首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon (C) and nitrogen (N) dynamics in agro-systems can be altered as a consequence of treated sewage effluent (TSE) irrigation. The present study evaluated the effects of TSE irrigation over 16 months on N concentrations in sugarcane (leaves, stalks and juice), total soil carbon (TC), total soil nitrogen (TN), NO3-N in soil and nitrate (NO3) and dissolved organic carbon (DOC) in soil solution. The soil was classified as an Oxisol and samplings were carried out during the first productive crop cycle, from February 2005 (before planting) to September 2006 (after sugarcane harvest and 16 months of TSE irrigation). The experiment was arranged in a complete block design with five treatments and four replicates. Irrigated plots received 50% of the recommended mineral N fertilization and 100% (T100), 125% (T125), 150% (T150) and 200% (T200) of crop water demand. No mineral N and irrigation were applied to the control plots. TSE irrigation enhanced sugarcane yield but resulted in total-N inputs (804-1622 kg N ha−1) greater than exported N (463-597 kg N ha−1). Hence, throughout the irrigation period, high NO3 concentrations (up to 388 mg L−1 at T200) and DOC (up to 142 mg L−1 at T100) were measured in soil solution below the root zone, indicating the potential of groundwater contamination. TSE irrigation did not change soil TC and TN.  相似文献   

2.
Field experiments were carried out to investigate water and salt management and its effects on Leymus chinensis growth under drip irrigation on saline-sodic soils of the Songnen Plain, China. The ECe of the experiment soil here is 15.2 dS/m and SARe is 14.6 (mmolc L−1)1/2. The threshold of soil matric potential (SMP) was preset in different treatments (−5, −10, −15, −20 and −25 kPa) to control the timing of the irrigation cycle using vacuum tensiometers buried at 0.2 m depth immediately under drip emitters. Drip irrigation frequency and soil matric potential significantly influenced water and salt distributions and L. chinensis growth. In the root zone, the soil water content increased with the SMP, but at deeper layers there were no significant differences in soil water content due to the effect of groundwater. Electrical conductivity showed that there was a low-salt zone near the emitters and that drip irrigation inhibited the buildup of salts in the root zone. There was more leaching of salts for −5 and −10 kPa treatments than for the −15, −20 and −25 kPa treatments. After two years of drip irrigation, the surface salts were well leached, and had moved down with the water to depths below 40 cm. The pH of each treatment was a little decreased and the soil nutrient of S1-S5 were all increased after reclamation, but there were no obvious differences of the five treatments. The best growth was achieved with soil matric potentials of −5 and −10 kPa: the plant height, number and length of spikes, number of tillers, coverage and aboveground biomass all attained their maximum values during the growth periods of L. chinensis, with no significant differences between those two treatments. Thus, in the Songnen Plain, drip irrigation can be used on transplanted L. chinensis for restoration of saline-sodic soils. The results provide theoretical and technological guidance for sustainable reclamation salt-affected soil and the quick restoration and reconstruction of saline-sodic grassland.  相似文献   

3.
Identification of nitrate (NO3) leaching hot spots is important in mitigating environmental effect of NO3. Once identified, the hot spots can be further analyzed in detail for evaluating appropriate alternative management techniques to reduce impact of nitrate on groundwater. This study was conducted to identify NO3 leaching hot spots in an approximately 36,000 ha area in Serik plain, which is used intensively for agriculture in the Antalya region of Southern Turkey. Geo-referenced water samples were taken from 161 wells and from the representative soils around the wells during the period from late May to early June of 2009. The data were analyzed by classical statistics and geostatistics. Both soil and groundwater NO3-N concentrations demonstrated a considerably high variation, with a mean of 10.2 mg kg−1 and 2.1 mg L−1 NO3-N for soil and groundwater, respectively. The NO3-N concentrations ranged from 0.01 to 102.5 mg L−1 in well waters and from 1.89 to 106.4 mg kg−1 in soils. Nitrate leaching was spatially dependent in the study area. Six hot spots were identified in the plain, and in general, the hot spots coincided with high water table, high sand content, and irrigated wheat and cotton. The adverse effects of NO3 can be mitigated by switching the surface and furrow irrigation methods to sprinkler irrigation, which results in a more efficient N and water use. Computer models such as NLEAP can be used to analyze alternative management practices together with soil, aquifer, and climate characteristics to determine a set of management alternatives to mitigate NO3 effect in these hot spot areas.  相似文献   

