首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The emergence of intensively managed olive plantations in arid, northwestern Argentina requires the efficient use of irrigation water. We evaluated whole tree daily transpiration and soil evaporation throughout the year to better understand the relative importance of these water use components and to calculate actual crop coefficient (Kc) values. Plots in a 7-year-old ‘Manzanilla fina’ olive grove with 23% canopy cover were either moderately (MI) or highly irrigated (HI) using the FAO method where potential evapotranspiration over grass is multiplied by a given Kc and a coefficient of reduction (Kr). The Kc values employed for the MI and HI treatments were 0.5 and 1.1, respectively, and the Kr was 0.46. Transpiration was estimated by measuring main trunk sap flow using the heat balance method for three trees per treatment. Soil evaporation was measured using six microlysimeters in one plot per treatment. Both parameters were evaluated for 7-10 consecutive days in the fall, winter, mid-spring, summer, and early fall of 2006-2007. Maximum soil evaporation was observed in the summer when maximum demand was combined with maximum surface wetted by the drips and evaporation from the inter-row occurred due to rainfall. Similarly, maximum daily transpiration was observed in mid-spring and summer. Transpiration of MI trees was 30% lower than in HI trees during the summer period. However, this difference in transpiration disappeared when values were adjusted for total leaf area per tree because leaf area was 28% less in the MI trees. Transpiration represented about 70-80% of total crop evapotranspiration (ETc) except when soil evaporation increased due to rainfall events or over-irrigation occurred. We found that daily transpiration per unit leaf area had a positive linear relationship with daily potential evapotranspiration (r2 = 0.84) when considering both treatments together. But, a strong relationship was also observed between transpiration per unit leaf area and mean air temperature (r2 = 0.93). Thus, it is possible to predict optimum irrigation requirements for olive groves if tree leaf area and temperature are known. Calculated crop coefficients during the growing season based on the transpiration and soil evaporation values were about 0.65-0.70 and 0.85-0.90 for the MI and HI treatments, respectively.  相似文献   

2.
In recent years there has been a notable worldwide increase in the amount of land devoted to olive orchards. Most of these new orchards are irrigated and represent large financial investments. The irrigation of young olive trees should reduce the period during which their production is small or non-existent. Although the water requirements of young olive orchards are thought to be low, little is in fact known in this regard. In the present work, three irrigation treatments (100, 75 and 50% coverage of water needs) were designed using the Orgaz method, and their effects on young olive trees tested in different plots over a period of 3 years. The 50% deficit treatment was designed to provide the trees with an amount of water in the region of that stipulated by the FAO method, the most commonly used irrigation scheduling system for olive orchards. No significant differences in shoot water potential nor abaxial leaf conductance were seen between the trees receiving the different treatments. However, canopy volume and shoot growth were affected. These results indicate that the traditional FAO model, which would have supplied about 35% of the water supplied by the Control treatment, may well reduce the economic benefits to be derived from young olive orchards.  相似文献   

3.
The aim of this work was to evaluate long-term effects of different irrigation regimes on mature olive trees growing under field conditions. A 9-year experiment was carried out. Three irrigation treatments were applied: no irrigation, water application considering soil water content (short irrigation), or irrigation without considering soil water reserves and applying a 20% of extra water as a leaching fraction (long irrigation). Leaf water content, leaf area, vegetative growth, yield and fruit characteristics (fruit size, pulp:stone ratio and oil content) were determined yearly. Results showed that growth parameters did not show significant differences as a consequence of applied water. Yield was increased in irrigated trees compared to non-irrigated ones, but little differences between short and long irrigation were observed, only when accumulated yield from 1998 to 2006 was considered. Irrigation did not cause significant differences in fruit size or pulp:stone ratio either. Irrigation regimes similar to those applied in this experiment, under environmental conditions with relatively high mean annual precipitation, does not increase growth, yield or fruit characteristics when compared to rain-fed treatment, and consequently, the installation of a irrigation system could be not financially profitable.  相似文献   

