首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study investigated the growth performance of abalone from juvenile to marketable size in a commercial-scale recirculating aquaculture system. The rearing system consisted of 12 raceways (4.0 × 0.8 × 0.6 m) with a protein skimmer and a submerged biofilter for juveniles and 10 raceways (6.6 × 1.3 × 0.6 m) with a protein skimmer and a trickling biofilter for on-growing. Sea mustard (Undaria pinnatifida) and kelp (Laminaria japonica) were fed to the abalone. The total weight of abalone in the recirculating aquaculture system at the juvenile stage increased from 22.0 kg (average shell length 24.5 mm) to 75.5 kg (average shell length 42.5 mm) after 180 days. Feed conversion ratios increased slightly from 13.7 for the first 90 days to 16.3 thereafter. The shell growth rate of juvenile abalone between 24.5 mm and 34.8 mm was 3.4 mm month−1, while for juveniles between 34.8 mm and 42.5 mm it was 2.6 mm month−1. The total weight of abalone in the recirculating aquaculture system for the on-growing stage increased from 100.0 kg (average shell length 44.0 mm) to 433.3 kg (average shell length 72.7 mm) after 570 days. The feed conversion ratios for the first 173 days, the next 320 days, and the last 570 days were 19.6, 22.1, and 24.8, respectively. The growth rate of the average shell length during the on-growing period was 1.5 mm month−1. Total ammonia nitrogen (TAN) concentrations were stabilized below 0.12 mg l−1 in the juvenile recirculating system and 0.14 mg l−1 in the on-growing recirculating system after conditioning of the biofilters.  相似文献   

2.
The main objectives of this study were to approximate the maximum yield and evaluate size dispersion of stocker size largemouth bass, Micropterus salmoides reared in a semi‐closed recirculating system for 60 days. Fingerlings with an average body weight of 36.7 g were utilized for the study. An experimental system consisting of 18 square plastic tanks (165 L) equipped with a radial flow settler, a sump, a moving bed filter, a centrifugal pump, a rapid sand filter, a down‐flow oxygen saturator and a UV sterilizer was utilized for the trial. The system was operated semi‐closed, accounting for a daily exchange rate of 30–50% of total system water volume. Experimental stocking densities were 4.5, 9.1, 18.8, 36.5, 54.6 and 73 kg m?3 with three replicates per treatment. At the end of the experimental trial, largemouth bass showed acceptable feed conversion (1.00–1.48), specific growth rate (1.16–1.45% day?1) and survival rate (81.8–96.6%) in all treatments, displaying the highest performance at an initial stocking density range of 18–36 kg m?3. Based on a piecewise regression model with breakpoint analysis, maximum yield of largemouth bass fingerlings should not exceed 70 kg m?3. As stocking density increased, relatively more underweight fingerlings were produced with a higher uniformity of fatness.  相似文献   

3.
This study evaluated the effects of biomass density on size variability and growth performance of feed‐trained largemouth bass, Micropterus salmoides, fingerlings in a semi‐closed recirculating system for 60 d. Average individual body weight and length of fingerlings were 9.04 g and 9.07 cm, respectively. Experimental biomass densities were set at 15, 20, 25, 30, 35, and 40 kg/m3. Water temperature was adjusted to approximately 25 C and dissolved oxygen concentration was maintained above saturation. Fish were fed a formulated diet (42% protein) distributed by automatic feeders for 12 h daily. During the experiment, fingerlings actively fed and presented high survival rates (96.8–95.0%) at all densities. Growth performance of fingerlings was not affected by the biomass densities tested in this study (P < 0.05). The ranges of size distributions were similar among treatments, but more fingerlings were near the average size at lower biomass densities. Based on the results of this study, largemouth bass fingerlings were tolerant of high biomass density and a gross yield of 100–125 kg/m3 may be viable for largemouth bass reared in a semi‐closed recirculating system up to 30 g in weight.  相似文献   