4.
Annual carbon and nitrogen loadings for a furrow-irrigated field   总被引:1,自引:0,他引:1  
Evaluations of agricultural management practices for soil C sequestration have largely focused on practices, such as reduced tillage or compost/manure applications, that minimize soil respiration and/or maximize C input, thereby enhancing soil C stabilization. Other management practices that impact carbon cycling in agricultural systems, such as irrigation, are much less understood. As part of a larger C sequestration project that focused on potential of C sequestration for standard and minimum tillage systems of irrigated crops, the effects of furrow irrigation on the field C and N loading were evaluated. Experiments were conducted on a laser-leveled 30 ha grower's field in the Sacramento valley near Winters, CA. For the 2005 calendar year, water inflow and runoff was measured for all rainfall and irrigation events. Samples were analyzed for C and N associated with both sediment and dissolved fractions. Total C and N loads in the sediment were always higher in the incoming irrigation water than field runoff. Winter storms moved little sediment, but removed substantial amounts of dissolved organic carbon (DOC), or about one-third of the total C balance. Despite high DOC loads in runoff, the large volumes of applied irrigation water with sediment and DOC resulted in a net increase in total C for most irrigation events. The combined net C input and N loss to the field, as computed from the field water balance, was 30.8 kg C ha−1 yr−1 and 5.4 kg N ha−1 yr−1 for the 2005 calendar year. It is concluded that transport of C and N by irrigation and runoff water should be considered when estimating the annual C field balance and sequestration potential of irrigated agro-ecosystems.  相似文献   

5.
This work assesses the seasonal dynamics of the substrate oxygen content and the response to nutrient solution oxygen enrichment (oxyfertigation) of an autumn-spring tomato crop grown on rockwool slabs and irrigated with treated wastewater of very low dissolved oxygen (DO) content under Mediterranean greenhouse conditions. DO values in the nutrient solution were clearly higher for the oxygen-enriched (14.6 mg L−1) tomato crop than for the non-enriched one (4.5 mg L−1). However, DO values in the substrate solution were similar for both oxygen treatments (mean seasonal values of 5.1 and 4.8 mg L−1 for the enriched and the non-enriched one, respectively), except for a short crop period at the end of the cycle when they were significantly higher for the oxygen-enriched crop. For both treatments, substrate DO values were highest for the winter period and decreased progressively during the spring period, reaching minimum values of around or below 3 mg L−1 at the end of the spring. The oxygen enrichment of the nutrient solution did not affect any of the irrigation and fertigation parameters evaluated in the tomato crop: water uptake, volumetric water content of the substrate, electrical conductivity (EC) or nutrient concentration in the leached nutrient solution. Moreover, the oxygen enrichment of the nutrient solution did not affect the aboveground biomass and the biomass partitioning, the fresh weight of total and marketable tomato fruits or the tomato fruit quality parameters. Overall, it appears that oxygen deficiency conditions did not occur as the substrate DO values were higher than, or about, 3 mg L−1 throughout most of the tomato crop cycle for both treatments and the rockwool slabs maintained good aeration conditions throughout the whole cycle.  相似文献   

