首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The aim of this study carried out in Van, Turkey was to determine the most suitable irrigation frequencies and quantities in summer squash (Cucurbita pepo L. cv. Sakız) grown under field conditions. Irrigation quantities were based on pan evaporation (Epan) from a screened class-A pan. Irrigation treatments consisted of two irrigation intervals (I1: 5 days; I2: 10 days), and three pan coefficients (Kcp1: 0.45; Kcp2: 0.65 and Kcp3: 0.85). Plants were adequately watered from seed sowing to first fruit emergence, then, scheduled irrigations were initiated at 5- and 10-day intervals.Irrigation quantities applied to the treatments varied from 279 to 475 mm; seasonal plant water consumption or evapotranspiration (Et) of irrigation treatments varied from 336 to 539 mm; and the summer squash yield varied from 22.4 to 44.7 t ha−1. The highest total yield was obtained from I1Kcp3 treatment. However, Kcp2 treatments had the earliest yield. Treatments irrigated with higher amount of water generally gave lower irrigation water use efficiency (IWUE) values than others. Et/Epan ratios of treatments ranged from 0.12 to 1.16. Moreover, irrigation treatments had significant effects (P<0.01) on yield and there were significant positive linear relations among irrigation water, plant water consumption, fruit traits and yield.In conclusion, Kcp3 treatment with 5-day irrigation interval is recommended for summer squash grown under field conditions in order to get higher summer squash yield. However, if the irrigation water is scarce, it will be suitable to irrigate summer squash frequently using Kcp1 values.  相似文献   

2.
The efficient use of water by modern irrigation systems is becoming increasingly important in arid and semi-arid regions with limited water resources. This study was conducted for 2 years (2005 and 2006) to establish optimal irrigation rates and plant population densities for corn (Zea mays L.) in sandy soils using drip irrigation system. The study aimed at achieving high yield and efficient irrigation water use (IWUE) simultaneously. A field experiment was conducted using a randomized complete block split plot design with three drip irrigation rates (I1: 1.00, I2: 0.80, and I3: 0.60 of the estimated evapotranspiration), and three plant population densities (D1: 48,000, D2: 71,000 and D3: 95,000 plants ha−1) as the main plot and split plot, respectively. Irrigation water applied at I1, I2 and I3 were 5955, 4762 and 3572 m3 ha−1, respectively. A 3-day irrigation interval and three-way cross 310 hybrid corn were used. Results indicated that corn yield, yield components, and IWUE increased with increasing irrigation rates and decreasing plant population densities. Significant interaction effects between irrigation rate and plant population density were detected in both seasons for yield, selected yield components, and IWUE. The highest grain yield, yield components, and IWUE were found for I1D1, I1D2, or I2D1, while the lowest were found for I3D2 or I3D3. Thus, a high irrigation rate with low or medium plant population densities or a medium irrigation rate with a low plant population density are recommended for drip-irrigated corn in sandy soil. Crop production functions with respect to irrigation rates, determined for grain yield and different yield components, enable the results from this study to be extrapolated to similar agro-climatic conditions.  相似文献   

