首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 599 毫秒
1.
The safety, efficacy and cross-protectivity of a live intranasal aerosol haemorrhagic septicaemia vaccine containing Pasteurella multocida serotype B:3,4 were tested in young cattle and buffaloes in Myanmar, where more than 1.5 million animals had been inoculated with this vaccine between 1989 and 1999. A recommended dose of 2 x 10(7) viable organisms was used for the efficacy test. The administration of 100 times the recommended dose to 50 cattle and 39 buffalo calves was innocuous. Seven months after they were vaccinated, three of three buffaloes were protected and 12 months after they were vaccinated, three of four buffaloes were protected against a subcutaneous challenge with serotype B:2 which killed three of three unvaccinated buffaloes. Twelve months after they were vaccinated, eight of eight cattle survived a serotype B:2 challenge, which killed four of four unvaccinated controls. The vaccinated cattle had developed serum antibodies detectable by the passive mouse protection test. Indirect haemagglutination tests on sera taken from cattle 10 days and five weeks after they were vaccinated showed high titres of antibodies. The serum of vaccinated cattle cross-protected passively immunised mice against infection with P. multocida serotypes E:2, F:3,4 and A:3,4.  相似文献   

2.
Young cattle and buffaloes were vaccinated subcutaneously and intradermally with a live vaccine containing Pasteurella multocida serotype B:3,4. Twelve months after vaccination three of five young cattle in the subcutaneously vaccinated group and three of four in the intradermally vaccinated group were protected against serotype B:2 challenge. Eleven buffaloes vaccinated subcutaneously and two vaccinated intradermally survived the same challenge 13 months after vaccination.  相似文献   

3.
The safety, efficacy and duration of immunity of an improved oil-adjuvant vaccine against haemorrhagic septicaemia, containing inactivated cells of Pasteurella multocida serotype B:2,5, were tested in young buffalo calves in Pakistan. For safety testing, five buffalo calves were vaccinated intramuscularly with twice the normal dose, and six weeks later with a normal dose. Except for a transient rise in rectal temperature at six hours after the vaccinations, no systemic reactions were observed. The buffaloes remained in good condition and had a normal appetite. No local reactions were observed at the injection site. For efficacy testing two trials were carried out. In the first, buffalo calves were vaccinated intramuscularly either with two doses two-and-a-half months apart, or with a single dose, or left unvaccinated. They were challenged subcutaneously with virulent P multocida after eight, 13 or 15 months. After challenge at eight months the four buffaloes given two doses and the buffalo given one dose were protected, whereas the control animal developed the typical signs of the disease. After the challenges at 13 and 15 months, the vaccinated animals were still protected whereas the control animals died. In the second trial, buffalo calves were vaccinated intramuscularly either with two doses two months apart, or with a single dose at two months or left unvaccinated. The buffaloes were challenged after eight or 14 months. After challenge at eight months the four control animals died, whereas three of the four buffaloes given a single dose were protected. After challenge at 14 months, the three control animals died, whereas four of the five buffaloes given two doses and both the buffaloes given a single dose were protected. To test for cross-protection against the heterologous serotypes E:2,5 and B:3,4, groups of mice were vaccinated once or left unvaccinated. Four weeks later, the vaccinated and control groups were challenged with a dilution series of the different challenge cultures. The vaccine appeared to induce protection against challenge with different strains of serotypes B:2,5 and E:2,5 but not against strains of serotype B:3,4.  相似文献   