4.
In this study, changes in carbohydrate composition were investigated at the end of the biological cycle of two important table olive cultivars ‘Meski’ and ‘Picholine’ grown in Tunisia under different irrigation regimes. A control treatment [100% crop evapotranspiration (ETc)] and a stress treatment (50% ETc) were considered. At the end of August, leaf water potential was measured and sugar compounds were determined in mature leaves and in the wood of fruit-bearing branches by gas chromatography. The leaf water potential increased with the stress treatment in both cultivars, but the increase was more pronounced with ‘Picholine’ than with ‘Meski’. Glucose, fructose, mannitol, sucrose, galactose and inositol were the main sugars found in the leaves and wood of olive trees. Glucose, fructose and mannitol accounted for 90% of the total soluble carbohydrate fraction. The fraction and amount of these sugars changed between cultivars and with irrigation treatment. In the control treatment, the leaves of Meski showed a high level of glucose (48%), fructose (19%) and mannitol (25%), while the leaves of Picholine showed amounts of 57, 15 and 17%, respectively. The restriction of irrigation water (50% ETc) induces an accumulation of glucose in the leaves and wood of ‘Meski’ and an accumulation of mannitol and glucose in the wood of ‘Picholine’, while the leaves showed only an increase in mannitol.  相似文献   

5.
To understand the relations between water use and yield in response to crop load, two experiments were conducted in olive (cv. Morisca), during six consecutive years (2002-2007) in an experimental orchard located in Badajoz, Southwest Spain. Experiment 1, assessed the responses during the early years of the orchard (2002-2004) using four irrigation treatments that applied fractions of the estimated crop evapotranspiration (ETc) (125%, 100%, 75% and 0%) and three crop load levels (100%, 50% and 0% of fruit removal, termed Off, Medium and On treatments). Experiment 2 assessed the response of more mature trees (2005-2007) to three irrigation treatments (115%, 100%, and 60% of ETc) and the natural crop load which were Off, On, and Medium in 2005, 2006 and 2007, respectively. Yield was reduced by water deficits and so did the estimated tree transpiration which was linearly related to yield (y = 1.2302x − 21.15, R2 = 0.8864), showing the high sensitivity of cultivar Morisca to water deficits. The relations between fruit number and fruit weight showed that high crop loads had lower fruit weights and oil yield, a decrease that was more pronounced as water deficits increased. The yield response to water supply in the control and excess treatments, and the observations on the water relations of these two treatments suggest that the calculations made using the FAO method (Doorenbos and Pruit, 1974) with the crop coefficient proposed by Pastor et al. (1998) and the reduction coefficient (Fereres et al., 1982) to apply 100% of ETc in the control treatment, underestimated the ETc of the orchard. The results indicate that, although the absence of fruits lead to reduced water use as compared to situations of medium and high crop loads, canopy size was much more determinant of orchard water requirements than crop load.  相似文献   

6.
In the semi-arid region of Tigray, Northen Ethiopia a two season experiment was conducted to measure evapotranspiration, estimate yield response to water stress and derive the crop coefficient of teff using the single crop coefficient approach with simple, locally made lysimeters and field plots. During the experiment we also estimated the water productivity of teff taking into account long-term rainfall probability scenarios and different levels of farmers’ skills. During the experimental seasons (2008 and 2009), the average potential evapotranspiration of teff ranged from 260 to 317 mm. The total seasonal water requirement of teff was found to lower in contrast to the assumptions of regional agronomists that teff water requirement is comparable to that of wheat and barley (375 mm). The average single crop coefficient values (kc) for the initial, mid and late season stages of teff were 0.8-1, 0.95-1.1 and 0.4-0.5, respectively. The seasonal yield response to water stress was 1.04, which indicates that teff exhibits a moderately sensitive and linear response to water stress. The results suggest that teff is likely to give significantly higher grain yield when a nearly optimal water supply is provided. The study showed that, in locations where standard equipment is not affordably available, indicative (rough) crop evapotranspiration values can be obtained by using field plots and employing locally made lysimeters. The difference in economic water productivity (EWP) and the crop water productivity (CWP) for teff were assessed under very wet, wet, normal, dry and very dry scenarios. In addition two groups of farmers were evaluated, a moderately (I) and a highly skilled (II) group. The results showed that higher EWP and CWP were obtained under very wet scenario than very dry scenario. There was also a 22% increase in EWP and CWP under group II compared to group I farmers. The increase was due to a 22% reduction in unwanted water losses achieved through use of improved technology and better irrigation skills. Both EWP and CWP can be used to evaluate the pond irrigation water productivity (IWP) for a given climate, crop and soil type, and skill and technology level of the farmer. For special crops like teff extra criteria may be needed in order to properly evaluate the pond irrigation water productivity. During the experimental seasons, a high IWP for teff was attained when about 90% of the optimal water need of the crop was met. IWP can be used as an indicator as how much supplementary irrigation has to be applied in relation to the rainfall and other sources of water supply in order to assure greatest yield from a total area. However, the supplemental irrigation requirement of the crops may vary with season due to seasonal rainfall variability.  相似文献   

