首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
  • 1. The status of a Posidonia oceanica meadow in front of the town of Sanremo, Italy, was studied through a combined use of benthic mapping and synthetic indices.
  • 2. Mapping was accomplished by integrating side scan sonar imagery and data collected by scuba diving along transects placed perpendicularly to the coastline. A thematic map (scale 1:5000) was produced. Extent of the meadow, occurrence of dead matte areas, and morphology of the lower limit (with new definition) are all described.
  • 3. Two synthetic environmental indices were applied to transect data in order to quantify the status of the meadow: the Conservation Index and the Substitution Index. The former is related to the proportion of dead matte; the latter is a novel index measuring the amount of replacement of the ‘constructional’ seagrass P. oceanica by the ‘non‐constructional’ seagrass Cymodocea nodosa. The potential of a ‘phase shift’ in Ligurian Sea seagrass meadows is discussed.
  • 4. The approach here proposed, based on detailed mapping plus synthetic indices, may provide immediate information to evaluate the state of Mediterranean Posidonia oceanica for monitoring and management.
Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
  1. Although it is well established that human activities are linked to the loss of seagrasses worldwide, the influence of anthropogenic disturbances on the habitat fragmentation of seagrass meadows is less understood. This information is essential to identify how humans are modifying seascapes and what disturbances pose the greatest risk to seagrasses, which is pertinent given the rapid urbanization occurring in coastal areas.
  2. This study examined how the habitat fragmentation of an endangered seagrass Posidonia australis varied in relation to several anthropogenic disturbances (i.e. human population, marine infrastructure, terrestrial run-off and catchment land-usage) within 10 estuaries across 620 km of coastline in New South Wales, Australia.
  3. When comparing between estuaries, the fragmentation of P. australis meadows was significantly greater in estuaries adjacent to highly populated metropolitan centres – generally in the Greater Sydney region. At sites within estuaries, the density of boat moorings was the most important predictor of habitat fragmentation, but there was also evidence of higher fragmentation with increased numbers of jetties and oyster aquaculture leases.
  4. These results suggest that the fragmentation of seagrass meadows will become more pervasive as the human population continues to grow and estuarine development increases. Strategies to mitigate anthropogenic disturbances on seagrass meadow fragmentation could include prohibiting the construction of boat moorings and other artificial structures in areas where seagrasses are present or promoting environmentally friendly designs for marine infrastructure. This knowledge will support ongoing management actions attempting to balance coastal development and the conservation of seagrasses.
  相似文献   

4.
  • 1. Habitat loss and habitat fragmentation are usually correlated while habitat degradation may occur independently of them. Natural and anthropogenic disturbances increase the spatial fragmentation of seagrass meadows with unknown consequences on the vegetative development achieved by seagrass.
  • 2. Cover and spatial fragmentation of Thalassia testudinum meadows in three coral reef lagoons of the Veracruz Reef System,VRS (SW Gulf of México) were quantified by analysing low‐altitude images acquired by photographic and digital video cameras from a helium‐filled blimp. Spatial fragmentation was quantified as the ratio of the length of meadow edge to meadow area. The number of blowouts (erosive gaps in seagrass meadows) was also recorded.
  • 3. Meadow cover was negatively correlated with the length of meadow edge to meadow area ratio. The number of blowouts per ha of T. testudinum meadow was negatively correlated with meadow cover and positively with the length of meadow edge to meadow area ratio. Wave exposure is probably a main component of the processes determining the cover and spatial fragmentation of T. testudinum meadows in VRS.
  • 4. Low cover and high spatial fragmentation of T. testudinum meadows in VRS are associated with low vegetative development of this seagrass species. Copyright © 2011 John Wiley & Sons, Ltd.
  相似文献   