4.
The efficacy of an intranasal haemorrhagic septicaemia vaccine containing live gdhA derivative Pasteurella multocida B:2 was tested in buffaloes in Sabah. Sixty buffaloes, kept grazing in the field with minimal human intervention were devided into three groups of 20 buffaloes per group. Buffaloes of group 1 were exposed intranasal to 5 ml vaccine containing 10(6) CFU/ml of live gdhA derivative P multocida B:2. Buffaloes of group 2 were not exposed to the vaccine but exposed to PBS and were allowed to commingle and graze in the same field as the buffaloes of group 1 while buffaloes of group 3 were similarly exposed to PBS and were grazing separately. Booster was on group 1, two weeks later. Twelve months after the first vaccination, three buffaloes from each group were brought into the experimental house and challenged subcutaneously with 10(9) CFU/ml of live wild-type P multocida B:2. All challenged buffaloes of groups 1 and 2 survived with only mild, transient signs while all control unvaccinated buffaloes developed severe signs of haemorrhagic septicaemia and were euthanased between 28 hours and 38 hours postchallenge with signs and lesions typical of haemorrhagic septicaemia. These data showed that the gdhA mutant strain, given intranasally as two doses two weeks apart, successfully induced systemic immunity in exposed buffaloes and also led to spread of vaccine strain to the in-contact animals, where it acted as an effective live vaccine to protect both exposed buffaloes and in-contact buffaloes against challenge with the virulent parent strain.  相似文献   

5.
Pasteurella multocida serotype B:2 is the causative agent of haemorrhagic septicaemia (HS), a fatal disease of cattle and buffaloes. As a step towards the identification of individual antigens that may protect against HS, proteins present in a sonicated cell extract (SCE) and outer-membrane protein (OMP) preparation of a wild-type P. multocida serotype B:2 were investigated by immunoblotting with sera from calves which had been protected against challenge with a virulent strain of P. multocida B:2 by vaccination with a live-attenuated aroA derivative of the challenge strain. Five proteins in SCE, of approximately 50, 37, 30, 26 and 16 kDa, were recognised by the sera. In an OMP preparation, two bands, at 37 and 50 kDa, were recognised as strongly immunogenic. Mass spectrometry analysis of proteins corresponding in size to those detected by immunoblotting identified the 37 kDa band as OmpA, but the band at 50 kDa was not identified with certainty. A major 30 kDa OMP, identified as OmpH, was not strongly immunogenic.  相似文献   

6.
Calves maintained in insolated pens were vaccinated with an inactivated parainfluenza virus type (3) (pi3) vaccine usingparenteral and local route singly and in combination. The calves were subsequently monitored for serum antibody response and challenged intranasally with live virus to assess the protection derived from vaccination. Calves receiving one subcutaneous dose of vaccine in oil adjuvant produced a marked antibody response and were partially protected against challenge. Those receiving two successive subcutaneous doses produced a much greater antiboyd response and were completely protected against challenge. One intranasal dose of aqueous vaccine failed elicit a significant serum antibody response or protection against challenge. However, there was some evidence that intranasal vaccination following a single subcutaneous vaccination produced more effective immunity than one subcutaneous dose alone. Thus a vaccination regime was established which protected calves against experimental challenge and which could thefore be used in the field to assess the role of Pi3 virus in calf respiratory disease.  相似文献   

7.
OBJECTIVE: To determine the efficacy of a modified-live virus vaccine containing bovine herpes virus 1 (BHV-1), bovine respiratory syncytial virus (BRSV), parainfluenza virus 3, and bovine viral diarrhea virus (BVDV) types 1 and 2 to induce neutralizing antibodies and cell-mediated immunity in na?ve cattle and protect against BHV-1 challenge. ANIMALS: 17 calves. PROCEDURES: 8 calves were mock-vaccinated with saline (0.9% NaCl) solution (control calves), and 9 calves were vaccinated at 15 to 16 weeks of age. All calves were challenged with BHV-1 25 weeks after vaccination. Neutralizing antibodies and T-cell responsiveness were tested on the day of vaccination and periodically after vaccination and BHV-1 challenge. Specific T-cell responses were evaluated by comparing CD25 upregulation and intracellular interferon-gamma expression by 5-color flow cytometry. Titration of BHV-1 in nasal secretions was performed daily after challenge. Results-Vaccinated calves seroconverted by week 4 after vaccination. Antigen-specific cell-mediated immune responses, by CD25 expression index, were significantly higher in vaccinated calves than control calves. Compared with control calves, antigen-specific interferon-gamma expression was significantly higher in calves during weeks 4 to 8 after vaccination, declining by week 24. After BHV-1 challenge, both neutralizing antibodies and T-cell responses of vaccinated calves had anamnestic responses to BHV-1. Vaccinated calves shed virus in nasal secretions at significantly lower titers for a shorter period and had significantly lower rectal temperatures than control calves. CONCLUSION AND CLINICAL RELEVANCE: A single dose of vaccine effectively induced humoral and cellular immune responses against BHV-1, BRSV, and BVDV types 1 and 2 and protected calves after BHV-1 challenge for 6 months after vaccination.  相似文献   

