首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extracts of Quercus crispula infected by the ambrosia fungus, Raffaelea quercivora, were investigated. Phenol and tannin analyses indicated that normal sapwood (NS) contained a considerable amount of hydrolysable tannins, while infected colored sapwood (IS) contained less hydrolysable tannins and more phenols than NS. In treating pentagalloyl glucose (PGG), which is a model compound of hydrolysable tannins, with a culture medium of R. quercivora, PGG was rapidly hydrolyzed to produce gallic acid. The resulting gallic acid decreased in concentration over the subsequent cultivation period eventually disappeared. Measuring tannase and laccase activities of the culture medium of R. quercivora, tannase activity increased gradually from the beginning, while laccase activity increased rapidly at 5 days of incubation and disappeared at 8 days. An oxidative product from gallic acid treated with laccase was isolated by preparative high performance liquid chromatography, and was identified as purprogallincarboxylic acid (PGCA) by nuclear magnetic resonance spectroscopy and electron-impact mass spectrometry. PGCA was present in a 70% aqueous acetone extract of IS, and showed slight growth inhibition against R. quercivora. Part of this study was presented at the 57th Annual Meeting of the Japan Wood Research Society, Hiroshima, Japan, 2007  相似文献   

2.
Fagaceae species in Japan were identified by restriction fragment length polymorphism (RFLP) and sequence comparison of a region ofrbcL. Of nine restriction endonucleases used for digestion, three (MspI,RsaI,HaeIII) produced different restriction patterns in Fagaceae. Digestion byMspI yielded four patterns: Fagus species,Castanea crenata, Pasania glabra, and others. Digestion byRsaI andHaeIII afforded two patterns:Fagus species and others. These facts indicate thatCastanea crenata andPasania glabra can be identified byMspI restriction patterns ofrbcL. Sequence comparison of a region of therbcL gene among 20 species of Fagaceae showed that: (1) they could be divided into seven groups; (2) there is a site mutation betweenFagus crenata andF. japonica. The latter indicates that the wood of both Fagus species are identifiable at the species level, which is not the case using conventional methods. This result indicates the possibility of wood identification based on DNA polymorphism in Fagaceae at the intrageneric level.Part of this paper was presented at the 46th annual meeting of the Japan Wood Research Society, Kumamoto, April 3–5, 1996 and the 47th annual meeting of the Japan Wood Research Society, Kochi, April 3–5, 1997  相似文献   

3.
Commercially produced vegetative inocula of Laccaria laccata and Hebeloma crustuliniforme successfully formed ectomycorrhizae with Douglas-fir transplanted container (plug+1) seedlings. After 4.5 months in containers, 83% and 90%, respectively, of short roots were mycorrhizal. L. laccata- or H. crustuliniforme-inoculated seedlings had significantly more mycorrhizal and total short roots than Pisolithus tinctorius-inoculated (4% mycorrhizal root tips) or uninoculated control seedlings. No significant differences were detected in seedling growth at the end of the container phase.After transplantation and growth in nursery beds for 17 months, mean new short root colonization of all seedlings was 80%. H. crustuliniforme persisted as a dominant mycorrhizal fungus on seedlings initially inoculated with this fungus. L. laccata-inoculated seedlings had 40% of their short roots colonized by L. laccata and another 40% by native fungi Rhizopogon and Thelephora spp. All mycorrhizae of control seedlings and those inoculated with P. tinctorius were formed by fungi native to the nusery beds. A significant fungal treatment effect was detected for shoot height only. Control seedlings were significantly taller than L. laccata-inoculated seedlings after transplanting.This article is part of senior author's thesis in partial fulfillment of the Ph.D. degree in the Department of Forest Science at Oregon State University, Corvallis.  相似文献   

4.
Comparison of the root system growth and water transport of southern pine species after planting in different root-zone environments is needed to guide decisions regarding when, and what species to plant. Evaluation of how seed source affects root system responses to soil conditions will allow seed sources to be matched to planting conditions. The root growth and hydraulic conductivity of three sources each of shortleaf, loblolly and longleaf pine seedlings were evaluated for 28 days in a seedling growth system that simulated the planting environment. Across species, an increase in root-zone temperature alleviated limitations to root growth caused by water stress. In the coldest temperature, longleaf pine maintained a higher hydraulic conductivity compared to shortleaf and loblolly pine. Without water limitation, the root growth and hydraulic conductivity of shortleaf and loblolly pine were superior to that of longleaf pine, but as water availability decreased, the root growth of longleaf pine surpassed that of loblolly pine. Hydraulic conductivities of the seed sources differed, and differences were attributed to either new root growth, or an increase in the efficiency of the root system to transport water.  相似文献   