6.
A 5-year field trial to assess the impact of microsprinkler irrigation and nutrition on vanilla grown as intercrop in arecanut plantation was conducted on a laterite soil. Pooled analysis indicated that microsprinkler irrigation at 1.0 Epan resulted in significantly higher green bean yield (842 kg ha−1) than 0.75 Epan (579 kg ha−1). Organic manure application in the form of vermicompost (720 kg ha−1) and FYM (768 kg ha−1) and recommended NPK (718 kg ha−1) produced green bean yield at par with recycling of gliricidia prunings (625 kg ha−1). Irrigation at 1.0 Epan proved superior by registering maximum benefit:cost (B:C) ratio of 2.25 compared to 1.62 at 0.75 Epan. The highest B:C ratio was obtained with recommended NPK (2.27) followed by recycling of gliricidia prunings (2.10), vermicompost (1.87), vermicompost + arecanut husk mulching (1.80) and FYM (1.64). The soil pH increased by 0.4 units in 2008 compared with the pre-experimental soil pH of 5.6 in 2004. Nutrition alone and in combination with irrigation had significant impact on soil pH. Organic manure application increased the soil pH (6.1-6.2) significantly over recommended NPK (5.6) at the end of experiment in 2008. Significant variation in soil organic carbon (SOC) was noticed due to different nutrition treatments. Application of vermicompost and FYM significantly increased the SOC content by 38-54% in 2008 over initial levels in 2004. Bray's P availability was influenced by nutrition and its interaction with irrigation. Application of FYM continuously for 4 years has resulted in significant increase in Bray's P content (41.3 mg kg−1) compared to other nutrition treatments (9.4-17.2 mg kg−1). Irrigation equivalent to 0.75 Epan (223 mg kg−1) increased the K availability significantly over 1.0 Epan (172 mg kg−1). The K availability was significantly higher in recommended NPK (416 mg kg−1) than in other organic treatments (98-223 mg kg−1) at 0-30 cm soil depth. Overall, vanilla responded well to irrigation and nutrition in arecanut-based cropping system with a better economic output and improved soil fertility.  相似文献   

7.
Depleting groundwater resources in Indian Punjab call for diversifying from rice to crops with low evapo-transpiration needs and adopting water-saving technologies. Soybean offers a diversification option in coarse- to medium-textured soils. However, its productivity in these soils is constrained by high soil mechanical resistance and high soil temperature during early part of the growing season. These constraints can be alleviated through irrigation, deep tillage and straw mulching. This 3-years field study examines the individual and combined effects of irrigation, deep tillage, and straw mulching regimes on soybean yield and water productivity (WP) in relation to soil texture. Combinations of two irrigation regimes viz., full irrigation (If), and partial irrigation (Ip) in the main plot; two tillage regimes viz., conventional-till (CT)-soil stirring to 0.10 m depth, and deep tillage (DT)-chiseling down to 0.35 m depth followed by CT in the subplot; and two mulch rates viz., 0 (M0) and 6 t ha−1 (M) in the sub-subplot on two soils differing in available water capacity were evaluated.Seed yield was greater in the sandy loam than in the loamy sand reflecting the effects of available water capacity. Irrigation effects were greater on loamy sand (40%) than on sandy loam (5%) soil. Deep tillage benefits were also more on loamy sand (14%) compared to sandy loam (5%) soil. Yield gains with mulching were comparable on the two soils (19%). An evaluation of interaction effects showed that mulching response was slightly more in Ip (20%) than in If regimes (17%) in the sandy loam; while in the loamy sand, mulching gains were comparable (18-19%) in both irrigation regimes. Benefits of deep tillage in the loamy sand soil were more in Ip (20%) than in If regimes (17%). Deep tillage and straw mulching enhanced WP (ratio of seed yield/water use) from 1.39 to 1.97 kg ha−1 mm−1 in Ip regime, and from 1.87 to 2.33 kg ha−1 mm−1 in If regime in the loamy sand soil. These effects on WP were less in the sandy loam soil with greater available water capacity. Yield and WP gains are ascribed to deeper and denser rooting due to moderation of soil temperature and water conservation with straw mulching and tillage-induced reduction in soil mechanical resistance. Root mass in CTM0, CTM, DTM0 and DTM was 2.79, 5.88, 5.34 and 5.58 mg cm−2 at pod-filling in the loamy sand soil. Comparable yield responses to deep tillage or mulching in the loamy sand soil suggest that either of the options, depending on their cost and availability considerations, can be employed for improving soybean yield and water productivity.  相似文献   