8.
Three experiments were conducted with calves in which, following intramuscular or intranasal vaccination with virulent or attenuated bovine herpesvirus 1, calves were protected against bovine herpesvirus 1 -- Pasteurella haemolytica challenge. Calves receiving low doses of vaccine had lower levels of antibody and greater evidence of virus replication upon challenge than those receiving higher doses. In contrast 11/13 unvaccinated controls had fibrino-purulent pneumonia following challenge. The immune response developed later in younger calves and those given low doses of vaccine. Neutralizing antibodies to bovine herpes-virus 1 were not found in nasal secretions, but were present in serum seven days after vaccination. Bovine herpesvirus 1 was isolated before challenge from nasal secretions of calves vaccinated intranasally or intramuscularly with virulent virus but not those vaccinated intramuscularly with vaccine virus. It was concluded that both routes of vaccination with either virulent or attenuated bovine herpesvirus 1 provided protection from challenge with homologous or heterologous bovine herpesvirus 1 and that live vaccines should contain at least 10(3) plaque forming units/dose for effective immunization.  相似文献   

9.
In three experiments subcutaneous vaccination of calves with adjuvanted bacteria-free leukotoxic culture supernatant from log phase cultures of Pasteurella haemolytica A1 (toxin 1) was shown to induce some protection against intrabronchial challenge with live P. haemolytica A1. This toxin 1 vaccine was as effective as a whole cell bacterin in stimulating agglutinating antibody to P. haemolytica. Induction of leukotoxin neutralizing activity was variable; in some cases vaccination only primed the animal to produce an anamnestic response after challenge, whereas in other instances antitoxic activity increased in response to immunization. Two doses of vaccine were shown to be more effective than a single immunization. Vaccination with leukotoxic culture supernatant from the nonpathogenic P. haemolytica serotype 11 was as effective as vaccination with toxin 1 in stimulating antitoxic activity but was not protective. This implies that both serospecific agglutinating activity and an antitoxic response are needed for immunity.  相似文献   

10.
The virulence of an Uzbek isolate of Babesia bigemina, obtained from infected Boophilus annulatus ticks from an endemic area in Uzbekistan, was attenuated for immunization of cattle with autochthonous calf- or culture-derived parasites in Uzbekistan. After four "slow passages" in vivo the virulence was reduced, as evidenced by the response of calves inoculated with an experimental live frozen vaccine produced from the following passage. The vaccine was safe and protective against homologous virulent challenge under laboratory conditions. The culture-derived experimental vaccine was produced from cultures initiated after 3 passages in vivo followed by 22 passages in vitro. The cultured parasites did not elicit any clinical sign, but inoculated calves seroconverted following vaccination and were protected against the virulent homologous challenge. Both calf- and culture-derived vaccines were safe for cattle grazing in an endemic area in Uzbekistan. Despite the high polymorphism of B. bigemina, as reported from various geographical regions, the Central Asian strain was attenuated similarly to those that form the basis of the existing live B. bigemina vaccines in other parts of the world.  相似文献   