7.
The impact of different irrigation scheduling regimes on the quantity and quality of olive oil from a low-density olive grove in southern Portugal was assessed during the irrigation seasons of 2006 and 2007. Olive trees were subjected to one of the following treatments: A—full irrigation; B—sustained deficit irrigation (SDI) with 60% of ETc water applied with irrigation; C—regulated deficit irrigation (RDI) with irrigation water applied at three critical phases: before flowering, at the beginning of pit hardening and before crop harvesting and D—rain-fed treatment. Olive oil yield was significantly higher than rain-fed conditions in 2006, an “on year” of significant rainfall during summer. No significant yield differences were observed in the following “off year”. Among the irrigated treatments, olive oil production of treatment B was 32.5% and 40.1% higher in 2006 and 2007, respectively than the fully irrigated treatment A, despite receiving 49% less irrigation water. Such strategy could allow for an efficient use of water in the region, of very limited available resources, and for modest but important oil yield increase. Nonetheless, on the “on year” of 2006 treatment C used 13.9% of the water applied to treatment B and produced only 23.9% less olive fruits which could also make it illegible as the next possible strategy to use for irrigating olive trees in the region, provided that water is secured latter in the summer, a period of vital importance for oil accumulation and very sensitive to water stress as the poor results of 2007 revealed. The different treatment water regimes did not impact on the chemical characteristics of olive oils that were within the set threshold limits. Similarly, the sensory characteristics of the olive oils as well as bitterness and pungency were negligible for all treatments allowing them to be assessed as of “superior quality”.Overall, irrigation treatments had no influence on the commercial value of produced oils, being all classified as “extra virgin”. Such funding may be of vital importance to farmers willing to further their irrigation area, save water and still retain the protected designation of origin (PDO) seal of quality for their oil.  相似文献   

8.
Individual effect of different field scale management interventions for water saving in rice viz. changing date of transplanting, cultivar and irrigation schedule on yield, water saving and water productivity is well documented in the literature. However, little is known about their integrated effect. To study that, field experimentation and modeling approach was used. Field experiments were conducted for 2 years (2006 and 2007) at Punjab Agricultural University Farm, Ludhiana on a deep alluvial loamy sand Typic Ustipsamment soils developed under hyper-thermic regime. Treatments included three dates of transplanting (25 May, 10 June and 25 June), two cultivars (PR 118 inbred and RH 257 hybrid) and two irrigation schedules (2-days drainage period and at soil water suction of 16 kPa). The model used was CropSyst, which has already been calibrated for growth (periodic biomass and LAI) of rice and soil water content in two independent experiments. The main findings of the field and simulation studies conducted are compared to any individual, integrated management of transplanting date, cultivar and irrigation, sustained yield (6.3-7.5 t ha−1) and saved substantial amount of water in rice. For example, with two management interventions, i.e. shifting of transplanting date to lower evaporative demand (from 5 May to 25 June) concomitant with growing of short duration hybrid variety (90 days from transplanting to harvest), the total real water saving (wet saving) through reduction in evapotranspiration (ET) was 140 mm, which was almost double than managing the single, i.e. 66 mm by shifting transplanting or 71 mm by growing short duration hybrid variety. Shifting the transplanting date saved water through reduction in soil water evaporation component while growing of short duration variety through reduction in both evaporation and transpiration components of water balance. Managing irrigation water schedule based on soil water suction of 16 kPa at 15-20 cm soil depth, compared to 2-day drainage, did not save water in real (wet saving), however, it resulted into apparent water saving (dry saving). The real crop water productivity (marketable yield/ET) was more by 17% in 25th June transplanted rice than 25th May, 23% in short duration variety than long and 2% in irrigation treatment of 16 kPa soil water suction than 2-days drainage. The corresponding values for the apparent crop water productivity (marketable yield/irrigation water applied) were 16, 20 and 50%, respectively. Pooled experimental data of 2 years showed that with managing irrigation scheduling based on soil water suction of 16 kPa at 15-20 cm soil depth, though 700 mm irrigation water was saved but the associated yield was reduced by 277 kg ha−1.  相似文献   