5.
This paper summarises the results from 35 years-observed thinning experiments on 256 permanent sample plots in 10–60 year-old stands of ash, aspen, birch, oak, pine and spruce in Lithuania. Thinning enhanced crown projection area increment of residual trees. The largest effect was observed in stands of aspen and birch (growth increase by 200%), followed by ash and oak (over 100%), and spruce and pine (about 80%). Thinning also promoted dbh increment, especially in younger stands, and the increase of dbh increment was positively correlated with the thinning intensity. The strongest reaction was exhibited by oak and aspen, while ash, birch and conifers reacted to a lower extent. Low and moderate intensities of thinning stimulated volume production in younger stands while the opposite was observed in older stands with increasing removals. Spruce stands exhibited relatively strongest increase of volume increment and pine, –the weakest, while the effect on deciduous species was intermediate. The results demonstrate that significant increase in volume increment is achievable with thinning of only young forest stands, e.g. 10–20 year-old pine, birch and ash, or 10–30 year-old oak, aspen and spruce.  相似文献   

6.
Murthy  Ramesh  Goldfarb  Barry 《New Forests》2001,21(3):217-230
Two experiments were conducted to determine theeffect of handling, short-term storage, andinitial water stress on cutting water potential (W) and rooting of loblolly pine(Pinus taeda L.) stem cuttings. First,stock plants and cuttings were measured forW at predawn (04:00 a.m.) and earlymorning (09:00 a.m.). Cuttings were thensevered, wrapped in wet paper towels, andplaced in insulated containers for 2 or 7 h atapproximately 30 °C or for 21 h in coldstorage (4 °C). Water potentials ofcuttings were measured at the end of eachstorage period. Second, effects of initialwater stress on rooting performance of cuttingswere tested by withholding water from dormant(winter) and succulent (summer) cuttings forvarying periods of time. After each dryingtreatment, W was measured on asample of cuttings and the remainder of thecuttings were transferred to a greenhouse withintermittent mist for 12 weeks.Storage of cuttings for long periods (7 to 21h) of time under low vapor pressure deficitconditions resulted in less negative waterpotentials of the cuttings. Dormant cuttingsrooted at higher percentages, even after beingexposed to lower values of W Thelower values of W in dormantcuttings could be attributed to higher ambientvapor pressure deficit during the drying phase. Results suggest that subjecting cuttings tomoderate water stress for a short period oftime does not adversely affect the rooting ofcuttings. Cutting water potentials below –1.7MPa appeared to reduce rooting of succulentcuttings and water potentials below –2.0 MPaaffected rooting in dormant cuttings.  相似文献   

7.
The role of tetrapartite associations among Frankia, Gigaspora margarita (an arbuscular mycorrhizal fungus), Pseudomonas putida (rhizobacterium), and Alnus sieboldiana in growth, nitrogen fixation, and mineral acquisition of A. sieboldiana was investigated. Seedlings of A. sieboldiana were inoculated with Frankia isolated from root nodules of alder, followed by inoculation of G. margarita and P. putida, and were grown for 5 months in a greenhouse. The seedlings inoculated with Frankia and G. margarita together produced the highest biomass of shoots and root nodules. Nitrogen-fixation activity, measured by acetylene reduction assay, was observed when Frankia was inoculated. The activity, on a per-nodule gram basis, decreased after G. margarita inoculation, but on a per-plant basis there was no significant difference in the activity among inoculation treatments. The mineral content in the seedlings changed after inoculation with Frankia, but not after inoculation with P. putida and/or G. margarita. The results showed a synergistic interaction among Frankia, the mycorrhizal fungus, and the rhizobacterium on the growth of A. sieboldiana.  相似文献   

8.
To evaluate the effect of adjacent tree species on the susceptibility of Japanese black pine (Pinus thunbergii) to pine wilt disease, an inoculation experiment was conducted usingP. thunbergii seedlings potted with seedlings of six tree species,i. e. Alnus sieboldiana, Eurya japonica, Lespedeza bicolor formacutifolia, Pinus thumbergii, Robinia pseudo-acacia andSarothamus scoparius. About ten months after planting, they were inoculated with the pinewood nematode (Bursaphelenchus xylophilus) in early July 1992. After that, the proportion of pine seedlings with completely discolored foliage increased more quickly when the seedlings were potted withR. pseudo-acacia, S. scoparius orA. sieboldiana than when potted withP. thunbergii, L. bicolor orE. japonica. At the end of the study period, 17 weeks after inoculation, it reached 90.6%, 90.0%, 87.5%, 72.7%, 63.3%, and 59.4% when the pine seedlings were potted withR. pseudo-acacia, S. scoparius, A. sieboldiana, P. thunbergii, L. bicolor andE. japonica, respectively. This indicated that the susceptibility ofP. thunbergii seedlings to pine wilt disease was influence by the species of adjacent trees.  相似文献   