4.
Between 1989 and 1992, small-scale grow-out trials of cultured Tridacna gigas (L.) were established at 40 coastal villages in Solomon Islands. The juvenile giant clams were delivered to village participants at a mean size of 34.6 mm shell length (SL) and a mean age of 380 days. The clams were grown in cages of wire mesh placed on trestles in shallow, subtidal, coral reef habitats. After a mean grow-out period of 297 days, the clams were a mean size of 77.6 mm SL, a suitable size for sale to the aquarium market. Mean growth rate was 4.1 mm month?1. In 32 of the 53 cages involved in the trials, all clams were removed completely from the cage every 3 months for cleaning. The mean survival rate of these clams was 54%. The clams in the remaining 21 cages were not removed for cleaning and their survival was significantly lower (22%). The growth rate of clams removed for cleaning (3.7 mm month?1) was, however, significantly lower than the growth rate of undisturbed clams (4.8 mm month?1). At current prices for juvenile T. gigas in the aquarium trade, farmers who regularly cleaned clams would have netted a minimum of US$180 for a cage initially stocked with 390 clams. Fanners who did not clean their clams would have netted only US$40 per cage due to poorer survival.  相似文献   

5.
The effects of temperature on growth and survival of juvenile blackfoot abalone, Haliotis iris, were investigated. Animals of 10, 30 or 60 mm initial shell length were exposed to ambient (6–10°C), 14, 18, 22 and 26°C for 112 days in a flow‐through culture system. Maximum growth occurred at 22°C for the 10 and 30 mm size classes and at 18°C for the 60 mm size class. Regression analysis identified the optimal temperature for growth (ToptG) at around 21°C for the 10 and 30 mm size classes and at 17–18°C for the largest size class. In a second experiment, the critical thermal maximum of H. iris was determined as a measure of thermal tolerance. Abalone were subjected to increasing water temperatures at a rate of 2°C h?1 until they detached from the substrate. Abalone of 10 mm displayed greater thermal tolerance than abalone of 30 and 60 mm in length. CT50 temperatures were 28.8, 27.7 and 27.8°C, yielding deduced ToptG values of 19.7, 18.3 and 18.4°C for the 10, 30 and 60 mm size classes respectively. The size‐dependent nature of the relationship between growth and temperature could be capitalized upon in recirculating aquaculture systems.  相似文献   

6.
Commercial abalone culture is carried out using flow‐through systems with a high water volume exchange in Baja California, Mexico. The objective of this work was to compare the growth rate and survival of red abalone cultured in two systems. Flow through (daily water exchange rate of 800%) and recirculating systems consisted of a 250 L fibreglass tank and constant aeration, but biofiltration in the recirculating system was provided with a 28 L (1 ft3) bubble‐washed bead filter. Water variables were measured either daily (dissolved oxygen, temperature, pH and salinity) or three times a week (total ammonia nitrogen, nitrate‐nitrogen, nitrite‐nitrogen and alkalinity). Shell length was measured every 2 weeks for 18 weeks. Only the alkalinity and pH were significantly different due to the addition of sodium bicarbonate to the recirculating system. Abalone growth rate was 26.1 ± 15.96 μm day?1 in the recirculating systems and 22.21 ± 18.69 μm day–1 in the flow‐through systems. The final survival was 78.74% in the recirculating systems and 71.82% in the flow‐through systems. Significant differences in the final size and survival of the abalones were found between systems (P<0.05). Therefore, recirculating aquaculture systems is a feasible alternative for juvenile red abalone culture.  相似文献   

7.
Three Pavlova species were evaluated for their nutritional value as diets for growth and survival of the Cortez oyster Crassostrea corteziensis spat during late‐nursery cultivation at a hatchery. Microalgae were provided as monospecific diets (Pavlova salina, P. sp. C50 and P. sp. C53) and in binary combinations of diets 1+2, 1+3 and 2+3 at 80–90 × 103 cells mL?1 for 21 days. Juveniles experienced high survival rates and grew well with all dietary treatments, but binary diets yielded greater survival and growth of spat. From the three binary treatments, Diet 6 (P. sp. C50 and P. sp. C53) promoted significantly (P<0.001) fastest growth of juveniles in shell height (0.19 mm day?1), shell length (0.14 mm day?1), total wet weight (0.04 g day?1) and dry weight of meat biomass (0.024 g day?1). For all shell dimensions, the lowest growth rates occurred with Diets 2 (P. sp. C56 alone) and 3 (P. sp. C50 alone). These results highlight the importance of testing microalgal diets for bivalve spat rather than just relying on published nutritional values.  相似文献   