8.
Rapid urbanization and industrialization have increased the pressure on limited existing fresh water to meet the growing needs for food production. Two immediate responses to this challenge are the efficient use of irrigation technology and the use of alternative sources of water. Drip irrigation methods may play an important role in efficient use of water but there is still limited information on their use on sugar beet crops in arid countries such as Iran. An experiment was conducted to evaluate the effects of irrigation method and water quality on sugar beet yield, percentage of sugar content and irrigation water use efficiency (IWUE). The irrigation methods investigated were subsurface drip, surface drip and furrow irrigation. The two waters used were treated municipal effluent (EC = 1.52 dS m−1) and fresh water (EC = 0.509 dS m−1). The experiments used a split plot design and were undertaken over two consecutive growing seasons in Southern Iran. Statistical testing indicated that the irrigation method and water quality had a significant effect (at the 1% level) on sugar beet root yield, sugar yield, and IWUE. The highest root yield (79.7 Mg ha−1) was obtained using surface drip irrigation and effluent and the lowest root yield (41.4 Mg ha−1) was obtained using furrow irrigation and fresh water. The highest IWUE in root yield production (9 kg m−3) was obtained using surface drip irrigation with effluent and the lowest value (3.8 kg m−3) was obtained using furrow irrigation with fresh water. The highest IWUE of 1.26 kg m−3 for sugar was obtained using surface drip irrigation. The corresponding efficiency using effluent was 1.14 kg m−3. Irrigation with effluent led to an increase in the net sugar yield due to an increase in the sugar beet root yield. However, there was a slight reduction in the percentage sugar content in the plants. This study also showed that soil water and root depth monitoring can be used in irrigation scheduling to avoid water stress. Such monitoring techniques can also save considerable volumes of irrigation water and can increase yield.  相似文献   

9.
Changes in soil sodicity-salinity parameters are one of the most characteristic alterations after treated sewage effluent (TSE) irrigation in agro-systems. Considering the importance of these parameters for agricultural management, as well as the economical value of sugarcane for Brazil, the present study aimed at evaluating effects on soil sodicity and salinity under tropical conditions over 16 months of TSE irrigation in a sugarcane plantation at Lins, São Paulo State, Brazil. Soil samplings were carried out in February 2005 (before planting), December 2005 (after 8 months of TSE irrigation) and September 2006 (after 16 months of TSE irrigation) following a complete block design with four treatments and four replicates. Treatments consisted of: (i) control, without TSE irrigation; (ii) T100, T150 and T200, with TSE irrigation supplying 100% (0% surplus, total of 2524 mm), 150% (50% surplus, total of 3832 mm) and 200% (100% surplus, total of 5092 mm) of crop water demand, respectively. Compared to initial soil conditions, at the end of the experiment increases of exchangeable sodium (from 2.4 to 5.9 mmolc kg−1), exchangeable sodium percentage (ESP) (from 8 to 18%), soluble Na (from 1.4 to 4.7 mmol L−1) and sodium adsorption ratio (SAR) of soil solution (from 3.6 to 12.6 (mmol L−1)0.5) were found in the soil profile (0-100 cm) as an average for the irrigated plots due to high SAR of TSE. Associated with the increments were mostly significant increases in clay dispersion rates at depths 0-10, 10-20 and 20-40 cm. Electrical conductivity (EC) of soil solution increased during the TSE irrigation period whereas at the end of the experiment, after short term discontinuation of irrigation and harvest, EC in the topsoil (0-10 and 10-20 cm) decreased compared to the previous samplings. Moreover, despite increasing sodicity over time mainly insignificant differences within the different irrigated treatments were found in December 2005 and September 2006. This suggests that independent of varying irrigation amounts the increasing soil sodicity over time were rather caused by the continuous use of TSE than by its quantity applied. Moreover, also plant productivity showed no significant differences within the TSE irrigated plots. The study indicates that monitoring as well as remediation of soil after TSE irrigation is required for a sustainable TSE use in order to maintain agricultural quality parameters.  相似文献   

10.
Water is the most important limiting factor of wheat (Triticum aestivum L.) and maize (Zea mays L.) double cropping systems in the North China Plain (NCP). A two-year experiment with four irrigation levels based on crop growth stages was used to calibrate and validate RZWQM2, a hybrid model that combines the Root Zone Water Quality Model (RZWQM) and DSSAT4.0. The calibrated model was then used to investigate various irrigation strategies for high yield and water use efficiency (WUE) using weather data from 1961 to 1999. The model simulated soil moisture, crop yield, above-ground biomass and WUE in responses to irrigation schedules well, with root mean square errors (RMSEs) of 0.029 cm3 cm−3, 0.59 Mg ha−1, 2.05 Mg ha−1, and 0.19 kg m−3, respectively, for wheat; and 0.027 cm3 cm−3, 0.71 Mg ha−1, 1.51 Mg ha−1 and 0.35 kg m−3, respectively, for maize. WUE increased with the amount of irrigation applied during the dry growing season of 2001-2002, but was less sensitive to irrigation during the wet season of 2002-2003. Long-term simulation using weather data from 1961 to 1999 showed that initial soil water at planting was adequate (at 82% of crop available water) for wheat establishment due to the high rainfall during the previous maize season. Preseason irrigation for wheat commonly practiced by local farmers should be postponed to the most sensitive growth stage (stem extension) for higher yield and WUE in the area. Preseason irrigation for maize is needed in 40% of the years. With limited irrigation available (100, 150, 200, or 250 mm per year), 80% of the water allocated to the critical wheat growth stages and 20% applied at maize planting achieved the highest WUE and the least water drainage overall for the two crops.  相似文献   

