develop standard sprinkler irrigation on 2261 ha, and (iii) move to high frequency sprinkler irrigation on 601 ha. This research demonstrates the importance of soil survey as part of the decision making process for upgrading the regional irrigation systems.  相似文献   

5.
Water scarcity and nitrate contamination in groundwater are serious problems in desert oases in Northwest China. Field and 15N microplot experiments with traditional and improved water and nitrogen management were conducted in a desert oasis in Inner Mongolia Autonomous Region. Water movement, nitrogen transport and crop growth were simulated by the soil-plant system with water and solute transport model (SPWS). The model simulation results, including the water content and nitrate concentration in the soil profile, leaf area index, dry matter weight, crop N uptake and grain yield, were all in good agreement with the field measurements. The water and nitrogen use efficiency of the improved treatment were better than those of the traditional treatment. The water and nitrogen use efficiency under the traditional treatment were 2.0 kg m−3 and 21 kg kg−1, respectively, while under the improved treatment, they were 2.2 kg m−3 and 26 kg kg−1, respectively. Water drainage accounted for 24-35% of total water input (rainfall and irrigation) for the two treatments. Nitrogen loss by ammonia volatilization and denitrification was less than 5% of the total N input (including the N comes from irrigation). However, 32-61% of total nitrogen input was lost through nitrate leaching, which agreed with the 15N isotopic result. It is impetrative to improve the water and nitrogen management in the desert oasis.  相似文献   

6.
[目的]监测渭-库绿洲土壤盐渍化的空间分布特征,探究驱动因子作用机理,对当地因地制宜进行土壤盐渍化调控。[方法]采用决策树、克里金插值和灰色关联度分析研究了渭-库绿洲土壤盐渍化的剖面分布特征,着重分析了样本点海拔、植被覆盖度、地下水位、TW( I 地形湿度指数)、地下水矿化度5个驱动因子对土壤盐渍化的影响。[结果]①研究区表层土壤(0~10 cm)属于重度盐渍化土壤,10~20、20~40、40~60 cm各深度剖面土壤属于中度盐渍化土壤。土壤EC1:5有强的空间变异性,其分布格局受灌溉等人为驱动因素的影响较大。②绿洲内部(即耕作区)表层土壤属于非盐渍化区域,绿洲东部10~20、20~40、40~60cm土层有轻、中度的盐渍化现象。绿洲内部表层以下土壤盐分高于表层,绿洲存在潜在的盐渍化风险。耕作区外围绿洲-荒漠交错带区域各剖面层均属于盐渍化区域,随着剖面深度的增加,盐渍化程度在不断减弱。③样本点海拔、植被覆盖度、地下水位、TWI、地下水矿化度与土壤EC1:5的灰色关联度大小次序为:0~10 cm土层:地下水矿化度>TWI>样本点的海拔>植被覆盖度>地下水位;10~20、20~40 cm土层:地下水矿化度>样本点的海拔>TWI>植被覆盖度>地下水位。[结论]渭-库绿洲土壤盐渍化主要分布在绿洲-荒漠交错带区域,土壤盐分表聚强烈,地下水矿化度是造成该研究区土壤盐渍化问题的首要原因。  相似文献   

7.
Declining water resources and limited clean water reservoirs call for more efficient water use for food production in the future. The objective of this research was to compare different irrigation methods based on a parametric evaluation system in an area of 60,000 ha in the Dosalegh plain of the Khuzestan province, in the southwest of Iran. After the soil properties were analyzed and evaluated, suitability maps were generated for surface, sprinkler and drip irrigation methods, using Remote Sensing (RS) techniques and Geographic Information System (GIS). The results demonstrated that by applying sprinkler and drip irrigation instead of surface irrigation method, the land suitability of 23,790 and 33,261 ha (39.89%) in the Dosalegh plain will improve, respectively. The comparison of the different types of irrigation techniques revealed that the drip and sprinkler irrigations methods were more effective and efficient than that of surface irrigation for improved land productivity. However, the main limiting factor in using either surface or/and sprinkler irrigation methods in this area were soil texture, salinity, and slope, and the main limiting factor in using drip irrigation methods were the calcium carbonate content, soil texture and salinity.  相似文献   