9.
The effects of drip irrigation on the yield and crop water productivity responses of four tea (Camellia sinensis (L.) O. Kuntze) clones were studied four consecutive years (2003/2004-2006/2007), in a large (9 ha) field experiment comprising of six drip irrigation treatments (labelled: I1-I6) and four clones (TRFCA PC81, AHP S15/10, BBK35 and BBT207) planted at a spacing of 1.20 m × 0.60 m at Kibena Tea Limited (KTL), Njombe in the Southern Tanzania in a situation of limited water availability. Each clone × drip irrigation treatment combination was replicated six times in a completely randomized design with 144 net plots each with an area of 72 m2. Clone TRFCA PC81 gave the highest yields (range: 5920-6850 kg dried tea ha−1) followed by clones BBT207 (5010-5940 kg dried tea ha−1), AHP S15/10 (4230-5450 kg dried tea ha−1) and BBK35 (3410-4390 kg dried tea ha−1) and drip irrigation treatment I2 gave the highest yields, ranging from 4954 to 6072 kg dried tea ha−1) compared with those from other treatments (4113-5868 kg dried tea ha−1). Most of these yields exceeded those (4200 kg dried tea ha−1) obtained from overhead sprinkler irrigation system in Mufindi also Southern Tanzania, and Kibena Estate itself. Results showed that drip irrigation of tea not only increased yields but also gave water saving benefits of up to 50% from application of 50% less water to remove the cumulative soil water deficit (treatment I2), and with labour saving of 85% for irrigation. The yield of dried tea per mm depth of water applied, i.e., “the crop water productivity” for drip irrigation of clones TRFCA PC81, BBT207 and BBK35, in 2003/2004 for instance, were 9.3, 8.5 and 7.1 kg dried tea [ha mm]−1, respectively. The corresponding values in 2004/2005 were 2.7, 4.5 and 2.0 kg dried tea [ha mm]−1 while the yield responses from clone AHP S15/10 were linear decreasing by 1 and 1.6 kg dried tea [ha mm]−1 in 2003/2004 and 2004/2005, respectively. In 2005/2006 the crop water productivity from clones TRFCA PC81, AHP S15/10, BBK35 and BBT207 were 4.5, 0.4, 5.2 and 6.9 kg dried tea [ha mm]−1, respectively with quadratic yield response functions to drip irrigation depth of water application. The results are presented and recommendations and implications made for technology-transfer scaling-up for increased use by large and smallholder tea growers.  相似文献   