5.
  1. Explorations of the Mediterranean deep sea using remotely operated vehicles have shown that the sea bed hosts rich habitats, supporting high biodiversity. However, there have been only a few studies dealing with the southern part of the basin, leading to limited protection and conservation efforts in this area.
  2. This study aimed to explore the sea bed off Linosa Island (Sicily Channel, southern Mediterranean Sea), which is considered a ‘sentinel area’ for alien species and global environmental changes owing to its geographic position, thus deserving special attention.
  3. Remotely operated vehicle surveys, carried out in 2016 and 2017, were analysed to provide the first ecological characterization of benthic assemblages at depths −19 – −384 m around Linosa Island.
  4. Communities were dominated by three priority habitats, amounting to 39% of the almost 5 km of the sea floor that was surveyed. These are represented in the euphotic zone by Posidonia oceanica meadows and, at greater depth, by newly discovered dense coral forests and extended rhodolith/maërl beds. Sixteen habitat-forming species included in the Red List of the International Union for Conservation of Nature (e.g. gorgonians Eunicella cavolini and Paramuricea clavata, and black corals Antipathella subpinnata and Leiopathes glaberrima) were recorded, as well as individuals of Sargassum sp. at −100 m depth.
  5. The volcanic island of Linosa represents a small, naturally preserved area, with very limited human pressure, hosting rich marine benthic biodiversity. Given the high species and habitat richness, we recommend its inclusion in the Special Protected Areas of Mediterranean Importance project (United Nations Environment Programme) and suggest a redefinition of the existing marine protected area extension.
  相似文献   

6.
  • 1. Aerial photograph classification was used to map perennial thick canopy seagrass presence/absence over a large area (85 km2) off the coast of Western Australia. Within those areas mapped as seagrass, a geostatistical nonparametric interpolation method was applied to map the probability of seagrass species presence from underwater tow video. Multiple species mixtures were mapped at fixed probability thresholds of 0.95, 0.75, 0.50, and 0.25. Taxa included Amphibolis spp., Posidonia coriacea, P. sinuosa, P. australis and ephemeral species (Halophila and Zostera tasmanica (newly named as Heterozostera polychlamys)).
  • 2. The most commonly occurring species were respectively Amphibolis spp., Posidonia coriacea, P. sinuosa, P. australis, and the ephemeral species. Amphibolis, P. coriacea, and the ephemeral species were mapped predominantly as mixed assemblages (71–89% mixed), whereas P. sinuosa and P. australis were typically mapped as single species.
  • 3. Different species growth habits led to distinctive differences in large area distributions. All species were highly variable over short distances (<500 m), and spatial dependence persisted over more than 5 km. However, Posidonia sinuosa meadows were oriented with the longest axis running north–south, and a shorter axis running east–west perpendicular to the coastline (spatial dependence to 2.8 km and 0.8 km, respectively). The ephemeral species were less successfully mapped, largely owing to the potentially different growth patterns of the grouped species, and because their full extent could not be captured by the aerial photograph classification.
  • 4. The individual biology of each species results in unique landscape features where Posidonia sinuosa forms larger continuous and predominantly monospecific meadows, whereas the more common Amphibolis and P. coriacea form multi‐species patchy meadows. These mapped features suggest that the emergence of species patterns in seagrass landscapes is influenced by differences in clonal growth among seagrass species.
  • 5. Probabilistic species mapping provided information unavailable from discretely classified maps, and facilitates targeted sampling for improving map accuracy, and for more realistically evaluating species and mixed species distribution predictions. The kriging approach, although not well suited for all types of vegetation data, performed well for clonal seagrasses.
Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
8.
9.
10.
  • 1. Excessive nutrient discharge, linked to human activities, is one of the main causes of the decline of seagrass meadows since it modifies two essential parameters controlling their primary production: the nutrient concentrations (especially nitrogen and phosphorus) and the irradiance.
  • 2. To investigate the behaviour of seagrass under varied conditions of light and/or nutrient concentrations, it is necessary to experimentally manipulate nutrient enrichment and light, either in situ or in artificial ecosystems. The available experimental information concerning the influences of light reduction and nutrient enrichments (N and P) on seagrass meadows are summarized.
  • 3. The protocols for experimentally reducing light vary considerably but all light reduction experiments show a decrease in seagrass vitality and physiological changes (e.g. promotes an increase in chlorophyll and tissue nitrogen), depending on the species‐specific tolerance (light optima).
  • 4. A wide range of protocols for experimentally increasing nutrient levels have been applied, including varying the nutrient species quantities and ratios, as well as the sources and frequency of additions. Responses to N and/or P enrichment range from stimulation to direct or indirect inhibition, varying depending upon the species, the protocol implemented, the nutrient source (water column versus sediments), and other environmental conditions (e.g. interactions with factors such as temperature, grazing and light).
  • 5. Both light reduction and nutrient enrichment, can cause seagrass decline, through similar internal mechanisms, promoting an imbalance of internal nutrient supply ratios. Similar physiological responses can thus be observed (e.g. increase of N, P and chlorophyll contents of leaves).
  • 6. This study shows the close link between the physiology and morphology of seagrasses, with regard to environmental modifications. It also highlights their ability to provide information on environmental conditions by means of their responses.
Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
  1. Seagrasses such as Zostera marina L. play a key role in coastal ecosystems because of the ecological goods and services that they provide, enhancing biodiversity, productivity and carbon sequestration. Despite their ecological relevance, their distribution is, to date, insufficiently documented and it is estimated that only one‐quarter of their global extent is mapped.
  2. This study aims to develop a new method to accurately detect and map subtidal seagrass meadows, using Irish seagrass populations as a case study. This method consists of four steps: (i) the development of a species distribution model (SDM); (ii) the use of satellite‐derived images to visually appraise the potential presence and extent of seagrass beds; (iii) field surveys to validate the presence or absence of the seagrass; and finally (iv) the construction of an up‐to‐date detailed map of the seagrass distribution for the region under investigation.
  3. Results indicate that along the Irish coast, and in western regions in particular, the actual distribution of seagrass is considerably greater than is currently reported. Using the proposed method, 16 new regions occupied by seagrass in areas of interest in County Galway (Kilkieran Bay, Bertraghboy Bay, and Chasla Bay) were identified, accounting for a total of 267.92 ha, which increased the previously documented distribution in this area by 44.74%.
  4. In this study, we demonstrate the potential of this novel method to efficiently identify and map undocumented subtidal seagrass meadows. As seagrass habitats are under threat globally, the development of new mapping strategies is a critical contribution to current international efforts in seagrass monitoring and management.
  相似文献   