11.
Interaction of water and nitrogen on maize grown for silage   总被引:3,自引:0,他引:3  
Water scarcity and environmental pollution due to excessive nitrogen (N) applications are important environmental concerns. The Varamin region, which is located in the central part of Iran, is one of the locations where farmers apply 250-350 kg N ha−1 for silage maize without any concerns with respect to the available water for irrigation. The objective of this study was to quantify the response of the silage maize (Zea mays L.) to variable irrigation and N fertilizer applications under arid and semi-arid conditions and to determine the optimum amount of N fertilizer as a function of irrigation. The maize Hybrid 704 single-cross was planted on 3 August 2003 and on 25 June 2004. The experimental treatments consisted of three N rates (0, 150, and 200 kg N ha−1) and four levels of irrigation, including two deficit irrigation levels 0.70 SWD (soil water depletion) and 0.85 SWD, a full-irrigation level (1.0 SWD) and an over-irrigation level (1.13 SWD). Twelve treatments were arranged in a strip-plot design in a randomized complete block with three replicates. Gravimetric soil samples were collected in 2003 and a neutron probe was used in 2004 to measure soil water content. Leaf area index, total aboveground biomass (TB), plant height, stem diameter, and leaf, stem, and ear dry weight were measured during the growing seasons and at final harvest. Total aboveground biomass was affected by irrigation (P < 0.0001) during both years and was also affected by N fertilizer in 2003 (P = 0.0001) and 2004 (P < 0.0001). However, there was no irrigation and N fertilizer interaction for both years (P > 0.5). Total aboveground biomass and biomass of the crop components increased as a function of the amount of water and N applied. For each of the irrigation levels, there was an associated optimum amount of N, which increased as the amount of irrigation water that was applied increased. Among the four irrigation levels that were studied, 0.85 SWD was the optimum level of irrigation for the conditions at the experimental site. The results also indicated that an increase in N applications is not a good strategy to compensate for a decrease of TB under drought stress conditions. We concluded that the effect of N fertilizer on TB depends on the availability of water in the soil, and that the amount of N fertilizer applied should be decreased under drought stress conditions. Further research will combine these results with a crop simulation model to help optimize nitrogen and water management for silage maize.  相似文献   

12.
Changes in soil fertility status were evaluated for 10 years, from 1996 to 2006 to examine the impact of drip fertigation in a laterite soil and to determine the nutrient uptake pattern of arecanut (Areca catechu L.). Four fertigation levels (25%, 50%, 75% and 100% of recommended fertilizer dose, 100:18:117 g N:P:K palm−1 year−1), three frequencies of fertigation (10, 20 and 30 days) and two controls (control 1: drip irrigation without fertilizer application and control 2: drip irrigation with 100% NPK soil application) were studied. The soil pH increased to 6.0 at the end of experiment in 2006 compared to the pre-experimental soil pH of 5.6 in 1996. In 0-25-cm depth interval, the soil organic carbon (SOC) increased significantly from 1.06% in 1999 to 1.84% in 2006, and in 25-50-cm depth interval, it increased from 0.68% to 1.13%. Temporal variation in available P and K content in arecanut root zone was significant due to drip fertigation. Pooled analysis of data, from 2000 to 2005, revealed significant impact of level and frequency of fertigation and their interaction on available P and K content. At 0-25-cm depth interval, increase in fertigation dose from 50% to 100% NPK did not result in significant increase of Bray’s P content, which remained at par ranging from 5.24 to 5.32 mg kg−1. Fertigation every 30 days resulted in significantly higher available P (5.32 mg kg−1) than fertigation every 10 days (4.49 mg kg−1), while it was at par with fertigation every 20 days (5.09 mg kg−1). The K availability at 0-25-cm depth interval was significantly lower at 25% NPK level (114 mg kg−1) than at 75% (139 mg kg−1) and 100% (137 mg kg−1). With respect to fertigation frequency, the 30-day interval resulted in higher available K of 139 mg kg−1 than 20-day (128 mg kg−1) and 10-day intervals (120 mg kg−1). Availability of P and K at 25-50-cm depth interval followed similar trend as that of 0-25-cm depth interval. The total N uptake (g palm−1 year−1) by leaves, nuts and husk varied between 143 in 0% NPK to 198 in 75% NPK fertigation level. Similarly, the total P uptake (g palm−1 year−1) ranged between 15 for the 0% NPK and 25 for the 75% NPK treatment. The total K uptake (g palm−1 year−1) was 62 for the 75% NPK treatment followed by 56 for the 25%, 56 for the 50%, 54 for the 100% and 46 for the 0% NPK treatments. The nutrient uptake pattern and marginal availability of soil P and K highlight the importance of drip fertigation during post-monsoon season to improve and sustain the yield of arecanut in a laterite soil.  相似文献   