9.
Chlorophyll fluorescence measurements were performed on the foliage of 3-year-old (11/2+11/2) nursery-grown Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] seedlings after exposure to controlled freezing temperatures, in the laboratory, to assess low temperature tolerance. The seedlings were propagated in an Irish nursery and lifted at monthly intervals overwinter 1999 and 1999–2000. Excised shoots from first-order laterals were frozen, in the dark. After freezing, needles were immediately assessed using chlorophyll fluorescence. The excised shoots were then maintained under controlled conditions for 14 days and visually assessed for needle damage. The chlorophyll fluorescence parameter, F v/F m, accurately predicted cold hardiness and was linearly related to visual needle damage and short-term survival. An equation was constructed using F v/F m data for determining the LT50, that is, the freeze temperature causing 50% seedling damage. The predictions of F.LT50 (fluorescence-based empirical determination of LT50) have been tested over two seasons (i.e., against a second independent data set) with variability between 0 and 1.8°C of visual estimates, though predictions were often 1.1°C of the visual assessment. This approach provided a simple, rapid and accurate prediction of cold tolerance, under climatic conditions where in situ measurements are unreliable. The method can be used to predict if Douglas-fir seedlings have developed sufficient tolerance for lifting to the cold-store, or for planting.  相似文献   

10.
The antioxidant activity of six Stachys species native to Hungary in an enzyme-independent lipid-peroxidation system was examined. The methanolic extracts were found to be more effective than the controls alpha-tocopherol succinate and ascorbic acid. The following components were determined by spectrophotometric analysis: hydroxycinnamic acid derivatives, phenols content and flavonoids.  相似文献   

11.
Ngugi  Michael R.  Hunt  Mark A.  Doley  David  Ryan  Paul  Dart  Peter 《New Forests》2003,26(2):187-200
Effects of soil water availability on seedling growth, dry matter production and allocation were determined for Gympie (humid coastal) and Hungry Hills (dry inland) provenances of Eucalyptus cloeziana F. Muell. and for E. argophloia Blakely (dry inland) species. Seven-month-old seedlings were subjected to well-watered (100% field capacity, FC), moderate (70% FC) and severe (50% FC) soil water regimes in a glasshouse environment for 14 wk. There were significant differences in seedling growth, biomass production and allocation patterns between species. E. argophloia produced twice as much biomass at 100% FC, and more than three times as much at 70% and 50% FC than did either E. cloeziana provenance. Although the humid provenance of E. cloeziana had a greater leaf area at 100% FC conditions than did the dry provenance, total biomass production did not differ significantly. Both E. cloeziana provenances were highly sensitive to water deficits. E. argophloia allocated 10% more biomass to roots than did E. cloeziana. Allometric analyses indicated that relative biomass allocation patterns were significantly affected by genotype but not by soil water availability. These results have implications for taxon selection for cultivation in humid and subhumid regions.  相似文献   

12.
We quantified the effect of water and nutrient availability on aboveground biomass and nitrogen accumulation and partitioning in four species from the southeastern United States, loblolly pine (Pinus taeda), slash pine (Pinus elliottii), sweetgum (Liquidambar styraciflua), and sycamore (Platanus occidentalis). The 6-year-old stands received five levels of resource input (control, irrigation with 3.05 cm water week−1, irrigation + 57 kg N ha−1 year−1, irrigation + 85 kg N ha−1 year−1, and irrigation + 114 kg N ha−1 year−1). Irrigation significantly increased foliage, stem, and branch biomass for sweetgum and sycamore, culminating in 103% and 238% increases in total aboveground biomass. Fertilization significantly increased aboveground components for all species resulting in 49, 58, 281, and 132% increases in total aboveground biomass for loblolly pine, slash pine, sweetgum, and sycamore, respectively. Standing total aboveground biomass of the fertilized treatments reached 79, 59, 48, and 54 Mg ha−1 for loblolly pine, slash pine, sweetgum, and sycamore, respectively. Fertilization increased foliar nitrogen concentration for loblolly pine, sweetgum, and sycamore foliage. Irrigation increased total stand nitrogen content by 6, 14, 93, and 161% for loblolly pine, slash pine, sweetgum, and sycamore, respectively. Fertilization increased total nitrogen content by 62, 53, 172, and 69% with maximum nitrogen contents of 267, 212, 237, and 203 kg ha−1 for loblolly pine, slash pine, sweetgum, and sycamore, respectively. Growth efficiency (stem growth per unit of leaf biomass) and nitrogen use efficiency (stem growth per unit of foliar nitrogen content) increased for the sycamore and sweetgum, but not the loblolly or slash pine.  相似文献   