10.
A field study was carried out to determine the effects of water stress imposed at different development stages on grain yield, seasonal evapotranspiration, crop-water relationships, yield response to water and water use efficiency of safflower (Carthamus tinctorius L.) for winter and summer sowing. The field trials were conducted on a loam Entisol soil in Thrace Region in Turkey, using Dincer, the most popular safflower variety in the research area. A randomised complete block design with three replications was used. Three known growth stages of the plant were considered and a total of 8 (including rainfed) irrigation treatments were applied. The effect of irrigation or water stress at any stage of development on grain yield per hectare and 1000 kernel weight, was evaluated. Results of this study showed that safflower was significantly affected by water shortage in the soil profile due to omitted irrigation during the sensitive vegetative stage. The highest yield was observed in the fully irrigated control and was higher for winter sowing than for summer sowing. Evapotranspiration calculated for non-stressed production was 728 and 673 mm for winter and summer sowing, respectively. Safflower grain yield of the fully irrigated treatments was 4.05 and 3.74 t ha−1 for winter and summer season, respectively. The seasonal yield response factor was 0.97 and 0.81 for winter and summer sowing, respectively. The highest total water use efficiency was obtained in the treatment irrigated only at vegetative stage while the lowest value was observed when the crop was irrigated only at yield stage. As conclusions: (i) winter sowing is suggested; (ii) if deficit irrigation is to apply at only one or two stages, Y stage or Y and F stages should be omitted, respectively.  相似文献   

11.
Improvement of irrigation management in areas subjected to periods of water scarcity requires good knowledge of system performance over long time periods. We have conducted a study aimed at characterizing the behaviour of an irrigated area encompassing over 7000 ha in Southern Spain, since its inception in 1991. Detailed cropping pattern and plot water use records allowed the assessment of irrigation scheme performance using a simulation model that computed maximum irrigation requirements for every plot during the first 15 years of system operations. The ratio of irrigation water used to maximum irrigation requirements (Annual Relative Irrigation Supply, ARIS) was well below 1 and oscillated around 0.6 in the 12 years that there were no water supply restrictions in the district. The ARIS values varied among crops, however, from values between 0.2 and 0.3 for sunflower and wheat, to values approaching 1 for cotton and sugar beet. Farmer interviews revealed some of the causes for the low irrigation water usage which were mainly associated with the attempt to balance profitability and stability, and with the lack of incentives to achieve maximum yields in crops subsidized by the Common Agricultural Policy (CAP) of the European Union. The response to water scarcity was also documented through interviews and demonstrated that the change in crop choice is the primary reaction to an anticipated constraint in water supply. Water productivity (value of production divided by the volume of irrigation water delivered; WP) in the district was moderate and highly variable (around 2€ m−3) and did not increase with time. Irrigation water productivity (increase in production value due to irrigation divided by irrigation water delivered) was much lower (0.65€ m−3) and also, it did not increase with time. The lack of improvement in WP, the low irrigation water usage, and the changes in cropping patterns over the first 15 years of operation indicate that performance trends in irrigated agriculture are determined by a complex mix of technical, economic, and socio-cultural factors, as those that characterized the behaviour of the Genil-Cabra irrigation scheme.  相似文献   

12.
A field study on cotton (Gossypium hirsutum L., cv.) was carried out from 2005 to 2008 in the Çukurova Region, Eastern Mediterranean, Turkey. Treatments were designated as I100 full irrigation; DI70, DI50 and DI00 which received 70, 50, and 0% of the irrigation water amount applied in the I100 treatment. The irrigation water amount to be applied to the plots was calculated using cumulative pan evaporation that occurred during the irrigation intervals. The effect of water deficit or water stress on crop yield and some plant growth parameters such as yield response, water use efficiencies, dry matter yield (DM), leaf area index (LAI) as well as on lint quality components was evaluated. The average seasonal evapotranspiration ranged from 287 ± 15 (DI00) to 584 ± 80 mm (I100). Deficit irrigation significantly affected crop yield and all yield components considered in this study. The average seed cotton yield varied from 1369 ± 197 (DI00) to 3397 ± 508 kg ha−1 (I100). The average water use efficiency (WUEET) ranged from 6.0 ± 1.6 (I100) to 4.8 ± 0.9 kg ha−1 mm−1 (DI00), while average irrigation water use efficiency (WUEI) was between 9.4 ± 3.0 (I100) and 14.4 ± 4.8 kg ha−1 mm−1 (DI50). Deficit irrigation increased the harvest index (HI) values from 0.26 ± 0.054 (I100) to 0.32 ± 0.052 kg kg−1 (DI50). Yield response factor (Ky) was determined to be 0.98 based on four-year average. Leaf area index (LAI) and dry matter yields (DM) increased with increasing water use. This study demonstrated that the full irrigated treatment (I100) should be used for semiarid conditions with no water shortage. However, DI70 treatment needs to be considered as a viable alternative for the development of reduced irrigation strategies in semiarid regions where irrigation water supplies are limited.  相似文献   