8.
The effect of animal size on the qualitative protein requirements of two size classes of Haliotis midae L. was assessed by feeding 12 semi‐purified single protein test diets (20% protein, 6% lipid) to juvenile and young adult animals (10–20‐ and 40–50‐mm initial shell length). The protein sources selected for the trial comprised four fishmeals, casein, spirulina, abalone viscera silage, brewery waste, torula yeast, carcass, sunflower and cotton seed meals. The results indicated that in terms of growth and feed efficiency, the fishmeals and spirulina were the most suitable candidates for use as primary protein sources in formulated feeds, and with the exceptions of the carcass meal and brewery waste, the remaining protein sources demonstrated promise as partial primary protein source replacements. Mean growth rates for the large and small abalone over the experimental period were 1.45 and 1.24 mm month?1 respectively. With respect to the larger size class of abalone, the smaller abalone displayed significantly reduced growth (F = 64.7, P < 0.0001), feed conversion ratio (F = 16.6, P < 0.0001) and protein efficiency (F = 26.8, P < 0.0001). Two‐way analysis of variance revealed significant interactions between protein source, animal size and feed conversion ratio (F = 2.4, P < 0.01) and growth (F = 5.4, P < 0.05), thus indicating that qualitative differences exist between the dietary protein requirements of the juvenile and young adult abalone.  相似文献   

9.
Formulated abalone feeds used by the culture industry are believed to be unsuitable for use at elevated water temperatures (>20 °C). The aim of this study was to develop a feed that could safely be fed to abalone cultured at elevated water temperatures by optimizing dietary protein/energy levels. Abalone (54.90 ± 0.08 mm; 28.99 ± 0.16 g) were cultured at either 18, 22 or 24 °C, and fed diets containing graded levels of protein (18–26%) and energy (11.6–16.2 MJ kg?1). Abalone growth was temperature dependent, declining from 4.33 g month?1 at 18 °C to 0.77 g month?1 at 24 °C. Shell length and weight gain were independent of dietary protein, provided that the digestible energy content of the diet was not lower than 13.5 MJ kg?1. Dietary energy levels below 13.5MJ kg‐1 resulted in significant reductions in shell growth, weight gain and increased mortality from 5% to 27%. Feed consumption of the 22% and 26% protein diets with 11.6 MJ kg?1 was significantly higher (0.53 ± 0.04 and 0.55 ± 0.04% bd. wt. day?1 respectively) compared with abalone fed the 16.2 MJ kg?1 diets at the same protein levels (combined mean of 0.45 ± 0.04% bd. wt. day?1) indicating that consumption was linked to energy requirement. The growth and mortality results suggest that abalone cultured at these temperatures have a dietary digestible energy requirement of at least 13.5 MJ kg?1.  相似文献   

10.
Effect of isolipidic (62.7 ± 5.0 g kg?1) diets with protein levels of 204.6 (T20), 302.3 (T30), 424.6 (T40) or 511.0 g kg?1 (T50) on growth and survival in Nile tilapia (Oreochromis niloticus Linnaeus 1758) fry cultured for 70 days at one of four salinities (0, 15, 20 and 25 g L?1) was evaluated. A bifactorial (4 × 4) design was used with 16 treatments run in triplicate and 20 fry (0.25 ± 0.04 g) per replicate under semi‐controlled conditions. Four independent, recirculating systems (one per salinity level) were used, each one with 12 circular tanks (70 L capacity), filters and constant aeration. The different salinities had no significant effect on growth. Weight gain improved significantly as dietary protein content increased, although organisms fed the T50 diet had a lower growth rate. Survival was highest (98.33%) in the T50/15 (protein/salinity levels) treatment and lowest (71.0%) in the T20/20 treatment, with no pattern caused by the variables. The T40/25, T40/20 and T50/0 treatments produced the most efficient growth and feed utilization values while the T20 treatments at all the salinities resulted with the lowest performance. With the exception of the T50 treatments, a non‐significant tendency to increased weight gain was observed as water salinity increased, suggesting that the salinity of the culture environment does not influence dietary protein requirements in Nile tilapia O. niloticus fry.  相似文献   