13.
Containerized seedlings of three commercially important tropical species were grown under four different light treatments [i.e., 100 (open site), 45, 22 and 10% sunlight] for 130 days. Light-saturated photosynthesis (A max) and light saturation estimates (LSE) reflected the species successional status with Terminalia superba Engl. and Diels, the pioneer species showing largest mean A max and LSE at 100% sunlight, whereas at 10% sunlight, it showed the lowest A max and LSE. At 22% sunlight, Cedrela odorata L., an intermediate successional species had greater A max and LSE than Mansonia altissima A. Chev., a non-pioneer light demander and T. superba. T. superba had the lowest relative growth rate (RGR) at 10% sunlight and greatest net assimilation rate (NAR) at 100% sunlight; although a higher RGR at this light level was not seen for this species. Strong and positive linear mean A max–mean NAR relationship of C. odorata and T. superba indicated that differences in leaf photosynthetic rates of the two species were reflected in their NAR, which increased with increasing light. At final harvest, superior biomass production was found at 45% sunlight for all the species. Seedling responses in specific leaf area, leaf area ratio, leaf mass ratio and root mass ratio were typically those found along a light gradient. At the 100% sunlight, intrinsic water-use efficiency (WUE), F v/F m and final root system of the plants was generally superior in T. superba but at 10% sunlight, WUE was inferior in T. superba when compared to C. odorata and M. altissima, reflecting the respective species’ short-term acclimation to high or low light. Results of this study may have practical use in screening tropical tree species for use in plantation forestry.  相似文献   

14.
Four regions of chloroplast DNA were sequenced as a prospective genetic marker to identify Japanese representatives of Cyclobalanopsis: Quercus acuta, Q. sessilifolia, Q. salicina, Q. myrsinaefolia, Q. glauca, and Q. gilva. We found that Q. gilva was distinguished from other species based on both the trnL-trnF and trnT-trnL intergenic spacers. The evidence shows good coincidence with the fact that Q. gilva has several peculiar morphological features distinguishable from those of other species. There was no difference in trnL intron and matK. Both trnT-trnL and trnL-trnF intergenic spacers are capable of being used as genetic markers to identify Q. gilva among Cyclobalanopsis species.Part of this paper was presented at the 48th annual meeting of the Japan Wood Research Society, Shizuoka, April 3–5, 1998  相似文献   

15.
Two-year-old seedlings ofPinus koraiensis, Pinus sylvestriformis andFraxinus mandshurica were treated in open-top chambers with elevated CO2 concentrations (700 μL·L−1, 500 μL·L−1) and ambient CO2 concentrations (350 μL·L−1) in Changbai Mountain from June to Sept. in 1999 and 2001. The net photosynthetic rate, dark respiration rate, ribulose-1,5-bisphosphate carboxlase (RuBPcase) activity, and chlorophyll content were analyzed. The results indicated the RuBPcase activity of the three species seedlings increased at elevated CO2 concentrations. The elevated CO2 concentrations stimulated the net photosynthetic rates of three tree species exceptP. sylvestriformis grown under 500 μL·L−1 CO2 concentration. The dark respiration rates ofP. koraiensis andP. sylvestriformis increased under concentration of 700 μL·L−1 CO2, out that ofF. mandshurica decreased under both concentrations 700 μL·L−1 and 500 μL·L−1 CO2. The seedlings ofF. mandshurica decreased in chlorophyll contents at elevated CO2 concentrations. Foundation item: This paper was supported by the National Natural Science Foundation of China (No. 30070158). Knowledge Innovation Item of Chinese Academy of Sciences (KZCX2-406) and “Hundred Scientists” Project of Chinese Academy of Sciences. Biography: Zhou Yu-mei (1973-) Ph. Doctor, Assistant Research fellow Institute of Applied Ecology. Chinese Academy of Sciences. Shenyang 110016. P.R. China. Responsible editor: Song Funan  相似文献   