13.
In order to investigate the response of vegetative growth, fruit development and water use efficiency to regulated deficit irrigation at different growth stages of pear-jujube tree (Zizyphus jujube Mill.), different water deficit at single-stage were treated on field grown 7-year old pear-jujube trees in 2005 and 2006. Treatments included severe (SD), moderate (MD) and low (LD) water deficit treatments at bud-burst to leafing (I), flowering to fruit set (II), fruit growth (III) and fruit maturation (IV) stages. Compared to the full irrigation (control), different water deficit treatments at different growth stages reduced photosynthesis rate (Pn) slightly and transpiration rate (Tr) significantly, thus it improved leaf water use efficiency (WUEL, defined as the ratio of Pn to Tr) by 2.7-26.1%. After the re-watering, Pn had significant compensatory effect, but Tr was not enhanced significantly, thus WUEL was improved by 31.4-42.2%. I-SD, I-MD, II-SD and II-MD decreased new shoot length, new shoot diameter and panicle length by 8-28%, 13-23% and 10-31%, respectively. Simultaneously, they reduced leaf area index (LAI) and pruning amount significantly. Flowering of pear-jujube tree advanced by 3-8 days in the water deficit treatments at stage I, Furthermore, SD and MD at stage I increased flowers per panicle and final fruit set by 18.9-40.5% and 15.5-36.6%, respectively. After a period of re-watering, different water deficit treatments at different growth stages improved the fruit growth rate by 15-30% without reduction of the final fruit volume. Compared to the control, I-MD, I-SD, I-LD, I-MD and I-SD treatments increased fruit yield by 13.2-31.9%, but reduced water consumption by 9.7-17.5%, therefore, they enhanced water use efficiency at yield level (WUEY, defined as ratio of fruit yield to total water use) by 17.3-41.4%. Therefore, suitable period and degree of water deficit can reduce irrigation water and restrain growth redundancy significantly, and it optimize the relationship between vegetative growth and reproductive growth of pear-jujube trees, which maintained or slightly increased the fruit yield, thus water use efficiency was significantly increased.  相似文献   

14.
The experiment aimed at evaluating the yield and quality response of broccoli (Brassica oleracea L. var. italica) to applied irrigation water and nitrogen by drip irrigation method during the spring and autumn cultivation periods of 2007. Irrigation water was applied based on a ratio of Class A pan evaporation (kcp = 0.50, 0.75, 1.00 and 1.25) with 7 days interval. Also, the effect of four nitrogen levels (0 kg ha−1, 150 kg ha−1, 200 kg ha−1 and 250 kg ha−1) was compared with each treatment. The seasonal evapotranspiration in the treatments varied from 233 mm to 328 mm during the spring period and from 276 mm to 344 mm during the autumn period. The highest broccoli yield was obtained in the spring period as 11.02 t ha−1 and in the autumn period as 4.55 t ha−1. In general, there were statistical differences along nitrogen does with respect to yield and yield components while there were no statistically significant differences in the yield and yield components among irrigation regimes. Both yield and yield parameters in the spring period were found to be higher than that of the autumn period due to the low temperature and high rainy days in autumn. Irrigation water use efficiency (IWUE) ranged from 3.78 kg m−3 to 14.61 kg m−3 during the spring period and from 1.89 kg m−3 to 5.93 kg m−3 during the autumn period. On the other hand, nitrogen use efficiency (NUE) changed as 37.32-73.13% and 13.08-22.46% for spring and autumn season, respectively.  相似文献   

