首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
滴灌条件下水肥耦合对温室番茄产量效应的研究   总被引:13,自引:1,他引:13  
以番茄为供试作物,在温室内采用二次D-饱和最优设计进行水肥试验,探讨了滴灌条件下水、肥交互对温室番茄产量的影响。试验结果表明:影响番茄产量的主要因素是灌水量与钾肥用量的交互作用,其次是氮肥用量;仅从产量角度评价,以中等氮肥用量、高钾肥用量和高灌水量为水肥调控的最佳组合。  相似文献   

2.
温室滴灌施肥条件下水肥耦合对番茄产量影响的研究   总被引:27,自引:0,他引:27  
在滴灌施肥条件下,采用311A—D最优饱和设计,通过温室小区试验,研究了水肥耦合效应对番茄产量的影响。通过主因素、单因素效应分析,定量地评价了灌水下限、氮肥用量和钾肥用量与番茄产量的关系,提出了目标产量的最优水肥组合方案。  相似文献   

3.
氮肥—滴灌对温室栽培番茄的影响   总被引:1,自引:0,他引:1  
  相似文献   

4.
地下滴灌系统施肥灌溉均匀性的田间试验评估   总被引:3,自引:6,他引:3  
该文对影响地下滴灌系统性能的两个重要因素施肥装置类型和滴灌带埋深进行了田间评估.施肥装置包括国内外常用的压差式施肥罐、文丘里施肥器和比例施肥泵三种类型,滴灌带埋深包括0、15和30 cm 3个水平.结果表明,滴灌带埋深与施肥装置类型对滴头流量和灌水量均匀性的影响均未达到显著性水平(a=0.05),而施肥装置类型对施肥量均匀性的影响达到极显著水平(a=0.01).对给定的毛管埋深而言,压差式施肥罐的施肥量变差系数高于比例施肥泵和文丘里施肥器.对不同施肥装置的施肥量变差系数与灌水量变差系数之间关系的回归分析结果指出,比例施肥泵和文丘里施肥器的施肥量变差系数与灌水量的变差系数相当,但压差式施肥罐的施肥量变差系数比灌水量变差系数大40%左右.因此在进行微灌系统设计时应将施肥装置类型和性能作为一个因素加以考虑,并宜优先选用输出肥液浓度恒定的施肥装置.  相似文献   

5.
对土壤处理剂Guilspare进行室外大豆地下滴灌试验.土壤处理剂喷施浓度为1%,2%的处理在50%,100%灌水量下,平均土壤含水率分别较对照组高14.07%,7.46%;22.24%,12.80%,体现了较好的保水性能,就保水效果分析比较2%的处理>1%的处理;不同浓度土壤处理剂在一定灌水量下对大豆生长有明显的促进作用;土壤处理剂喷施浓度为1%,2%的处理在50%,100%灌水量下,其产量分别较对照组增产6.08%,9.39%;11.49%,16.02%,具有较好的增产功效.就增产效果分析比较2%的处理>1%的处理.最终分析比较得出土壤处理剂喷施浓度2%的处理在50%灌水量下灌溉水利用效率(WUEI)最高,为1.06 kg/m3,其节水增产综合效果最为显著.  相似文献   

6.
温室大棚蔬菜生产中滴灌带灌溉应用效果分析   总被引:4,自引:1,他引:4  
在温室大棚蔬菜生产中应用膜下软管滴灌技术,能为作物生长发育创造良好的水、肥、气、热等生态环境,使温室大棚内5~15cm土壤层平均温度提高1.5~2℃,气温平均提高0.5℃,空气相对湿度降低10%~15%,改善土壤理化性状,减轻病害,省水、省肥、省农药,促进蔬菜早熟,增产增收  相似文献   

7.
温室地下蓄热系统换热特性研究   总被引:7,自引:0,他引:7  
针对现行温室地下埋管式换热系统结构的缺点,为充分利用地下蓄热,提高地温和夜间环境温度,设计了一种新型温室地下蓄热系统。测定了系统蓄热与放热时进出口空气温度、湿度与换热管道出口处空气的流速。试验结果表明,温室地下蓄热系统蓄热和放热时进口空气与出口空气的温度差、焓差较大,其差值随系统运行时间降低,白天蓄热量与夜间释放热量大于系统消耗的电能,蓄热时运行时间不宜大于4.5 h。  相似文献   