11.
Four bovine herpesvirus-1 (BHV-1) commercial vaccines, three of which (vaccines B, D, E) were modified live vaccines (MLV) and one (vaccine A) identified as a live strain of BHV-1 gE negative, were used for vaccination of calves, using three calves for each vaccine. Three months after vaccination calves were subjected to dexamethasone (DMS) treatment following which virus was recovered from calves inoculated with vaccine B and from those given vaccine D. No virus reactivation was obtained in calves, which received vaccines A or E. The DNA extracted from the two reactivated viruses was subjected to restriction endonuclease analysis. The restriction pattern of the isolate obtained from calves vaccinated with vaccine D differs significantly from that of the original vaccine, whereas the reactivated virus from calves given vaccine B conserved the general pattern of the original vaccine strain. For each reactivated virus in this experiment (B and D) as well as for the isolate obtained from calves vaccinated with a further MLV (vaccine C) in a previous trial, three calves were inoculated. No clinical signs of disease were detected in any of the inoculated calves during the observation period. When the nine calves were exposed 40 days later to challenge infection with virulent BHV-1, they remained healthy and no virus was isolated from their nasal swabbings. These results indicate that some BHV-1 vaccines considered in the project can establish latency in the vaccinated calves, however, the latency does not appear to interfere with the original properties of the vaccines in terms of safety and efficacy.  相似文献   

12.
Previous findings, viz. that mice can be successfully immunized against infection with Salmonella dublin with either live or inactivated vaccine, were confirmed. Immunity lasted for at least 12 weeks in mice which had been immunized with inactivated alum-precipitated vaccine. The immunogenicity of inactivated vaccine gradually decreased on storage at 4 degrees C, but this was only detectable if a single injection was used for immunization: 2 injections virtually eliminated this phenomenon. The immunogenicity of live vaccine in mice was not enhanced by levamizole or the simultaneous injection of inactivated organisms. Both live and inactivated vaccines provided immunity in calves. A single injection of lyophilized vaccine, prepared from live rough Salmonella dublin strain (HB 1/17),protected 3 out of 6 calves, while 2 injections of a formalin-inactivated, alum-precipated vaccine, containing 1% packed cells of S. dublin strain 2652 V, protected 5 out of 6 calves against intraduodenal challenge with 2 x 10(9), S. dublin strain 2652 V. Two calves which had been immunized with an inactivated oil adjuvant vaccine were also solidly immune to this challenge. Serum antibody response in calves was poor when measured by the tube agglutination and the haemagglutination tests. Similarly, the sera had only marginal protective values when tested by means of a passive protection test in mice. Antibody titres alone are not a valid measure therefore, for the immune status of immunized animals.  相似文献   

13.
OBJECTIVE: To evaluate the efficacy of an adjuvanted modified-live bovine viral diarrhea virus (BVDV) vaccine against challenge with a virulent type 2 BVDV strain in calves with or without maternal antibodies against the virus. DESIGN: Challenge study. ANIMALS: 23 crossbred dairy calves. PROCEDURES: Calves were fed colostrum containing antibodies against BVDV or colostrum without anti-BVDV antibodies within 6 hours of birth and again 8 to 12 hours after the first feeding. Calves were vaccinated with a commercial modified-live virus combination vaccine or a sham vaccine at approximately 5 weeks of age and challenged with virulent type 2 BVDV 3.5 months after vaccination. Clinical signs of BVDV infection, development of viremia, and variation in WBC counts were recorded for 14 days after challenge exposure. RESULTS: Calves that received colostrum free of anti-BVDV antibodies and were vaccinated with the sham vaccine developed severe disease (4 of the 7 calves died or were euthanatized). Calves that received colostrum free of anti-BVDV antibodies and were vaccinated and calves that received colostrum with anti-BVDV antibodies and were vaccinated developed only mild or no clinical signs of disease. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that the modified-live virus vaccine induced a strong protective immune response in young calves, even when plasma concentrations of maternal antibody were high. In addition, all vaccinated calves were protected against viral shedding, whereas control calves vaccinated with the sham vaccine shed virus for an extended period of time.  相似文献   