8.
随着污水灌溉的迅速发展,污水灌溉对土壤环境及地下水的影响日益受到人们的关注。通过污水灌溉田间试验,探讨了不同潜水埋深条件下,污水灌溉对土壤及地下水中硝态氮和铵态氮的影响。结果表明:硝态氮的淋溶深度与潜水埋深及灌水量呈良好的正相关;相同灌水水平,地下水中硝态氮浓度与潜水埋深成负相关,地下水埋深2、3、4 m地下水硝态氮分别增加33.99%、15.49%、7.50%;相同潜水埋深,灌水水平越高,土壤中硝态氮淋溶深度越深。  相似文献   

9.
为揭示平原水库周边无灌溉生态林地水盐分布特征,2013-2014连续两年开展生态林地的地下水埋深、矿化度、土壤含水率及含盐量逐月监测。结果表明:周边生态林地地下水埋深变化范围在1.18~1.82m之间,水位变化幅度不大,地下水位随季节性变化较小;地下水矿化度变化范围在0.42~4.92g/L之间,呈周期性变化。土壤水分含水量整体随着土层深度的增加而增加。土壤总盐含量在0.24~8.9g/kg之间变化,其中10~40cm土层含盐量变化最为显著,具有明显的盐分表聚现象。  相似文献   

10.
A groundwater crisis is going on in the North China Plain (NCP), due to the excessive water consumption of the traditional winter wheat (WW)/summer maize (SM) double cropping system (two harvests in one year). In order to improve the water use efficiency in this particular cropping system and to evaluate the sustainability of water usage in Chinese agroecosystems, two field experiments were conducted from October 2004 to September 2006 at two sites of the North China Plain. The field experiments included four treatments: (1) farmers’ practice (FP) with two harvests in one year (WW/SM rotation), (2) FP with reduced input (RI) of water and nitrogen (WW/SM rotation), (3) three harvests in two years (TW, 1st year: WW/SM; 2nd year: spring maize), and (4) continuous spring-maize monoculture (CS) with one harvest per year (spring maize). In the treatments RI, TW and CS, the amount and timing of irrigation and nitrogen fertilization was optimized using TDR based soil moisture measurements and the Nmin-method, respectively. Data showed that the utilization efficiency of irrigation water can be improved by optimizing soil water management compared to the traditional water management (FP). However, the groundwater net consumption required for RI still surpassed 300 mm yr−1. Both FP and RI, still overused groundwater resources. The groundwater consumption in the continuous spring maize (CS) was on average 139 mm yr−1. Therefore, the CS system can show the potential to use groundwater sustainably in the long term. Water usage of the TW treatment was in between the water usage of the other treatments. The grain yields in the double cropping systems (FP and RI) were higher than that in the two other systems (TW and CS). But the CS treatment showed the higher WUE than others.  相似文献   

11.
干旱区土壤盐碱化是土地退化的主要问题,并威胁着绿洲农业的可持续发展,而盐碱地改良分区是因地制宜、综合治理盐碱地的前提。通过综合运用地理信息系统的各种空间数据分析功能,以焉耆平原灌区为典型区域,将土地盐碱化现状分为:非盐碱地、轻度盐碱地、中度盐碱地、重度盐碱地、盐土等5个区,并结合地下水、土壤、植被、岩性等调查资料,进行成因分析,建立了内陆河流域绿洲灌区盐碱地改良分区模型。立足土地盐碱化的现状,充分考虑地下水埋深和矿化度,把焉耆平原灌区按改良难易程度分为:易改良区、较难改良区、难改良区、不宜改良区,并针对不同的盐碱地改良分区特征、水盐平衡模型和现状灌排模式,提出了相应的综合治理对策。  相似文献   