13.
Drip lines were located at distances ranging from 0 to 60 cm from one or both sides of a row of pepper plantlets, and we monitored the effects on their shoot development during 76 days from transplanting to full-size first fruits, on the final root system, and on the areal water and salt distributions in the upper 15-cm soil layer. The experiment was conducted in a greenhouse with a sandy soil, and excess fresh water (1.9 L d−1 per plant) was applied via short daily irrigations. In addition, the effects of watering distance and symmetry on the potential water uptake rate were analyzed with a coupled-source-sink steady flow and uptake model. Initial faster shoot growth with the one-side system and short distances progressively changed to faster growth with the two-side system and longer watering distances, with the optimum at 30-40 cm. These temporal changes are attributed to temporal changes in the root uptake of irrigation water: small plants with small root systems benefit from the larger water supply to a smaller soil volume provided by the one-side system, whereas larger plants with greater water needs could extract more irrigation water when they developed larger, split root systems in the two-side irrigation. Balanced root systems and maximal shoot growth can be obtained by starting the irrigation with a line on each side, near the plants, and moving the lines after a short time.  相似文献   

14.
The agro-hydrological model SWAP was used in a distributed manner to quantify irrigation water management effects on the water and salt balances of the Voshmgir Network of North Iran during the agricultural year 2006-2007. Field experiments, satellite images and geographical data were processed into input data for 10 uniform simulation areas. As simulated mean annual drainage water (312 mm) of the entire area was only 14% smaller than measured (356 mm), its distribution over the drainage units was well reproduced, and simulated and measured groundwater levels agreed well. Currently, water management leads to excessive irrigation (621-1436 mm year−1), and leaching as well as high salinity of shallow groundwater are responsible for large amounts of drainage water (25-59%) and salts (44-752 mg cm−2). Focused water management can decrease mean drainage water (22-48%) and salts (30-49%), compared with current water management without adverse effects on relative transpiration and root zone salinity.  相似文献   

15.
The use of treated sewage effluent in agriculture has been a current practice in several countries. However, in Brazil, there are few studies about this subject. This research work aimed at evaluating the potential utilization of secondary-treated sewage effluent (STSE) as an alternative source of water and nitrogen (N) for Tifton 85 bermudagrass pasture. A field experiment was carried out at Lins, State of São Paulo, Brazil, for 2 years, using a randomized complete block design, with four replications and five treatments, as follows: (i) T1 (control) – irrigation with potable water and addition of mineral-N fertilizer (MNF) – 520 kg N ha−1 year−1; (ii) T2–T5 – irrigation with STSE (31.9 mg total-N L−1) and addition of MNF – 0, 171.6, 343.2 and 520 kg N ha−1 year−1, respectively. Potable water and STSE characteristics were monitored monthly; above ground grass dry matter yield (DM) and crude protein content (CP) were determined bimonthly. Increases in DM and CP were observed for the high MNF rates associated with irrigation with STSE. STSE irrigation can efficiently substitute potable water for irrigation of Tifton 85 bermudagrass pasture and, simultaneously, save 32.2–81.0% of the recommended N rate without loss of grass DM and CP yield.  相似文献   