8.
滴灌控制系统是温室控制系统的一个重要组成部分,本文针对以往滴灌控制采取开环控制的不精确性等缺陷,提出了一种新型智能控制方法即基于模糊模型求逆的间接自适应模糊控制的方法,在仿真中取得了较好的结果.  相似文献   

9.
地下滴灌灌水器堵塞研究   总被引:13,自引:20,他引:13       下载免费PDF全文
地下滴灌(SDI)是一种高效的节水灌溉技术,但系统易于堵塞,堵塞问题成为影响地下滴灌成败的关键。通过对运行8年的地下滴灌系统堵塞的实地调查,迷宫式、微管式和孔口式等3类型的灌水器均有不同程度的堵塞,堵塞率分别达到16.67%、25%和63.89%。分析3类型灌水器的堵塞状况,引起地下滴灌堵塞的主要原因是进入系统的微粒在流道壁的附着和发育。为此,提出加强过滤、定时冲洗和改变滴头流道设计等解决地下滴灌堵塞的建议。  相似文献   

10.
灌溉方法对温室番茄栽培尿素氮利用影响的研究   总被引:1,自引:0,他引:1  
用15N示踪技术研究了沟灌和滴灌对温室番茄栽培尿素氮的利用及其在土壤中残留的影响。结果表明,滴灌处理番茄对15N肥料利用率是11.5%(地上部分),沟灌处理15N肥料利用率是7.4%。滴灌处理番茄所吸收的15N肥料量比沟灌处理提高了56.3%,灌溉方式对肥料15N在果实、茎、叶中的分配比例没有明显影响。0~100cm土层中15N肥料残留量滴灌处理为143.1kg/hm2,占氮肥投入量的63.6%,沟灌处理残留量为133.0kg/hm2,占氮肥投入量的59.1%;其中在0~20cm表土层中残留的肥料氮最多,沟灌和滴灌分别达到了79.9kg/hm2和97.3kg/hm2,占0~100cm土层肥料氮残留总量60.1%和68.0%。沟灌处理肥料氮的损失量为75.5kg/hm2,占氮肥投入量的33.5%;滴灌处理肥料氮的损失量为56.0kg/hm2,占氮肥投入量的24.9%。  相似文献   

11.
渗灌对番茄根系生长发育的影响   总被引:9,自引:0,他引:9  
Four depth treatments of subsurface drip irrigation pipes were designated as 1) at 20, 2) 30 and 3) 40 cm depthsall with a drip-proof flumes underneath, and 4) at 30 cm without a drip-proof flume to investigate the responses of atomato root system to different technical parameters of subsurface drip irrigation in a glass greenhouse, to evaluate tomatogrowth as affected by subsurface drip irrigation, and to develop an integrated subsurface drip irrigation method for optimaltomato yield and water use in a glass greenhouse. Tomato seedlings were planted above the subsurface drip irrigationpipe. Most of the tomato roots in treatment 1 were found in the top 0-20 cm soil depth with weak root activity but withyield and water use efficiency (WUE) significantly less (P=0.05) than treatment 2; root activity and tomato yield weresignificantly higher (P=0.05) with treatment 3 compared to treatment 1; and with treatment 2 the tomato roots andshoots grew harmoniously with root activity, nutrient uptake, tomato yield and WUE significantly higher (P=0.05) oras high as the other treatments. These findings suggested that subsurface drip irrigation with pipes at 30 cm depth witha drip-proof flume placed underneath was best for tomato production in greenhouses. In addition, the irrigation intervalshould be about 7-8 days and the irrigation rate should be set to 225 m^3 ha^-1 per event.  相似文献   