3.
This study compares the effects of different irrigation regimes on seed yield and oil yield quality and water productivity of sprinkler and drip irrigated sunflower (Helianthus annus L.) on silty-clay-loam soils in 2006 and 2007 in the Mediterranean region of Turkey. In sprinkler irrigation a line-source system was used in order to create gradually varying irrigation levels. Irrigation regimes consisted of full irrigation (I1) and three deficit irrigation treatments (I2, I3 and I4), and rain-fed treatment (I5). In the drip system, irrigation regimes included full irrigation (FI-100), three deficit irrigation treatments (DI-25, DI-50, DI-75), partial root zone drying (PRD-50) and rain-fed treatment (RF). Irrigations were scheduled at weekly intervals both in sprinkler and drip irrigation, based on soil water depletion within a 0.90 m root zone in FI-100 and I1 plots. Irrigation treatments influenced significantly (P < 0.01) sunflower seed and oil yields, and oil quality both with sprinkler and drip systems. Seed yields decreased with increasing water stress levels under drip and sprinkler irrigation in both experimental years. Seed yield response to irrigation varied considerably due to differences in soil water contents and spring rainfall distribution in the experimental years. Although PRD-50 received about 36% less irrigation water as compared to FI-100, sunflower yield was reduced by an average of 15%. PRD-50 produced greater seed and oil yields than DI-50 in the drip irrigation system. Yield reduction was mainly due to less number of seeds per head and lower seed mass. Soil water deficits significantly reduced crop evapotranspiration (ET), which mainly depends on irrigation amounts. Significant linear relationships (R2 = 0.96) between ET and oil yield (Y) were obtained in each season. The seed yield response factors (kyseed) were 1.24 and 0.86 for the sprinkler and 1.19 and 1.06 for the drip system in 2006 and 2007, respectively. The oil yield response factor (kyoil) for sunflower was found to be 1.08 and 1.49 for both growing seasons for the sprinkler and 1.36 and 1.25 for the drip systems, respectively. Oil content decreased with decreasing irrigation amount. Consistently greater values of oil content were obtained from the full irrigation treatment plots. The saturated (palmitic and stearic acid) and unsaturated (oleic and linoleic acid) fatty acid contents were significantly affected by water stress. Water stress caused an increase in oleic acid with a decrease in linoleic acid contents. The palmitic and stearic acid concentrations decreased under drought conditions. Water productivity (WP) values were significantly affected by irrigation amounts and ranged from 0.40 to 0.71 kg m−3 in 2006, and from 0.69 to 0.91 kg m−3 in 2007. The PRD-50 treatment resulted in the greatest WP (1.0 kg m−3) and irrigation water productivity (IWP) (1.4 kg m−3) in both growing seasons. The results revealed that under water scarcity situation, PRD-50 in drip and I2 in sprinkler system provide acceptable irrigation strategies to increase sunflower yield and quality.  相似文献   

4.
A field experiment was conducted to investigate the effects of different levels of drip irrigation and planting methods on yield and yield components (number of fruits per plant, number of primary and secondary branches per plant, and plant height) of green pepper (Capsicum annuum, L.) in Bako, Ethiopia. Three irrigation levels (50, 75 and 100% of ETc) and two planting methods (normal and paired-row planting) were applied. The experiment was laid out in a split plot design, with irrigation levels as main plots and planting methods as sub-plots, in three replications. It was found that the effects of both treatments on yield, number of fruits per plant and plant height of green pepper were highly significant (p < 0.01) whereas the number of primary and secondary branches per plant was affected significantly (p < 0.05). The maximum and minimum values of the yield and yield components were recorded from treatment plots I100P (full irrigation level with paired-row planting method) and I50P (50% of ETc irrigation level with paired-row planting method), respectively, with the exception of plant height. However, the average plant height (cm) recorded from the I100N treatment plot was not significantly different from the I100P treatment plot. Moreover, it was found that the effect of treatment interactions on both yield and yield components of green pepper was found to be highly significant (p < 0.01). A 50% reduction in irrigation level caused a reduction in yield of about 48.3 and 74.4% under the normal and paired-row planting methods, respectively, whereas, a 25% reduction in irrigation level caused a reduction in yield of about 22.8 and 47.7% under the same planting methods. Under both deficit irrigation levels (I50 and I75), the normal planting method gave higher total yield and yield components of green pepper than the paired-row planting method. Yield response factor (ky) values of 0.96 and 1.57 were determined for the normal and paired-row planting methods, respectively, suggesting utmost precautions when using the paired-row planting in areas with limited water supply. The results revealed that full irrigation water supply under paired-row planting method (I100P) could be used for the production of green pepper in an area with no water shortage. Moreover, it was found that the average yields recorded from the I75 under the paired-row planting method is fairly greater than the national average.  相似文献   

5.
Field studies were done in 2003 and 2006 to evaluate the performance of water pillow (WP) irrigation as an alternative to furrow irrigation (FI) for soybean growth in semi-arid climatic conditions. There were four irrigation treatments: two of which (FI and WP1.0) were full irrigation, in that the water deficit in the soil profile (0.9 m) was brought to field capacity in 10-day intervals. The other two treatments (WP0.75 and WP0.50) were deficit irrigation treatments, and received 75% and 50% of WP1.0 irrigation amount. The highest seed yield was achieved with the WP1.0 treatment. Irrigation water use efficiency (IWUE) and water use efficiency (WUE) were influenced significantly by the irrigation methods and levels (P ≤ 0.05). The highest values of WUE and IWUE were obtained by the WP0.75 and WP0.50 treatment, respectively, in both study years. However, the smallest irrigation amount resulted in lower total yield for the WP0.50 treatment, and is not recommended. In conclusion, the WP0.75 treatment is recommended for soybean production in order to attain higher values of IWUE and WUE, and to conserve water and maximize yield with the same volume of water.  相似文献   