12.
13.
14.
15.
Abstract This study examined habitat use patterns of newly settled spotted seatrout Cynoscion nebulosus (Cuvier) across several Gulf of Mexico estuaries. Intensive sampling using an epibenthic sled was conducted in three Texas bays and among three potential habitat types. A long‐term data set (1982 to 1997) from the National Marine Fisheries Service was also used to examine C. nebulosus habitat use patterns in both marsh and seagrass‐dominated bay systems for broad regional comparisons along the north‐western Gulf of Mexico. Vegetated habitat types such as seagrass and marsh supported the highest densities and use was dependent upon availability of particular vegetated habitat types. In laboratory mesocosm experiments, both wild‐caught and hatchery‐reared C. nebulosus, showed strong selection for structured and vegetated habitat types. These field and laboratory results suggest that seagrass meadows and marshes may be functioning as important habitat for C. nebulosus in Gulf of Mexico, and other habitat types such as oyster reef need further evaluation.  相似文献   

16.
17.
18.
19.
  • 1. A dynamical and spatial simulation model of a harvested benthic ecosystem of central northern Chile (Tongoy Bay) was constructed using the ECOSPACE software package.
  • 2. In this system the red alga (Chondrocanthus chamissoi), the scallop (Argopecten pupuratus), the gastropod (Xanthochorus cassidiformis) and the crab (Cancer polyodon) are harvested intensively. The impacts of harvesting these resources exclusively in the seagrass, sand‐gravel, and in the sand habitats, as well as, in the seagrass and sand‐gravel and in all habitats were assessed. The goal was to explore policies of sustainable exploitation of the benthic systems.
  • 3. The most important findings were: (a) Fishing exclusively in either the seagrass or sand habitats produces a population increase in the sea star Luidia magallanica, in the seagrass Heterozostera tasmanica, and in the crab Paraxanthus barbiger. (b) Exclusive fishing in the sand‐gravel habitat causes only small effects on the species and groups, which suggests that this habitat is the most resistant to harvest. (c) The simultaneous fishing on two or three habitats would produce the largest negative effect on the entire system. Therefore, a habitat rotation fishery is recommended.
  • 4. Our study suggests that trophic‐spatially explicit models offer great possibilities for the screening and planning of effective interventions or manipulations of natural systems.
Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号