12.
In the irrigated western U.S. disposal of drainage water has become a significant economic and environmental liability. Development of irrigation water management practices that reduce drainage water volumes is essential. One strategy combines restricted drainage outflow (by plugging the drains) with deficit irrigation to maximize shallow groundwater consumption by crops, thus reducing drainage that needs disposal. This approach is not without potential pitfalls; upward movement of groundwater in response to crop water uptake may increase salt and sodium concentrations in the root zone. The purposes for this study were: to observe changes in the spatial and temporal distributions of SAR (sodium adsorption ratio) and salt in a field managed to minimize drainage discharge; to determine if in situ drainage reduction strategy affects SAR distribution in the soil profile; and to identify soil or management factors that can help explain field wide variability. We measured SAR, soil salinity (EC1:1) and soil texture over 3 years in a 60-ha irrigated field on the west side of the San Joaquin Valley, California. At the time we started our measurements, the field was beginning to be managed according to a shallow groundwater/drainage reduction strategy. Soil salinity and SAR were found to be highly correlated in the field. The observed spatial and temporal variability in SAR was largely a product of soil textural variations within the field and their associated variations in apparent leaching fraction. During the 3-year study period, the percentage of the field in which the lower profile (90-180 cm) depth averaged SAR was above 10, increased from 20 to 40%. Since salinity was increasing concomitantly with SAR, and because the soil contained gypsum, sodium hazard was not expected to become a limiting factor for long term shallow groundwater management by drain control. It is anticipated that the technology will be viable for future seasons.  相似文献   

13.
基于距离反比法的土壤盐分三维空间插值研究   总被引:1,自引:0,他引:1  
以新疆兵团一块面积约70 hm2的盐碱地为研究对象,采用EM38与土钻取样相结合的方法得到了126个点不同土层(0~200 cm)的1 386个土壤盐分数据,应用三维距离反比法(3D-IDW)对土壤盐分进行了空间插值,探讨了垂向坐标扩大倍数和搜索点数对插值结果精度的影响。结果表明,研究区0~140 cm土层盐分平均含量较高,为1.84~2.11 g/kg,盐分变异较大,而140~200 cm土层盐分平均含量较低,为1.74~1.79 g/kg。所有土层盐分含量的统计特征值(平均值、标准差和变异系数等)均随土层加深而呈现递减的趋势。土壤盐分实测值和估计值的均方根误差随垂向坐标扩大倍数的增大而减小,随搜索点数的增加而增大,其值在0.1~0.4 g/kg范围内变化,当垂向坐标扩大300倍、搜索点数为6个时,插值效果较优。采用确定的参数对研究区的土壤盐分进行了三维空间插值,结果表明土壤盐分空间分布特征与实测值比较吻合,大部分区域土壤盐分含量小于2.5 g/kg,靠近北部和南部边界区土壤含盐量较低,属于非盐化土区,而大于4 g/kg盐化土主要分布在中间和南部局部区域。研究区80%土壤为非盐化土和轻度盐化土,20%为中度和重度盐化土。影响该区盐化土分布的主要因素有灌溉、局部地形、粘土层位置、地下水埋深和矿化度。当不同方向的取样间距相差很大时,选取合适的垂向坐标扩大倍数和搜索点数对保障3D-IDW法的插值结果精度至关重要。  相似文献   

14.
为了解决南疆干旱区盐碱地改良问题,探讨不同粉垄深度和灌水量在春灌期间对土壤的水盐运移规律.基于新疆图木舒克市盐碱地试验田,以传统翻耕CK(20 cm)为对照,设置3个粉垄深度S1(40 cm)、S2(60 cm)、S3(80 cm)和3个灌水量W1(2400 m3/hm2)、W2(3000 m3/hm2),W3(360...  相似文献   