15.
A field study was carried out in order to determine the effect of deficit irrigation regimes on grain yield and seasonal evapotranspiration of safflower (Carthamus tinctorius L.) in Thrace Region of Turkey. The field trials were conducted on a loam Entisol soil, on Dincer, the most popular variety in the research area. A randomised complete block design with three replications was used. Combination of four well-known growth stages of the plant, namely vegetative (Va), late vegetative (Vb), flowering (F) and yield formation (Y) were considered to form a total of 16 (including rain fed) irrigation treatments. The effect of irrigation and water stress at any stage of development on grain yield per hectare and 1000 kernels weight was evaluated. Results showed that safflower was significantly affected by water stress during the sensitive late vegetative stage. The highest yield was obtained in VaVbFY treatment. Seasonal irrigation water use and evapotranspiration were 501 and 721 mm, respectively, for the non-stressed treatment. Safflower grain yield of this treatment was 5.22 Mg ha−1 and weight of 1000 kernels was 55 g. The seasonal yield-water response factor value was 0.87. The total water use efficiency was 7.2 kg ha−1 mm−1. Irrigation schedule of the non-stressed treatment may be as follows: the first irrigation is at the vegetative stage, when after 40-50 days from sowing/elongation and branching stage, that is the end of May; the second irrigation is at the late vegetative stage, after 70-80 days from sowing/heading stage, that is in the middle of June; the third irrigation is at the flowering stage, approximately 50% level, that is the first half of July; and the fourth irrigation is at the yield formation stage, seed filling, that is the last week of July.  相似文献   

16.
17.
干旱区秸秆覆盖对滴灌棉花生长及产量的影响   总被引:2,自引:0,他引:2  
为探索秸秆覆盖对北疆滴灌棉花生长特征和产量的影响,2009—2012年期间,以小麦秸秆为材料,在非盐碱土和盐碱土2种土壤条件下,进行了无覆盖(LUM)、表层覆盖(LSM)、地表以下30 cm深处覆盖(LM30)的测坑对比试验.结果表明:秸秆覆盖对棉花生长及产量具有一定的促进效果,对盐碱土种植的棉花株高、叶面积指数和产量的促进作用显著,而对非盐碱土棉花株高、叶面积指数和产量的促进作用不明显.地表覆盖综合调控效应优于30 cm深层覆盖,尤其是在棉花花铃期,在盐分抑制方面地表覆盖要比30 cm覆盖效果好;30 cm覆盖在苗期和蕾期可以给棉花生长创造比较好的条件,而在花铃期以后这种覆盖效果不太明显;表层覆盖处理棉花产量最高,高出无覆盖处理3.2%-17.9%,高出30 cm深层覆盖3.1%-16.3%.  相似文献   

18.
The majority of rice grown in south-east Australia is continuously flooded for much of its growing season, but reduced irrigation water availability brought about by a combination of drought and environmental flow legislation has presented a need to maintain (or even increase) rice production with less irrigation water. Delaying the application of continuous flooding until prior to panicle initiation can increase input water productivity by reducing non-beneficial evaporation losses from free water and the soil. A field experiment was conducted over two growing seasons, 2008/9 and 2009/10, comparing a conventional dry seeded treatment (the control - continuous flooding from the 3 leaf stage) with delayed continuous flooding (10-20 days prior to panicle initiation) with several irrigation scheduling treatments prior to flooding commencement. In the first year, the delayed water treatments were irrigated at intervals of 40, 80 and 160 mm of cumulative reference evapotranspiration (ETo) prior to delayed continuous flooding, thereby imposing differing degrees of crop water stress. In year 2, the 80 and 160 mm treatments were modified by use of a crop factor (Kc) when the plants were small and the 40 mm treatment was replaced with a continuously flooded treatment throughout the crop duration.Decreases in net water input (irrigation + rain − surface drainage) and increases in input water productivity were achieved by reducing the flush irrigation frequency during the pre-flood period. Savings of 150 and 230 mm (10 and 15%) were achieved in Year 1 from the 80 and 160 mm cumulative ETo irrigation frequency treatments, respectively, in comparison to the control. In the second year, net water input savings of 230 and 330 mm (15 and 22%) were achieved with the 80/Kc and 160/Kc mm treatments, respectively. Input water productivity of the 160 mm treatment was 0.06 kg/m3 (8%) higher than the control in Year 1, while in Year 2 a 0.15 kg/m3 (17%) increase in input water productivity above the control was achieved by the 160/Kc mm treatment. Delaying the application of continuous flooding in the second year greatly extended the period of crop growth suggesting the need for earlier sowing (by 7-10 days) to ensure pollen microspore still occurs at the best time to minimise yield loss due to cold damage. Nitrogen fertiliser management is an important issue when delaying continuous flooding, and nitrogen losses appeared to increase with the frequency of irrigation prior to continuous flooding. This was likely due to increased denitrification from alternate wetting and drying of the soil. Further research is required to determine the most appropriate nitrogen management strategies, and to also better define the optimal pre-flood irrigation frequency.  相似文献   