14.
Two experimental bovine respiratory syncytial virus (BRSV) challenge studies were undertaken to evaluate the efficacy of a single intranasal dose of a bivalent modified live vaccine containing BRSV in 3-week-old calves. In the first study, vaccine efficacy was evaluated in colostrum deprived (maternal antibody negative) calves 5, 10 and 21 days after vaccination. Nasal shedding of BRSV was significantly reduced in vaccinated calves challenged 10 or 21 days after vaccination. Virus excretion titres were also reduced in vaccinates challenged 5 days after vaccination but reduction in duration of shedding and total amount of virus shed were not statistically significant. Clinical disease after challenge in this study was mild. In the second study, vaccine efficacy was assessed in calves with maternal antibodies against BRSV by challenge 66 days post-vaccination. Vaccination significantly reduced nasal shedding after challenge and the severity of clinical disease was also reduced.  相似文献   

15.
Haemophilus pleuropneumoniae serotypes--cross protection experiments   总被引:19,自引:0,他引:19  
Pigs vaccinated with a killed 6-hour culture of Haemophilus pleuropneumoniae serotype 2 with Freund's incomplete adjuvant were not protected against challenge with serotypes 1, 5, 6 or 8. Equivalent results were obtained when pigs were vaccinated with serotypes 4 or 5 and challenged with serotype 2. In earlier studies of immunity induced by intranasal immunization with live H. pleuropneumoniae organisms, it was clearly shown that intranasal inoculation with one serotype of H. pleuropneumoniae would induce a strong immunity to both homologous and heterologous serotypes (Nielsen 1979). The present study has shown that cross immunity is not obtained with parenteral immunization. The results strongly suggest that the immune response of the pig to parenteral vaccination is different from the response seen after natural infection, and indicate that an important part of the defence mechanism against H. pleuropneumoniae infection is a local immune-barrier which is effective in preventing the bacterium from penetrating the mucosa. In earlier vaccination experiments 90 per cent of vaccinates were protected against homologous challenge (Nielsen 1976). In the present work a vaccine containing serotypes 1 through 6 was fully protective against serotypes 2 and 3 and also against serotype 8, which shares antigenic determinants with serotypes 3 and 6. These results indicate that the protection obtained by parenteral immunization is serotype-specific. Vaccines must therefore contain the serotypes existing in the swine population.  相似文献   

16.
OBJECTIVE: To determine whether a single intranasal dose of modified-live bovine respiratory syncytial virus (BRSV) vaccine protects calves from BRSV challenge and characterize cell-mediated immune response in calves following BRSV challenge. ANIMALS: 13 conventionally reared 4- to 6-week-old Holstein calves. PROCEDURES: Calves received intranasal vaccination with modified live BRSV vaccine (VC-group calves; n = 4) or mock vaccine (MC-group calves; 6) 1 month before BRSV challenge; unvaccinated control-group calves (n = 3) underwent mock challenge. Serum virus neutralizing (VN) antibodies were measured on days -30, -14, 0, and 7 relative to BRSV challenge nasal swab specimens were collected for virus isolation on days 0 to 7. At necropsy examination on day 7, tissue specimens were collected for measurement of BRSV-specific interferon gamma (IFN-gamma) production. Tissue distribution of CD3+ T and BLA.36+ B cells was evaluated by use of immunohistochemistry. RESULTS: The MC-group calves had significantly higher rectal temperatures, respiratory rates, and clinical scores on days 5 to 7 after BRSV challenge than VC-group calves. No difference was seen between distributions of BRSV in lung tissue of VC- and MC-group calves. Production of BRSV-specific IFN-gamma was increased in tissue specimens from VC-group calves, compared with MC- and control-group calves. Virus-specific IFN-gamma production was highest in the mediastinal lymph node of VC-group calves. Increased numbers of T cells were found in expanded bronchial-associated lymphoid tissue and airway epithelium of VC-group calves. CONCLUSIONS AND CLINICAL RELEVANCE: An intranasal dose of modified-live BRSV vaccine can protect calves against virulent BRSV challenge 1 month later.  相似文献   