15.
The purpose of optimal water and nutrient management is to maximize water and fertilizer use efficiency and crop production, and to minimize groundwater pollution. In this study, field experiments were conducted to investigate the effect of soil salinity and N fertigation strategy on plant growth, N uptake, as well as plant and soil 15N recovery. The experimental design was a 3 × 3 factorial with three soil salinity levels (2.5, 6.3, and 10.8 dS m−1) and three N fertigation strategies (N applied at the beginning, end, and in the middle of an irrigation cycle). Seed cotton yield, dry matter, N uptake, and plant 15N recovery significantly increased as soil salinity level increased from 2.5 to 6.3 dS m−1, but they decreased markedly at higher soil salinity of 10.8 dS m−1. Soil 15N recovery was higher under soil salinity of 10.8 dS m−1 than those under soil salinity of 6.3 dS m−1, but was not significantly different from that under soil salinity of 2.5 dS m−1. The fertigation strategy that nitrogen applied at the beginning of an irrigation cycle had the highest seed cotton yield and plant 15N recovery, but showed higher potential loss of fertilizer N from the root zone. While the fertigation strategy of applying N at the end of an irrigation cycle tended to avoid potential N loss from the root zone, it had the lowest cotton yield and nitrogen use efficiency. Total 15N recovery was not significantly affected by soil salinity, fertigation strategy, and their interaction. These results suggest that applying nitrogen at the beginning of an irrigation cycle has an advantage on promoting yield and fertilizer use efficiency, therefore, is an agronomically efficient way to provide cotton with fertilizer N under the given production conditions.  相似文献   

16.
Carbon (C) and nitrogen (N) dynamics in agro-systems can be altered as a consequence of treated sewage effluent (TSE) irrigation. The present study evaluated the effects of TSE irrigation over 16 months on N concentrations in sugarcane (leaves, stalks and juice), total soil carbon (TC), total soil nitrogen (TN), NO3-N in soil and nitrate (NO3) and dissolved organic carbon (DOC) in soil solution. The soil was classified as an Oxisol and samplings were carried out during the first productive crop cycle, from February 2005 (before planting) to September 2006 (after sugarcane harvest and 16 months of TSE irrigation). The experiment was arranged in a complete block design with five treatments and four replicates. Irrigated plots received 50% of the recommended mineral N fertilization and 100% (T100), 125% (T125), 150% (T150) and 200% (T200) of crop water demand. No mineral N and irrigation were applied to the control plots. TSE irrigation enhanced sugarcane yield but resulted in total-N inputs (804-1622 kg N ha−1) greater than exported N (463-597 kg N ha−1). Hence, throughout the irrigation period, high NO3 concentrations (up to 388 mg L−1 at T200) and DOC (up to 142 mg L−1 at T100) were measured in soil solution below the root zone, indicating the potential of groundwater contamination. TSE irrigation did not change soil TC and TN.  相似文献   

17.
Water demand for irrigation is increasing in olive orchards due to enhanced yields and profits. Because olive trees are considered moderately tolerant to salinity, irrigation water with salt concentrations that can be harmful for many of fruit tree crops is often used without considering the possible negative effects on olive tree growth and yield. We studied salt effects in mature olive trees in a long term field experiment (1998-2006). Eighteen-year-old olive trees (Olea europaea L.) cv. Picual were cultivated under drip irrigation with saline water composed of a mixture of NaCl and CaCl2. Three irrigation regimes (i. no irrigation; ii. water application considering soil water reserves, short irrigation; iii. water application without considering soil water reserves and adding a 20% more as a leaching fraction, long irrigation) and three salt concentrations (0.5, 5 or 10 dS m−1) were applied. Treatments were the result of the combination of three salt concentrations with two irrigation regimes, plus the non-irrigated treatment. Growth parameters, leaf and fruit nutrition, yield, oil content and fruit characteristics were annually studied. Annual leaf nutrient analyses indicate that all nutrients were within the adequate levels. After 8 years of treatment, salinity did not affect any growth measurement and leaf Na+ and Cl concentration were always below the toxicity threshold of 0.2 and 0.5%, respectively. Annual and accumulated yield, fruit size and pulp:stone ratio were also not affected by salts. However, oil content increased linearly with salinity, in most of the years studied. Soil salinity measurements showed that there was no accumulation of salts in the upper 30 cm of the soil (where most of the roots are present) because of leaching by rainfall at the end of the irrigation period. Results suggest that a proper management of saline water, supplying Ca2+ to the irrigation water, using drip irrigation until winter rest and seasonal rainfall typical of the Mediterranean climate leach the salts from the first 0-60 cm depth, and growing a tolerant cultivar, can allow using high saline irrigation water (up to 10 dS m−1) for a long time without affecting growth and yield in olive trees.  相似文献   