6.
In general, cotton is irrigated by surface methods in Turkey although sprinkler and drip irrigation have been suggested as a means of supplying most types of crops with frequent and uniform applications of water, adaptable over a wide range of topographic and soil conditions. Recently, sprinkler irrigation systems have been introduced for cotton as a result of increased pressure to develop new irrigation technology suited to limited water supply as well as to specific topographic and soil conditions. In this study, the effects of three different irrigation methods (furrow, sprinkler and drip) on seed-cotton yield, shedding ratio and certain yield components are presented. The research was carried out in The Southeastern Anatolia Region (GAP) of Turkey from 1991 to 1994. The maximum cotton yields were 4380, 3630 and 3380 kg/ha for drip, furrow and sprinkler irrigation, respectively. Drip irrigation produced 21% more seed-cotton than the furrow method and 30% more than the sprinkler method. Water use efficiencies (WUE) proved to be 4.87, 3.87 and 2.36 kg/ha/mm for drip, furrow and sprinkler, respectively. Shedding ratios ranged from 50.8 to 59.0% (furrow), 52.9 to 64.8% (sprinkler), 50.8 to 56.8% (drip), depending on the amount of water applied. The shedding ratio for sprinkler irrigation was significantly higher than that of either furrow (P=0.10) or drip irrigation (P=0.05), resulting in lower seed-cotton yield for sprinkler irrigation. For all methods, a quadratic relationship was found between the amount of water applied and shedding ratios, with the least shedding occurring between 1000 and 1500 mm of water. Both limited and over-irrigation increased the shedding ratio for all methods. Accordingly, a lower boll number per plant and a lower seed-cotton yield were obtained from sprinkler-irrigated cotton; a significantly decreasing linear relationship between the shedding ratio and the total cotton yield and boll number per plant.  相似文献   

7.
In a greenhouse pot experiment conducted in Turkey during 2001, onion seedlings were transplanted on May 31 at the density of five plants per pot. On this date the soil water content of all pots were at field capacity. The pots were weighed daily until harvest (December 2), and the data were used to determine the daily evapotranspiration and quantity of irrigation. Eight irrigation treatments were applied, designated as I1 full irrigation (non-deficit treatment), and I2, I3 and I4 no irrigation in the vegetative growth periods, yield formation and ripening, respectively, and I5, I6, I7 and I8 received 0.0, 0.25, 0.50 and 0.75 times the soil water depletion in the treatment I1 on the same day. For each treatment, the following parameters were analysed and compared: applied irrigation depth, daily and seasonal evapotranspiration, bulb yield, yield response factor (ky), irrigation water use efficiency (IWUE) and water use efficiency (WUE). The findings indicated that onion plants were very sensitive to lack of soil water during the total growing season and the yield formation period, but rather insensitive in the vegetative and ripening periods. High water use and water use efficiencies were observed with increasing levels of irrigation, or no irrigation in the vegetative period.  相似文献   

8.
This research was conducted during the spring seasons of 2000 and 2002 in Hatay province located in the East Mediterranean Region of Turkey. The research investigated the effects of two drip irrigation methods and four different water stress levels on potato yield and yield components. The surface drip (SD) and subsurface drip (SSD) irrigation methods were used. The levels were full irrigation (I100), 66% of full irrigation (I66), 33% of full irrigation (I33) and un-irrigated (I0) treatments. Five and three irrigation were applied in 2000 and 2002 early potato growing seasons, respectively. Total irrigation amount changed from 102 to 302 mm and from 88 to 268 mm in 2000 and 2002, respectively. Seasonal evapotranspiration changed between 226 and 473 mm and 166 and 391 mm in 2000 and 2002, respectively. SD and SSD irrigation methods did not result in a significant difference on yield. However, SD method has more advantages than SSD method, which has difficulties in replacement and higher system cost. Irrigation levels resulted in significant difference in both years on yield and its components. Water stress significantly affected the yield and yield parameters of early potato production. Water deficiency more than 33% of the irrigation requirement could not be suggested.Water use efficiency (WUE) of SD irrigation methods had generally higher values than SSD irrigation methods. Treatment I33 gave maximum irrigation water use efficiency (IWUE) for both years. SSD irrigation method did not provide significant advantage on yield and WUE, compared to SD irrigation in early potato production under experimental conditions. Therefore, the SD irrigation method would be recommended in early potato production under Mediterranean conditions.  相似文献   