16.
Two-year-old bareroot Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco.) seedlings were graded on the basis of four root-volume categories and transplanted to four moisture-stress treatments (6, 12, 18, and 24% soil water content) in pots. Macronutrient concentrations and contents of both old and new foliar tissue were determined. Decreasing soil water content resulted in higher concentrations of phosphorus, potassium, and particularly nitrogen in both old and new foliar tissue. This can be attributed to reduced growth, translocation, metabolic activity, and nutrient requirement in response to moisture stress. Seedlings with relatively higher root volumes exhibited higher nutrient concentrations and contents, as well as increased growth. Thus, increased total root biomass per unit of soil area with increasing seedling root volume may have resulted in greater nutrient use, supply, uptake, and storage.  相似文献   

17.
Eucalyptus camaldulensis seedlings of 16–25, 26–35, 36–45 and 46–55cm height classes were used to examine the effect of planting stock quality on field performance. Survival, height and diameter (10cm above ground) were assessed 6 and 12 months after planting out. Significant height differences (P 0.05) existed between the 16–25 and 46–55cm height classes at 6 months age. There were no significant (P 0.05) differences in all these parameters at 12 months after planting out throughout the four height classes. It is concluded that the height classification approach for E. camaldulensis seedlings has very little value if the seedlings are in the 16–55cm height range. Until other nursery stock grading approaches are studied, 16–25cm seedling height class is as effective as the taller ones and would therefore be more economical for dry zone afforestation in Malawi.  相似文献   

18.
Luoranen  Jaana  Rikala  Risto  Aphalo  Pedro J. 《New Forests》2002,23(1):71-80
Applications of growth retardants, daminozide and CCC (chlormequatchloride), were studied in order to determine their effects on morphology and post-planting growth of silver birch (Betula pendula Roth) container seedlings. Daminozide was sprayed once (on 28 June at concentrations of 1.0 – 6.0 g l–1) and CCC was sprayed twice (on 29 June and 27 July at concentrations of 0.5–3.0 gl–1). Height growth, morphology of seedlings at the end of the growing season, the shoot and root growth potential the following spring and field performance during the following seasons were measured. During the first summer in the nursery, both daminozide and CCC retarded height growth,but daminozide was more effective. The effects of compounds on stem diameter during the summer of application were small. Neither of the compounds affected the field performance of seedlings. The most suitable applications for retardation of height growth, without negative effects on other morphological variables, were 4 g l–1 (32 mg per seedling) for daminozide and 2 g l–1 (16 mg per seedling), sprayed in two applications, for CCC.  相似文献   

19.
The effects of j-rooting on water stress and growth of loblolly (Pious taeda L.) and eastern white pine (Pious strobus L.) were examined over three growing seasons in the field. Seedlings were planted in an area with severe herbaceous competition with either their roots planted straight or bent into a j shape. All seedlings were planted with their root collars placed at the soil surface. During the first year j-rooted seedlings consistently had lower water potentials but never statistically significant. Since both treatments were planted with the root collar at the soil surface, this trend was likely due to an initial shallower root system in j-rooted seedlings. In year three no differences in water potential were significant and no trends were evident. Growth did not differ significantly by treatment at any time but, by year three, j-rooted plants were consistently larger for both species.  相似文献   

20.
In natural plant populations, leaf polyphenols show high intraspecific variation that occurs both temporally and spatially. Leaf phenolics may be induced by diverse ecological factors such as light, nitrogen availability or herbivory attack. Both light and nitrogen availability can show spatial structure in forested stands, meaning that they each have a high degree of autocorrelation, which can determine the appearance of spatial structure in leaf polyphenols. However, the availability of these resources may be drastically changed by forest disturbance, and little is known about the effect of forest disturbance on the spatial pattern and scale of leaf secondary compounds. We hypothesise that the spatial structure of leaf polyphenols in understory vegetation will disappear due to forest harvesting, because these compounds depend on light availability, yet it will remain unaltered for those compounds that either depend on the availability of other resources or are under major genetic control. The study was performed in young pedunculate oak (Quercus robur) populations growing either under a pine canopy (Pinus pinaster) stand or in a pine harvested stand in NW Spain. The spatial structures of green and senescent leaf polyphenols, tannins, non-tannin polyphenols and nitrogen were analysed in both stands using geostatistical analysis. The spatial structures observed for green and senescent leaf polyphenols and tannins in the forested stand disappeared in the harvested stand. However, non-tannin polyphenols, as well as nitrogen, showed spatial structure in both stands. Understanding these changes may be important for the successful recovery of native oak populations growing under pine forests in NW Spain, one of the priorities of the local government. Our results showed that changes in the concentration of leaf secondary compounds after disturbance may be accompanied by differences in their spatial properties, which may have important consequences for ecosystem function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号