17.
Two experimental parainfluenza type 3 virus (PI3V) challenge studies were undertaken to evaluate the efficacy of a single intranasal dose of an attenuated live vaccine containing modified live bovine respiratory syncytial virus (BRSV) and temperature-sensitive PI3V in 3-week-old calves. In the first study, vaccine efficacy was evaluated in colostrum deprived calves. Nasal shedding of PI3V was highly significantly reduced in vaccinated calves challenged 10 days or 21 days after vaccination. In the second study, vaccine efficacy was assessed in calves with maternal antibodies against PI3V by challenge 66 days post-vaccination. Vaccination also significantly reduced PI3V excretion after challenge in this study. In both studies, clinical signs after challenge were very mild and were not different between vaccinated and control calves.  相似文献   

18.
Outbreaks of infectious bovine rhinotracheitis (IBR) have recently been observed in vaccinated feedlot calves in Alberta a few months post-arrival. To investigate the cause of these outbreaks, lung and tracheal tissues were collected from calves that died of IBR during a post-arrival outbreak of disease. Bovine herpesvirus-1 (BHV-1), the causative agent of IBR, was isolated from 6 out of 15 tissues. Of these 6 isolates, 5 failed to react with a monoclonal antibody specific for one of the epitopes on glycoprotein D, one of the most important antigens of BHV-1. The ability of one of these mutant BHV-1 isolates to cause disease in calves vaccinated with a modified-live IBR vaccine was assessed in an experimental challenge study. After one vaccination, the majority of the calves developed humoral and cellular immune responses. Secondary vaccination resulted in a substantially enhanced level of immunity in all animals. Three months after the second vaccination, calves were either challenged with one of the mutant isolates or with a conventional challenge strain of BHV-1. Regardless of the type of virus used for challenge, vaccinated calves experienced significantly (P < 0.05) less weight loss and temperature rises, had lower nasal scores, and shed less virus than non-vaccinated animals. The only statistically significant (P < 0.05) difference between the 2 challenge viruses was the amount of virus shed, which was higher in non-vaccinated calves challenged with the mutant virus than in those challenged with the conventional virus. These data show that calves vaccinated with a modified-live IBR vaccine are protected from challenge with either the mutant or the conventional virus.  相似文献   

19.
Twenty-five newborn Holstein Friesian calves, from dams vaccinated against haemorrhagic septicaemia (HS), were tested repeatedly over the first 6 months of life to monitor the transferred antibody levels against HS. Enzyme-linked immunosorbent assays were used to measure the specific HS antibodies with antigens from Pasteurella multocida strains B:2 and E:2. There was a significant curvilinear relationship between the monitored IgG response and the age of the calves. Peak serum IgG levels were obtained during the period from 8 to 16 weeks of age. Beyond this age, the concentration of IgG in the serum fell away.  相似文献   

20.
Eight calves were immunized with live auxotrophic Salmonella typhimurium mutants (aro -SL 1479, gal E 3821) and twelve calves with phenol-killed whole-cell S. typhimurium vaccine, respectively. The clinical status of the animals was followed and serial reisolation of vaccine and challenge strains from faeces was attempted. The immunization of calves with the live aro- auxotrophic S. typhimurium SL 1479 mutant proved to be unsuitable due to the death of calves after revaccination. The calves immunized with live auxotrophic gal E S. typhimurium CCM 3821 mutant proved to be protected against challenge with virulent S. typhimurium 4/5 strain administered orally at a dose of 10(6) colony forming units (CFU). The postvaccination complications showed serious shortcomings. The immunization of calves with three doses of whole-cell inactivated vaccine containing 5 strains of S. typhimurium was effective against oral challenge with virulent S. typhimurium 4/5 at a dose of 10(6) CFU.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号