18.
Saline groundwater is often found at shallow depth in irrigated areas of arid and semi-arid regions and is associated with problems of soil salinisation and land degradation. The conventional solution is to maintain a deeper water-table through provision of engineered drainage disposal systems, but the sustainability of such systems is disputed. This shallow groundwater should, however, be seen as a valuable resource, which can be utilised via capillary rise (i.e. sub-irrigation). In this way, it is possible to meet part of the crop water requirement, even where the groundwater is saline, thus decreasing the need for irrigation water and simultaneously alleviating the problem of disposing of saline drainage effluent. Management of conditions within the root zone can be achieved by means of a controlled drainage system.A series of lysimeter experiments have permitted a detailed investigation of capillary upward flow from a water-table controlled at shallow depth (1.0 m) under conditions of moderately high (5 mm/day) evaporative demand and with different levels of salinity. Experiments were conducted on a wheat crop grown in a sandy loam soil. Groundwater salinity was held at values from 2 to 8 dS/m while supplementary (deficit) irrigation was applied at the surface with salinity in the range 1-4 dS/m.Our experiments show that increased salinity decreased total water uptake by the crop, but in most treatments wheat still extracted 40% of its requirement from the groundwater, similar to the proportion reported for non-saline conditions. Yield depression was limited to 30% of maximum when the irrigation water was of relatively good quality (1 and 2 dS/m) even with saline groundwater (up to 6 dS/m). Crop water productivity (grain yield basis) was around 0.35 kg/m3 over a wide range of salinity conditions when calculated conventionally on the basis of total water use, but was generally above 1.0 kg/m3 if calculated on the basis of irrigation input only.  相似文献   

19.
重盐碱地膜下滴灌土壤盐分运移规律研究   总被引:2,自引:0,他引:2  
根据对重盐碱地进行滴灌种植打瓜试验,钻孔取土,测定土壤总盐含量进行分析,试验表明在重盐碱地上利用膜下滴灌进行种植,滴头下的盐分淡化区稍向棵间偏移,并主要集中在二膜中间,可以为作物提供较好的水盐环境;经过1年膜下滴灌种植打瓜后,40 cm深度土壤总盐含量下降57%,100 cm深度总盐下降30.8%。  相似文献   

20.
为研究新疆绿洲区盐碱地应用膜下滴灌技术是否对荒地土壤盐分质量比及组成产生影响,以新疆典型盐碱绿洲区域(玛纳斯河流域下野地灌区)膜下滴灌棉田之间荒地为例,通过2009—2013年的定点监测,分析了年际间0~140 cm土层盐分及盐分离子变化.研究结果表明受滴灌棉田灌溉影响,地下水位提升以及地下水矿化度增加,造成新疆绿洲盐碱滴灌区域荒地土壤盐分在4月中旬至10月中旬的增加量大于10月中旬至翌年4月中旬的降低值,盐分和SO2-4,Cl-,Mg2+,Ca2+,Na+以及Cl-/SO2-4和钠离子吸附比都在逐年递增;荒地土壤碱度逐年提升,阴阳离子组成也在逐年变化,但试验期间内研究区域荒地盐碱土类型一直属于氯化物-硫酸盐盐土.滴灌技术在绿洲区推广后,区域内的荒地成为农田排出盐分重要的聚集场所之一.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号