12.
不同渗灌灌水对土壤酶活性的影响   总被引:11,自引:0,他引:11  
Various environmental conditions determine soil enzyme activities, which are important indicators for changes of soil microbial activity, soil fertility, and land quality. The effect of subsurface irrigation scheduling on activities of three soil enzymes (phosphatase, urease, and catalase) was studied at five depths (0-10, 10-20, 20-30, 30-40, and 40-60 cm) of a tomato greenhouse soil. Irrigation was scheduled when soil water condition reached the maximum allowable depletion (MAD) designed for different treatments (-10, -16, -25, -40, and -63 kPa). Results showed that soil enzyme activities had significant responses to the irrigation scheduling during the period of subsurface irrigation. The neutral phosphatase activity and the catalase activity were found to generally increase with more frequent irrigation (MAD of -10 and -16 kPa). This suggested that a higher level of water content favored an increase in activity of these two enzymes. In contrast, the urease activity decreased under irrigation, with less effect for MAD of -40 and -63 kPa. This implied that relatively wet soil conditions were conducive to retention of urea N, but relatively dry soil conditions could result in increasing loss of urea N. Further, this study revealed that soil enzyme activities could be alternative natural bio-sensors for the effect of irrigation on soil biochemical reactions and could help optimize irrigation management of greenhouse crop production.  相似文献   

13.
塑料大棚番茄栽培不同渗灌量对耕层土壤性质的影响   总被引:14,自引:0,他引:14  
该文通过连续两年大棚栽培番茄的小区渗灌试验,分析比较了灌水控制下限对耕层(0~30 cm)土壤盐分积累及其离子组成、酸化等性状的影响。试验结果表明,渗灌灌水技术是防止棚内土壤退化的重要因素,灌水控制下限土壤水分吸力值越小,灌溉定额越大,耕层土壤的盐分积累越严重、pH下降幅度也越大。从土壤盐分积累、酸度变化以及作物产量、灌水次数及灌水总量等方面评价,大棚渗灌栽培番茄,当渗灌管埋深为30 cm时,将灌水控制下限土壤水吸力值选定在16~25 kPa范围内是适宜的。  相似文献   

14.
地下滴灌灌水器水力性能试验研究   总被引:13,自引:12,他引:13       下载免费PDF全文
地下滴灌与地表滴灌的最大差异在于地下滴灌的灌水器出水口被土壤包围,其出流受到土壤的限制。在室内将灌水器埋入土槽中,模拟研究了灌水器类型、自由出流时的流量、工作压力、土壤初始含水率等因素,对地下滴灌条件下灌水器水力性能的影响。试验结果表明:灌水器埋入土壤后,流量是其自由出流时流量的1/2~1/4。方差分析表明,影响地下滴灌灌水器水力性能的主要因素是自由出流时的水力特性和土壤特性。针对测试土壤,建立了地下滴灌灌水器流量计算的修正关系式。  相似文献   

15.
地下滴灌毛管水力要素试验   总被引:3,自引:2,他引:1  
地下滴灌毛管滴头的压力和流量分布是其主要的水力要素,研究这一问题对地下滴灌工程的设计和运行管理具有重要的意义。该文提出了地下滴灌毛管水力要素的试验方案,可用较短毛管获得其压力流量测试数据和分布规律。针对提出的试验方案,结合地下滴灌单滴头的水力特性研究成果,建立了描述地下滴灌毛管压力、滴头流量和局部水头损失系数之间关系的非线性方程组。将这一非线性方程组计算转化为一个函数优化问题,建立其求解的优化数学模型,采用遗传算法求解。用试验数据验证了计算结果,表明用此非线性方程组可反映地下滴灌毛管压力流量分布规律,求解方法具有较高的计算精度。该方法为进一步研究地下滴灌毛管的水力要素奠定了基础。  相似文献   

16.
不同施肥条件和滴灌方式对青椒生长的影响   总被引:15,自引:3,他引:12  
该文通过大田试验,比较了地下滴灌与地表滴灌及其不同施肥量对青椒生长的响应。试验设置地下滴灌和地表滴灌2个灌水处理和0、75、150、300 kg/hm2 4个施肥水平,灌水周期为4 d。另外设1个畦灌对照处理。结果表明,2 a中地下滴灌产量均高于地表滴灌,2007年平均高4%,2008年平均高13%。而地下滴灌耗水量低于地表滴灌,2007年平均低6.7%,2008年平均低7.3%。地下滴灌和地表滴灌0~40 cm土层的根系总根长分别是畦灌的2.44和1.46倍,且地下滴灌10 cm以下各层的根长占总根长的百分比,比地表滴灌高7%,这说明地下滴灌不仅促进作物根系的生长,而且使根系更多的扎入较深土层。地下滴灌150 kg/hm2施氮量为青椒的最优灌溉施肥策略。  相似文献   