11.
The effect of increasing fish loading (decreasing water exchange rate, while holding fish stocking density constant) on growth, survival and feed conversion ratio was determined for two size groups of the orange‐spotted grouper Epinephelus coioides (Hamilton). Fingerlings (124.3–145.8 g initial body weight) and subadults (990.6–1147.1 g initial body weight) were reared in 1‐m3 circular tanks for 14 weeks. For the fingerlings experiment, three loading rates of 0.5, 2 and 6 kg L?1 min?1 were used, while in the experiment with subadults, the loading rates were 1, 3 and 6 kg L?1 min?1. The mean growth rate of fingerlings ranged from 1.60 to 2.14 g fish?1 day?1, and survival was high (95–100%); however, there were no significant differences (P > 0.05) as a result of the different loading rates. Similar results were obtained in the subadults experiment, in which the growth rate (3.10–4.90 g fish?1 day?1) and survival (86.7–100%) were not significantly (P > 0.05) affected by the different loading rates. In both experiments, the feed conversion ratios were also not affected significantly by the loading rates. These results show that water exchange in aerated, flowthrough tanks can be reduced to as low as 6 kg L?1 min?1 without adversely affecting growth, survival and feed conversion of fingerling and subadult groupers.  相似文献   

12.
To investigate the effects of temperature and salinity on filtration and oxygen consumption rate of Scapharca broughtonii spat with different growth stages. This study was conducted under six different water temperatures and five different salinity conditions. The spat were divided into three groups of different shell sizes and filtration rates were estimated by Neutral red. The results showed that in all of the three groups, the highest filtration rates appeared at 20 °C, and the highest one was 1.89±0.12 L g h?1 in the group with the lowest shell length (11.8±2.1 mm). The filtration rates in every group increased with the rise of salinity in the range from 10 to 40 g L?1, and the highest one is 2.62±0.21 L g h?1 in the lowest shell length group. The trends of oxygen consumption rates were similar to filtration rates. The highest rates were 0.189±0.003 mg g h?1 at 20 °C and 0.308±0.018 mg g h?1 at a salinity of 40 g L?1 in the group with the lowest shell length. And the results showed that the smaller the shell size, the higher the filtration and oxygen consumption rate.  相似文献   

13.
Effect of salinity on carrying capacity of a recirculation system for Nile tilapia, Oreochromis niloticus L.; production was assessed. Survival, growth and feed conversion ratio of adult Nile tilapia fed 30% crude protein diet for 88 days were measured at three different salinity levels (8, 15 and 25 g L?1) and two stocking densities (20 and 40 m?3) in three independent recirculating systems. Highest survival (98%) and a linear growth in net biomass (P<0.01) was observed in both densities at 8 g L?1 and in 20 m?3 treatment at 15 g L?1. Highest net biomass growth was observed in the 40 m?3 stocking density treatment at 8 g L?1 salinity level (P<0.05). Overall biomass growth was significantly affected by salinity indicating a decrease in Nile tilapia carrying capacity with increased salinity. About 11 000 kg ha?1 crop?1 of Nile tilapia can be obtained in recirculating systems at 8 g L?1 salinity, significantly higher than the net production at 15 g L?1 (5200 kg ha?1 crop?1) and 22 g L?1 (4425 kg ha?1 crop?1).  相似文献   

14.
Fish landing data from the Mombasa Marine National Park (MNP) and a marine reserve exploited by various gears were studied over a 5‐yr period to determine the influence of the closed area and different gears in fisheries. The number fishing and boats per landing site was constant, but total and catch per unit effort progressively declined in all sites on an annual basis irrespective of the existence of a marine reserve, exclusion of the beach seines or use of gear. Differences between landing sites were most pronounced when analysed on a catch per area as opposed to the more standard catch per fisherman, suggesting compensation in human effort when catches decline. A marine reserve next to a closed area that excluded beach seines had the highest catch per area (5.5 kg ha?1 month?1) despite having the highest density of fishermen (0.07 ± 0.02 fishermen ha?1 month?1). The annual rate of decline in the catch was lower than the other sites at around 250 g day?1 compared with 310–400 g day?1 in the other sites. One landing site, which excluded beach seine landings for more than 20 yrs, had a high catch per area (~5.3 kg ha?1 month?1), but after experiencing a doubling in the effort of other gears (line, speargun and trap), the catch per fisherman and area were reduced. Environmental or habitat degradation and excessive effort remain the most likely explanation for the overall declines in catch from 1995 to 1999. Closed areas and beach seine exclusion have the potential to increase catch rates, but the first often reduces the total fishing area and possibly leads to a loss of total catch, at least on a time scale of less than 10 yrs. The exclusion of beach seines can lead to an increase in other gear types that can also cause reductions in catch.  相似文献   