9.
The reported study aimed at developing an integrated management strategy for irrigation water and fertilizers in case of wheat crop in a sub-tropical sub-humid region. Field experiments were conducted on wheat crop (cultivar Sonalika) during the years 2002–2003, 2003–2004 and 2004–2005. Each experiment included four fertilizer treatments and three irrigation treatments during the wheat growth period. During the experiment, the irrigation treatments considered were I1 = 10% maximum allowable depletion (MAD) of available soil water (ASW); I2 = 40% MAD of ASW; I3 = 60% MAD of ASW. The fertilizer treatments considered in the experiments were F1 = control treatment with N:P2O5:K2O as 0:0:0 kg ha−1, F2 = fertilizer application of N:P2O5:K2O as 80:40:40 kg ha−1; F3 = fertilizer application of N:P2O5:K2O as 120:60:60 kg ha−1 and F4 = fertilizer application of N:P2O5:K2O as 160:80:80 kg ha−1. In this study CERES-wheat crop growth model of the DSSAT v4.0 was used to simulate the growth, development and yield of wheat crop using soil, daily weather and management inputs, to aid farmers and decision makers in developing strategies for effective management of inputs. The results of the investigation revealed that magnitudes of grain yield, straw yield and maximum LAI of wheat crop were higher in low volume high frequency irrigation (I1) than the high volume low frequency irrigation (I3). The grain yield, straw yield and maximum LAI increased with increase in fertilization rate for the wheat crop. The results also revealed that increase in level of fertilization increased water use efficiency (WUE) considerably. However, WUE of the I2 irrigation schedule was comparatively higher than the I1 and I3 irrigation schedules due to higher grain yield per unit use of water. Therefore, irrigation schedule with 40% maximum allowable depletion of available soil water (I2) could safely be maintained during the non-critical stages to save water without sacrificing the crop yield. Increase in level of fertilization increases the WUE but it will cause environmental problem beyond certain limit. The calibrated CERES-wheat model could predict the grain yield, straw yield and maximum LAI of wheat crop with considerable accuracy and therefore can be recommended for decision-making in similar regions.  相似文献   

10.
Crop coefficient of sesame is necessary for the water requirement estimation in irrigation water planning and management. This study has been initiated to determine the crop coefficient (Kc) of sesame in a semi-arid climate. The relationships between Kc and ETp/Ep (pan evaporation) and leaf area index (LAI), growing degree-day (GDD) and days after sowing (DAS), were also investigated. The seasonal ETp for sesame in the study area with a 5 month growth period was 910 m. The mid-season and late-season Kc values for sesame were 1.08 and 0.64, respectively. These values are somewhat lower and higher than those for other oil seed crops. The Kc value for the initial stage was close to that obtained by the procedure proposed by Allen et al. [Allen, R.G., Smith, M., Pereira, L.S., Pruitt, W.O., 1997. Proposed revision to the FAO procedure for estimating evapotranspiration. In: The Second Iranian Congress on Soil and Water Issues, 15–17 February 1997. Tehran, I.R. of Iran, pp. 1–18]. The ratio of ETp/Ep varied between 0.49–1.0 from the beginning to the middle of the growing season which is a sign of mild local advection in the region. The maximum ratios of ETp/ET0 and ETp/Ep occurred at a LAI of 3.0. Furthermore, third-order polynomials were presented to predict the Kc values from days after sowing (DAS), percent days after sowing (%DAS) and growing degree-day (GDD).  相似文献   