19.
To characterize the interactions between variable water supply and crop load on vegetative growth and water relations of an olive orchard (cv. Morisca) planted in 1998 at 417 trees ha−1, two different experiments were conducted over a six-year period (2002-2007) in Badajoz, Southwest of Spain. Experiment 1, assessed the responses during the early years of the orchard (2002-2004) using four irrigation treatments that applied fractions of the estimated crop evapotranspiration (ETc) (125%, 100%, 75% and 0%) and three crop load levels (100%, 50% and 0% of fruit removal, termed off, medium and on treatments). Experiment 2, assessed the response of more mature trees (2005-2007) to three irrigation treatments (115%, 100%, and 60% of ETc) and the natural crop load which were off, on, and medium in 2005, 2006 and 2007, respectively. Although vegetative growth was mainly affected by the level of water supply, crop load also influenced vegetative parameters, especially the interaction between high loads and water deficit. Trunk growth was more sensitive to water deficits than ground cover, and at the branch scale, water deficits reduced branch length and node numbers but only reduced internode length in on trees. Water relations were more affected by the level of water supply than by crop load. Nevertheless, the presence of fruits affected olive tree water status and, particularly, increased the stomatal conductance of on trees during late summer and early fall under all levels of water supply. Interactions between water stress and crop load levels were not very strong, and were more evident in mature than in young olive trees.  相似文献   

20.
The North China Plain (NCP) is one of the main productive regions for winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) in China. However, water-saving irrigation technologies (WSITs), such as sprinkler irrigation technology and improved surface irrigation technology, and water management practices, such as irrigation scheduling have been adopted to improve field-level water use efficiency especially in winter wheat growing season, due to the water scarcity and continuous increase of water in industry and domestic life in the NCP. As one of the WSITs, sprinkler irrigation has been increasingly used in the NCP during the past 20 years. In this paper, a three-year field experiment was conducted to investigate the responses of volumetric soil water content (SWC), winter wheat yield, evapotranspiration (ET), water use efficiency (WUE) and irrigation water use efficiency (IWUE) to sprinkler irrigation regimes based on the evaporation from an uncovered, 20-cm diameter pan located 0-5 cm above the crop canopy in order to develop an appropriate sprinkler irrigation scheduling for winter wheat in the NCP. Results indicated that the temporal variations in SWC for irrigation treatments in the 0-60-cm soil layer were considerably larger than what occurred at deeper depths, whereas temporal variations in SWC for non-irrigation treatments were large throughout the 0-120-cm soil layer. Crop leaf area index, dry biomass, 1000-grains weight and yield were negatively affected by water stress for those treatments with irrigation depth less than 0.50E, where E is the net evaporation (which includes rainfall) from the 20-cm diameter pan. While irrigation with a depth over 1.0E also had negative effect on 1000-grains weight and yield. The seasonal ET of winter wheat was in a range of 206-499 mm during the three years experiments. Relatively high yield, WUE and IWUE were found for the irrigation depth of 0.63E. Therefore, for winter wheat in the NCP the recommended amount of irrigation to apply for each event is the total 0.63E that occurred after the previous irrigation provided total E is in a range of 30-40 mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号