15.
A feeding trial was conducted using isoenergetic practical diets to evaluate the effects of the dietary protein level on growth performance, feed utilization and digestive enzyme activity of the Chinese mitten crab, Eriocheir sinensis. Four experimental diets were formulated containing 250, 300, 350 and 400 g kg?1 protein and 16 kJ g?1 gross energy. Each diet was randomly assigned to triplicate groups of juvenile crab with mean initial body weight 3.56 ± 0.16 g and mean shell width 15.31 ± 0.06 mm. Juvenile crab were reared in indoor flow‐through system consisting of 12 plastic tanks (1.0 m × 0.6 m × 0.5 m) and fed diets twice daily at 6–8% of body weight for 12 weeks. Performance was judged on the basis of growth (specific growth rate of weight, SGRG; specific growth rate of shell width, SGRSW), feed conversion ratio (FCR) and protein efficiency ratio (PER). A decreased FCR was observed with increasing dietary protein levels. Both SGRG and SGRSW significantly increased with increasing dietary protein levels up to 350 g kg?1, whereas there were no significant differences for protein levels from 350–400 g kg?1. Application of broken line regression analysis to SGRG provided an estimate of 347.8 g kg?1 dietary protein for maximal growth. The highest PER was observed in crab fed the diet containing 350 g kg?1 protein (P < 0.05). The percent survival was not affected (P > 0.05) by the different dietary treatments. No significant differences were observed in the apparent digestibility coefficients of crude lipid and dry matter among dietary treatments (P > 0.05). However, the apparent digestibility coefficients of crude protein and energy in crab fed different protein levels significantly increased with increasing dietary protein level (P < 0.05). Both amylase and protease activities in the intestine of E. sinensis were studied. The amylase activity decreased significantly (P < 0.05) with increased dietary protein level and protease activity increased. Regression analysis showed a negative effect of inclusion of dietary protein level on amylase activity (P < 0.05). However, protease activities were found to be positively correlated (P < 0.05) with dietary protein level. The protein content of the crab significantly increased with dietary protein levels up to 350 g kg?1 (P < 0.05), but no significant differences (P > 0.05) were founded with protein levels higher than 350 g kg?1.  相似文献   

16.
A 28‐week feeding trial was conducted in concrete tanks with Nile tilapia, Oreochromis niloticus (L.) with an average initial weight and length of 61.9±6.03 (g fish?1) and 17.6±0.45 (cm fish?1), respectively, to examine the effect of two protein levels and three feeding levels (% body weight (BW) day?1) on growth performance, production traits and body composition. Twelve 4‐m3 concrete tanks (2 × 2 × 1.25 m, long, width and height) were each stocked with 100 fish and fed diets containing either 25% or 30% crude protein at rates of 1%, 2% and 3% BW daily (2 × 3 factorial experiment). The results revealed that there was no significant increase in growth rate with increasing dietary protein levels, whereas there was significant increase in growth rate with increasing feeding levels (P≤0.05). The same trend was also observed for mean BW (g), mean body length (cm), production rate (kg m?3), specific growth rate (SGR % day?1), feed conversion ratio (FCR), condition factor (K) and survival rate (%). The best final mean BW (g), final mean body length (cm), SGR (% day?1), FCR, K, production rate (kg m?3) and survival rate (%) were recorded in groups of fish fed with 25% dietary protein at the 2% feeding level. Whole fish fat and energy contents were not significantly influenced (P>0.05) by protein levels and feeding levels. Protein and ash contents were significantly (P≤0.05) influenced by feeding level, but not by dietary protein level. Economic evaluation indicated that dietary protein 25% (diet A) at the 2% BW day?1 feeding level was the most cost‐effective and affordable feed strategy for farmers. We conclude that a 25% protein diet fed at 2% BW day?1 is recommended for adult Nile tilapia reared in concrete tanks.  相似文献   