11.
This study was conducted to determine the effect of different supplemental irrigation rates on chickpea grown under semiarid climatic conditions. Chickpea plots were irrigated with drip irrigation system and irrigation rates included the applications of 0 (I 0) 25 (I 25), 50 (I 50), 75 (I 75), 100 (I 100), and 125 % (I 125) of gravimetrically measured soil water deficit. Plant height, 1,000 seed weight, yield, biomass, and harvest index (HI) parameters were determined in addition to yield-water functions, evapotranspiration (ET), water use efficiency (WUE), and irrigation water use efficiency (IWUE). Significant differences were noted for plant height (ranging from 24.0 to 37.5 cm), 1,000 seed weight (ranging from 192.0 to 428.7 g), and aboveground biomass (ranging from 2,722 to 6,083 kg ha?1) for water applications of I 0 and I 125. Statistical analysis indicated a strong relationship between the amount of irrigation and yield, which ranged from 256.5 to 1,957.3 kg ha?1. Harvest index values ranged between 0.092 and 0.325, while WUE and IWUE values ranged between 1.15–4.55 and 1.34–8.36 (kg ha?1 mm?1), respectively.  相似文献   

12.
This study was conducted over 2 years (2007 and 2008) to establish the optimal combinations between irrigation frequency and rate for drip-irrigated maize using water production functions and water use-yield relationships. A field experiment was conducted using a randomized complete block split plot design with four irrigation frequencies (F1, F2, F3 and F4, irrigation events once every 1, 2, 3 or 4 days, respectively) and three drip irrigation rates (I1: 1.00, I2: 0.80, and I3: 0.60 of the estimated evapotranspiration, ET) as the main and split plots, respectively. Our results show that yield variables and water use efficiencies (WUEs) increased with increasing irrigation frequency and rate, with non-significant differences between F1 and F2 in yield variables and between I1 and I2 in WUEs. Moreover, the combination between various irrigation frequencies and rates had an important effect on yield variables and WUEs, with the highest values being found for F1I2 and F2I1 and the lowest for F3I3 and F4I3. The F1I3 treatment had grain yield and yield components values similar to those obtained for the F3I2 and F4I1 treatments and WUEs values similar to those obtained for the F2I1 and F2I2 treatments. Seasonal yield response factors (ky) were 1.81 and 1.86 in 2007 and 2008, respectively. Production functions of yield versus seasonal crop ET were linear for all combinations of irrigation frequency and rate and for all irrigation frequency treatments with the exception of the F1 treatment, which instead showed a second order relationship. The relationship between WUE and grain yield was best represented by a power equation. In conclusion, we identified the optimal coupling combinations between irrigation frequency and water application rate to achieve the maximum yield and WUEs under either sufficient (F2I1) or limited irrigation (F1I3) water supplies.  相似文献   

13.
Sprinkler irrigation efficiency declines when applied water intercepted by the crop foliage, or gross interception (Igross), as well as airborne droplets and ponded water at the soil surface evaporate before use by the crop. However, evaporation of applied water can also supply some of the atmospheric demands usually met by plant transpiration. Any suppression of crop transpiration from the irrigated area as compared to a non-irrigated area can be subtracted from Igross irrigation application losses for a reduced, or net, interception (Inet) loss. This study was conducted to determine the extent in which transpiration suppression due to microclimatic modification resulting from evaporation of plant-intercepted water and/or of applied water can reduce total sprinkler irrigation application losses of impact sprinkler and low energy precision application (LEPA) irrigation systems. Fully irrigated corn (Zea Mays L.) was grown on 0.75 m wide east-west rows in 1990 at Bushland, TX in two contiguous 5-ha fields, each containing a weighing lysimeter and micrometeorological instrumentation. Transpiration (Tr) was measured using heat balance sap flow gauges. During and following an impact sprinkler irrigation, within-canopy vapor pressure deficit and canopy temperature declined sharply due to canopyintercepted water and microclimatic modification from evaporation. For an average day time impact irrigation application of 21 mm, estimated average Igross loss was 10.7%, but the resulting suppression of measured Tr by 50% or more during the irrigation reduced Igross loss by 3.9%. On days of high solar radiation, continued transpiration suppression following the irrigation reduced Igross loss an additional 1.2%. Further 4–6% reductions in Igross losses were predicted when aerodynamic and canopy resistances were considered. Irrigation water applied only at the soil surface by LEPA irrigation had little effect on the microclimate within the canopy and consequently on Tr or ET, or irrigation application efficiency.  相似文献   