16.
A great challenge for the agricultural sector is to produce more food from less water, particularly in arid and semi-arid regions which suffer from water scarcity. A study was conducted to evaluate the effect of three irrigation methods, using effluent versus fresh water, on water savings, yields and irrigation water use efficiency (IWUE). The irrigation scheduling was based on soil moisture and rooting depth monitoring. The experimental design was a split plot with three main treatments, namely subsurface drip (SSD), surface drip (SD) and furrow irrigation (FI) and two sub-treatments effluent and fresh water, which were applied with three replications. The experiment was conducted at the Marvdasht city (Southern Iran) wastewater treatment plant during 2005 and 2006. The experimental results indicated that the average water applied in the irrigation treatments with monitoring was much less than that using the conventional irrigation method (using furrows but based on a constant irrigation interval, without moisture monitoring). The maximum water saving was obtained using SSD with 5907 m3 ha−1 water applied, and the minimum water saving was obtained using FI with 6822 m3 ha−1. The predicted irrigation water requirements using the Penman-Monteith equation (considering 85% irrigation efficiency for the FI method) was 10,743 m3 ha−1. The pressure irrigation systems (SSD and SD) led to a greater yield compared to the surface method (FI). The highest yield (12.11 × 103 kg ha−1) was obtained with SSD and the lowest was obtained with the FI method (9.75 × 103 kg ha−1). The irrigation methods indicated a highly significant difference in irrigation water use efficiency. The maximum IWUE was obtained with the SSD (2.12 kg m−3) and the minimum was obtained with the FI method (1.43 kg m−3). Irrigation with effluent led to a greater IWUE compared to fresh water, but the difference was not statistically significant.  相似文献   

17.
The development of different tools to evaluate the performance of Water Users Associations (WUAs) is an important practice for improving water and energy management, together with other production costs. One of these tools is the Benchmarking technique, which is based on the comparison between different WUAs to determine the best practices in each of them.In this paper, a Benchmarking process is applied to seven WUAs located in Castilla-La Mancha (Spain) during three irrigation seasons (2006-2008). The performance indicators developed by the International Programme for Technology and Research in Irrigation and Drainage (IPTRID) are used, while new indicators dealing with production and energy are proposed. The goals of this paper are to group WUAs with the same characteristics, using performance and energy indicators, and to reduce the set of indicators using statistical methods. The most important indicators, easy to obtain and yielding result in maximum information are retained for further use.Three proposals reducing the initial number of indicators were proposed, with an aim of being useful for future applications based on characterizing WUAs. Indicators results highlighted that irrigable areas can be grouped based on the application of drip irrigation systems and those with sprinkler irrigation systems. When using groundwater resources, no significant differences were observed for energy consumption between these irrigation systems. This can be explained by the indicator energy load index (ICE, m), which had similar values in all WUAs analyzed. According to annual irrigation water supply per unit irrigated area (VTSr, m3 ha−1), the highest values (between 5200 m3 ha−1 and 6800 m3 ha−1) were obtained in WUAs with sprinkler irrigation systems, which contained crops characterized by high water requirements, compared to the VTSr (less than 1800 m3 ha−1) of WUAs with drip irrigation systems, with crops that required less volume of irrigation water. Regarding production efficiency indicators, in drip irrigation systems the high presence of vineyards, almond and olive trees, crops with low water requirements, explained high values of gross margin per unit irrigation delivery (MBVs, € m−3)(close to 0.82 € m−3) in comparison with sprinkler irrigation systems (close to 0.36 € m−3).  相似文献   