17.
Pacific abalone (Haliotis discus hannai Ino) aquaculture is a thriving industry in China. This study describes a novel submerged cage culture system for abalone rearing in Fujian, South China. The cage consisted of five vertical slots that were oriented perpendicular to the flow of water. The slots were separated by six vertically connected plastic plates for abalone attachment and shelter at the bottom of the cage. Experiment 1 was designed to determine the appropriate stocking density at the start of the abalone sea‐based production cycle. Eight‐month‐old hatchery reared and size‐graded juveniles were transferred to the sea‐based culture system. For different stocking densities, shell length of juveniles obtained in this novel culture system on 2, 3.5 and 5 months, respectively, was compared with shell lengths obtained in a traditionally multi‐tier basket culture system. In Experiment 2, daily growth rates (DGRs) in shell length and biomass in terms of wet weight of 2‐year‐old abalones reared in cage and tiered basket culture systems were compared over a 6‐month period. Results of Experiment 1 showed that growth of abalone in the cage culture system is density‐dependent; the mean final shell length of juveniles obtained was 6.7–15.9% higher than in tiered baskets system even at the same initial stocking density. In Experiment 2, DGRs in shell length of 53.83–78.38 μm day?1 obtained in cage system were significantly higher than that in tiered baskets (< 0.01). And in terms of wet weight biomass, it was 1.48–3.01 times higher in the cage system compared with the traditional system. Abalone survival was more than 87.5% in both culture systems in both experiments. Advantages of the newly established cage culture system included better growth performance of the animals reared and potential improvement of rearing conditions, such as improved water flow velocity and dissolved oxygen.  相似文献   

18.
The Thai river sprat, Clupeichthys aesarnensis Wongratana, is a clupeid with a short life span, and supports artisanal fisheries in a number of reservoirs in the Mekong Basin. The growth parameters, mortality rates and the status of the Thai river sprat in Sirinthorn Reservoir (28 800 ha), NE Thailand (15°N; 105°E), are presented. The fishery is based on lured lift‐nets, operated 7–14 days in the new moon period, September to April each year. It was shown that the von Bertalanffy growth function (VBGF) model was Lt (mm) = 78.43[1 ? exp{?0.211[t ? (?0.7996)]}] and its growth conformed to an isometric pattern. Natural mortality rate (month?1) was 0.13 month?1. Total mortality rates ranged from 0.69 to 1.53 month?1 depending on the weather and the fishing season. Recruitment was continuous throughout the year but peaked in June and July. The yield per recruit model indicated that the exploitation rate of this fishery is probably too high.  相似文献   

19.
The effects of alternate starvation and refeeding on food consumption and compensatory growth of hatchery‐bred abalone, Haliotis asinina (Linnaeus), were determined. Two groups of abalone juveniles (mean shell length = 29 mm, body weight = 5 g) were alternately starved and refed a macro‐alga, Gracilariopsis bailinae at equal duration (5/5 or 10/10) over 140 days. A control group (FR) was fed the seaweed ad libitum throughout a 200‐day experimental period. Starved and refed abalone showed slower growth rates (DGR, 63 and 70 mg/day in the 5/5 and 10/10 groups respectively), as a result of reduced food intake (DFI 15% and 16% day?1 respectively), after repeated starvation and refeeding cycles. Percentage weight gains (5/5 = 196%, 10/10 = 177%) were significantly lower than that of the control (397%). When refed continuously over 60 days, the starved groups exhibited increased DFI and fed at the rate of 24% and 25% day?1, which were not significantly different from that of the control at 26% day?1. At the end of the experiment, no significant differences were observed among three treatments in terms of shell length (range: 46–48 mm), body weight (range 25–28 g), % weight gain (392–465%) and per cent survival (range 87–98%). The results indicated that H. asinina had a complete compensatory growth following a return to full rations after a series of intermittent starvation and refeeding cycles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号