14.
Accurate estimates of peanut (Arachis hypogaea L.) water requirements are needed for water conservation. The objective of this study was to evaluate the FAO-56 crop coefficients for peanut grown under various levels of water stress in a humid climate. Two experiments were conducted in three automated rainout shelters located at the University of Georgia Griffin Campus in Griffin, Georgia, USA in 2006 and 2007. Irrigation was applied when the modeled soil water content in the effective root zone dropped below a specific threshold of the available water content (AWC). The irrigation treatments corresponded to irrigation thresholds (IT) of 40, 60 and 90% of AWC. The soil water balance was used to compute observed evapotranspiration (ET cm) from measured soil water content at six different soil depths. The length of the four developmental stages was different than the values listed in FAO-56. The 2-year average absolute relative error of K cini was 8, 19 and 6% for 40, 60 and 90% IT, respectively. For the 90% IT, the FAO-56 K cmid and K cend were almost identical to the 2-year averages of the observed K cmid and K cend, respectively. The findings of this study confirmed that the FAO-56 procedure was reasonably accurate for estimating peanut ET under water stress in a humid climate.  相似文献   

15.
In 2005 and 2006, a study was conducted to determine the effect of subsurface and surface drip irrigation systems and to determine optimum irrigation water using six different irrigation levels imposed on muskmelon (Cucumis Melo L. cv. Ananas F1) under semi-arid climatic conditions. Irrigation treatments received 0, 25, 50, 75, 100, and 125% of class A pan evaporation rates. In 2005, average yield from subsurface and surface drip irrigation systems ranged from 16.2 (I 0) to 31.1 (I 75) t ha−1 and from 16.2 (I 0) to 43.8 (I 75) t ha−1, respectively. While in 2006, fruit yields for the same systems ranged from 8.2 (I 0) to 40.4 (I 75) t ha−1 and from 8.2 (I 0) to 38.9 (I 100) t ha−1. Regression analysis of the yield data indicated no significant (P > 0.05) difference between years and irrigation systems. The highest muskmelon yields from subsurface and surface drip irrigation systems were obtained at 83 and 92% of class A pan. Bigger fruits were obtained with optimum irrigation amounts for both of the irrigation systems. However, there was no clear indication of irrigation water amounts on total soluble solid and flesh thickness of muskmelon fruits.  相似文献   

16.
A study was conducted to determine the water stress effect on yield and some physiological parameters including crop water stress index for drip irrigated second crop watermelon. Irrigations were scheduled based on replenishment of 100, 75, 50, 25, and 0% soil water depletion from 90 cm soil depth with 3-day irrigation interval. Seasonal crop evapotranspiration (ET) for I100, I75, I50, I25, and I0 were 660, 525, 396, 210, and 70 mm in 2003 and 677, 529, 405, 221, and 75 mm in 2004. Fruit yield was significantly lowered by irrigation water stress. Average water-yield response factor for both of the years was 1.14. The highest yield was obtained from full irrigated treatment as 34.5 and 38.2 t ha−1 in 2003 and 2004, respectively. Lower ET rates and irrigation amounts in water stress treatments resulted in reductions in all measured parameters, except water-soluble dry matter concentrations (SDM). Canopy dry weights, leaf relative water content, and total leaf chlorophyll content were significantly lowered by water stress. Yield and seasonal ET were linearly correlated with mean CWSI values. An average threshold CWSI value of 0.17 before irrigation produced the maximum yield and it could be used to initiate the irrigation for watermelon.  相似文献   

17.
Projected climate changes and expansion of viticulture to drier regions justify the installation and management of deficit irrigation (DI) strategies. Contradictory results on the effect of DI on crops may be ascribed to the incorrect application of these techniques. The lack of discrimination between basal crop (K cb) and stress coefficients (K s) can be an obstacle to proper irrigation management. A sap flow (SF) technique associated with microlysimeters and eddy covariance (EC) methods was applied to five commercial vineyards, aiming to discriminate those coefficients, during the driest period of the vegetative cycle. A comparative analysis of the coefficients, in relation to measured vegetation parameters (for K cb) and plant water status (for K s) is presented. K cb, ranging from about 0.35 to 0.75, was highly correlated with leaf area index at stand level. K s, which decreased till 0.2 in the most stressed vineyard, was well correlated to plant water status (K s function), represented by predawn leaf water potential. K s functions for the different experiments exhibited falling slopes with decreasing water status, with variable trends depending on the rates of maximal crop transpiration (T m). These experimental results show that specific parameters for K s functions, necessary to estimate water use and irrigation depths, in order to control the stress levels in DI scheduling, are also dependent on T m.  相似文献   