18.
Runoff nitrogen from a large sized paddy field during a crop period   总被引:2,自引:0,他引:2  
Nutrient load management is an important environmental issue because nutrient loads from farmlands degrade surface waters as a result of anthropogenic eutrophication. Nitrogen load from a large sized paddy field during the crop period was examined from the results of field measurements carried out in 2004. The 1.5 ha paddy field was located east of Biwa Lake. Irrigation water volume and ponded water depth were continuously observed. Field measurements were carried out at least once a week to analyze total nitrogen (TN) concentration in the irrigation water and ponded water. Daily inflow and outflow of nitrogen was obtained by multiplication of the nitrogen concentration and transported water volume, consisting of irrigation, precipitation, evapotranspiration, percolation and surface discharge. Water outflow volume was calculated by a tank model that consisted of three small tanks connected to represent ponded water depth differences in the large paddy field. The calculated nitrogen load was 18.8 kg ha−1, with 7.2 kg ha−1 from surface drainage and 11.6 kg ha−1 from percolation loss. The runoff nitrogen value of 18.8 kg ha−1 was within the range of the reported values investigated in a medium-sized paddy field. The observed value was close to the value for a low percolation flux paddy field where less irrigation water has been applied. These results suggest that less irrigation water keep runoff nitrogen low. This also indicates that irrigation water management can reduce nitrogen load from large sized paddy fields.  相似文献   

19.
Cotton (Gossypium hirsutum L.) is the most important industrial and summer cash crop in Syria and many other countries in the arid areas but there are concerns about future production levels, given the high water requirements and the decline in water availability. Most farmers in Syria aim to maximize yield per unit of land regardless of the quantity of water applied. Water losses can be reduced and water productivity (yield per unit of water consumed) improved by applying deficit irrigation, but this requires a better understanding of crop response to various levels of water stress. This paper presents results from a 3-year study (2004-2006) conducted in northern Syria to quantify cotton yield response to different levels of water and fertilizer. The experiment included four irrigation levels and three levels of nitrogen (N) fertilizer under drip irrigation. The overall mean cotton (lint plus seed, or lintseed) yield was 2502 kg ha−1, ranging from 1520 kg ha−1 under 40% irrigation to 3460 kg ha−1 under 100% irrigation. Mean water productivity (WPET) was 0.36 kg lintseed per m3 of crop actual evapotranspiration (ETc), ranging from 0.32 kg m−3 under 40% irrigation to 0.39 kg m−3 under the 100% treatment. Results suggest that deficit irrigation does not improve biological water productivity of drip-irrigated cotton. Water and fertilizer levels (especially the former) have significant effects on yield, crop growth and WPET. Water, but not N level, has a highly significant effect on crop ETc. The study provides production functions relating cotton yield to ETc as well as soil water content at planting. These functions are useful for irrigation optimization and for forecasting the impact of water rationing and drought on regional water budgets and agricultural economies. The WPET values obtained in this study compare well with those reported from the southwestern USA, Argentina and other developed cotton producing regions. Most importantly, these WPET values are double the current values in Syria, suggesting that improved irrigation water and system management can improve WPET, and thus enhance conservation and sustainability in this water-scarce region.  相似文献   

20.
The purpose of this work is to contribute to the development of a combined approach to evaluate irrigated areas based on: (1) irrigation performance analysis intended to assess the productive impacts of irrigation practices and infrastructures, and (2) water accounting focused on the hydrological impacts of water use. Ador-Simulation, a combined model that simulates irrigation, water delivery, and crop growth and production was applied in a surface irrigated area (1213 ha) located in the Bear River Irrigation Project, Utah, U.S.A.. A soil survey, a campaign of on-farm irrigation evaluations and an analysis of the database from the Bear River Canal Company and other resources were performed in order to obtain the data required to simulate the water flows of the study area in 2008. Net land productivity (581 US$ ha−1) was 20% lower than the potential value, whereas on-farm irrigation efficiency (IE) averaged only 60%. According to the water accounting, water use amounted to 14.24 Mm3, 86% of which was consumed through evapotranspiration or otherwise non-recoverable. Gross water productivity over depleted water reached 0.132 US$ m−3. In addition, two strategies for increasing farm productivity were analyzed. These strategies intended to improve water management and infrastructures raised on-farm IE to 90% reducing the gap between current and potential productivities by about 50%. Water diverted to the project was reduced by 2.64 Mm3. An analysis based on IE could lead to think that this volume would be saved. However, the water accounting showed that actually only 0.91 Mm3 would be available for alternative uses. These results provide insights to support the decision-making processes of farmers, water user associations, river basin authorities and policy makers. Water accounting overcomes the limitations and hydrological misunderstandings of traditional analysis based on irrigation efficiency to assess irrigated areas in the context of water scarcity and competitive agricultural markets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号