17.
适宜的毛管埋深提高温室番茄品质及产量   总被引:2,自引:1,他引:1  
为探索地下滴灌条件下,毛管埋深对作物"地上部分-地下部分-产量和品质"相互作用的影响,合理配置滴灌措施,提高水分管理能力,该文研究了4种不同毛管埋深0、10、20和30 cm(CK、S10、S20和S30)对番茄植株生长、根系生长、光合产物分配、果实产量、品质和水分利用效率的影响,结果表明:与地面滴灌(CK)相比,毛管埋深为10 cm的番茄根系分叉数显著增加85.16%,但根长、根面积、番茄产量未显著提高,且番茄红素显著降低18.85%(P0.05);毛管埋深为20 cm,盛果期I番茄叶面积指数显著增加23.37%,根长、根面积、根系分叉数分别显著提高43.22%、20.82%、176.61%,番茄产量提高22.35%,番茄果实品质显著改善,如可溶性固形物、可溶性蛋白、维生素C、番茄红素含量和糖酸比分别提高10.86%、32.34%、35.66%、33.97%和53.01%,水分利用效率显著提高35.91%(P0.05);毛管埋深为30 cm,番茄根长、根系分叉数显著提高46.10%、122.37%,番茄产量显著提高19.53%,水分利用效率显著36.93%,但番茄红素显著降低34.02%。综合考虑番茄品质和产量,地下滴灌毛管埋深20 cm是较为适宜的布设方式。  相似文献   

18.
间接地下滴灌土壤湿润体特征参数   总被引:3,自引:1,他引:3  
该文将恒定水头钻孔积水入渗求解土壤饱和导水率的稳态原理用于定量化求解间接地下滴灌技术中与任意导水装置尺寸相匹配的滴头流量,并以计算的技术参数为基础,研究了间接地下滴灌水分运移过程中的土壤湿润体特征参数。研究结果表明,用于描述恒定水头钻孔积水入渗法求解土壤饱和导水率的稳态模型能够较好地设计与不同类型土壤和导水装置尺寸相匹配的适宜滴头流量。间接地下滴灌灌水过程中,从零开始逐渐增大并趋于稳定的积水深度加速了水分在垂直方向的运移,缩小了横向湿润距离和垂向湿润距离之间的差异,但变化的积水深度对湿润锋在垂直方向向上和向下的运移速率影响不大,使湿润体形状表现为扁率不断减小的椭球体,且椭球体对称轴分布在靠近导水装置底部的位置。湿润锋最大湿润距离和湿润体体积是灌水时间的函数,湿润体内平均体积含水率增量与灌水时间关系不大,保持为一定值。湿润体体积和湿润体内平均体积含水率增量不仅与土壤类型有关,还与导水装置参数和滴头流量的不同组合有关。  相似文献   

19.
地下滴灌条件下土壤水能态研究   总被引:1,自引:3,他引:1  
研究灌水器与土壤界面处的能态是研究地下滴灌土壤水分运动的关键之一。该文通过理论和试验相结合的方法,探讨了地下滴灌土壤水势的分布状况。结果表明:根据灌水器的流量和土壤的导水性之间的关系,将其分为两种情况,在灌水器流量不大于土壤扩散能力时,灌水器出口处的土壤水势等于该处的土壤吸力,为非正压状态;否则,灌水器出口处的土壤水势为正。理论分析和室内试验结果均表明,对同一土壤,影响地下滴灌土壤水势分布的主要因素是灌水器的额定流量和土壤初始含水率,在一定的流量范围内,灌水器出口的稳定正压随灌水器流量的增大而增加,随土壤初始含水率的增大而降低。在此基础上,提出地下滴灌条件下土壤水势分布的近似计算式,并简要分析了这一特殊土壤水分分布对地下滴灌系统的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号