18.
The objective of the study was to determine the effects of different emitter spaces and water stress on crop yield, such that the tomatoes would be suitable for processing and paste output (Lycopersicon esculentum Mill cv. Shasta). Such variables were also analyzed with respect to crop quality characteristics (e.g., mean fruit weight - MFW, fruit diameter - FD, penetration value of fruit - PV, pH, total soluble solids - TSS, and ascorbic acid contents - AA). The experiment was conducted under ecological conditions typical of the Konya Plain, a semi-arid climate, in 2004 and 2005. Drip irrigation laterals were arranged in such a way that every row had one lateral. Emitters were spaced at 25, 50, and 75 cm intervals in the main plots, while four levels of water supply, irrigation at 7-day intervals with enough water to fill the soil depth of 0-60 cm until capacity was reached (I1), and 25, 50, and 75% decreased water supply levels were applied as subplots of the experiment. Results of the field experiments showed that yield suitable for processing (68.7-72.7 t ha−1) and paste output (12.2-12.9 t ha−1) were obtainable under conditions of I1 application (p < 0.01). MFW, FD, PV, and TSS were significantly affected from treatments (p < 0.05). High stress resulted in the highest soluble solids. The total irrigation water amount and water consumptive use of the mentioned application (I1) were determined as 426 and 525 mm in 2004. In 2005, the total irrigation water amount and water consumptive use of the same treatment were 587 and 619 mm, respectively.  相似文献   

19.
During 2 years, a melon crop (Cucumis melo L. cv. Sancho) was grown under field conditions to investigate the effects of different nitrogen (N) and irrigation (I) levels on fruit yield, fruit quality, irrigation water use efficiency (IWUE) and nitrogen applied efficiency (NAE). The statistical design was a split-plot with four replications, where irrigation was the main factor of variation and N was the secondary factor. In 2005, irrigation treatments consisted of applying daily a moderate water stress equivalent to 75% of ETc (crop evapotranspiration), a 100% ETc control and an excess irrigation of 125% ETc (designated as I75, I100 and I125), while the N treatments were 30, 85, 112 and 139 kg N ha−1 (designated as N30, N85, N112 and N139). In 2006, both the irrigation and N treatments applied were: 60, 100 and 140% ETc (I60, I100 and I140) and 93, 243 and 393 kg N ha−1 (N93, N243 and N393). Moderate water stress did not reduce melon yield and high IWUE was obtained. Under severe deficit irrigation, the yield was reduced by 22% mainly due to decrease fruit weight. The relative yield (yield/maximum yield) was higher than 95% when the irrigation depth applied was in the range of 87-136% ETc. In 2006, the interaction between irrigation and N was significant for yield, fruit weight and IWUE. The best yield, 41.3 Mg ha−1, was obtained with 100% ETc at N93. The flesh firmness and the placenta and seeds weight increased when the irrigation level was reduced by 60% ETc. The highest NAE was obtained with quantities of water close to 100% ETc and increased as the N level was reduced. The highest IWUE was obtained with applications close to 90 kg N ha−1. The I243 and I393 treatments produced inferior fruits due to higher skin ratios and lower flesh ratios. These results suggest that it is possible to apply moderate deficit irrigation, around 90% ETc, and reduce nitrogen input to 90 kg ha−1 without lessening quality and yields.  相似文献   

20.
A study was conducted in the San Joaquin Valley of California on Merlot to determine the interaction of applied water amounts [at 0.4, 0.8, and 1.2 of estimated vineyard evapotranspiration (ETc)] and leaf removal (at berry set or veraison) in the fruiting zone on productivity. Shaded area was measured beneath the canopy of the 1.2 irrigation treatment at solar noon throughout the study to provide an estimate of seasonal crop coefficients (K c). Vine water status was assessed across treatments and years by measuring midday leaf water potential (Ψl). The maximum K c determined from the percent shaded area was 0.7 at the row spacing of 3.66?m and canopy type that developed a “California Sprawl.” Irrigation treatment had a significant effect on midday Ψl and no such effect for leaf removal. Clusters exposed to direct solar radiation had significantly higher temperatures and lower cluster Ψ than clusters in the shade. Irrigation treatment had a significant effect on berry weight, soluble solids, and titratable acidity. Yields of vines significantly increased as applied water amounts increased. In this wine grape production area, profitability is dependent upon yield. This study provided a reliable estimate of ETc and applied water amounts to maximize yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号