首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: To characterize the effect of general anesthesia and minor surgery on renal function in horses. ANIMALS: 9 mares with a mean (+/- SE) age and body weight of 9+/-2 years and 492+/-17 kg, respectively. PROCEDURE: The day before anesthesia, urine was collected (catheterization) for 3 hours to quantitate baseline values, and serum biochemical analysis was performed. The following day, xylazine (1.1 mg/kg, IV) was administered, and general anesthesia was induced 5 minutes later with diazepam (0.04 mg/kg, IV) and ketamine (2.2 mg/kg, IV). During 2 hours of anesthesia with isoflurane, Paco2 was maintained between 48 and 52 mm Hg, and mean arterial blood pressure was between 70 and 80 mm Hg. Blood and urine were collected at 30, 60, and 120 minutes during and at 1 hour after anesthesia. RESULTS: Baseline urine flow was 0.92+/-0.17 ml/kg/h and significantly increased at 30 and 60 minutes after xylazine administration (2.14+/-0.59 and 2.86+/-0.97 ml/kg/h respectively) but returned to baseline values by the end of anesthesia. Serum glucose concentration increased from 12+/-4 to 167+/-8 mg/dl at 30 minutes. Glucosuria was not observed. CONCLUSIONS AND CLINICAL RELEVANCE: Transient hyperglycemia and an increase in rine production accompanies a commonly used anesthetic technique for horses. The increase in urine flow is not trivial and should be considered in anesthetic management decisions. With the exception of serum glucose concentration and urine production, the effect of general anesthesia on indices of renal function in clinically normal horses is likely of little consequence in most horses admitted for elective surgical procedures.  相似文献   

2.
Eight horses were anesthetized three times, by intravenous administration of xylazine (1.1 mg/kg) and ketamine (2.2 mg/kg), detomidine (0.02 mg/kg) and tiletamine-zolazepam (1.1 mg/kg), or detomidine (0.04 mg/kg) and tiletamine-zolazepam (1.4 mg/kg). The sequences were randomized. The duration of analgesia and the times to sternal and standing positions were recorded. Heart rate, arterial pressure, pHa, PaCO2, and PaO2 were measured before and during anesthesia. The duration of analgesia with the two doses of detomidine-tiletamine-zolazepam, 26 +/- 4 minutes and 39 +/- 11 minutes, respectively, was significantly longer than the 13 +/- 6 minutes obtained with xylazine-ketamine. Bradycardia occurred after administration of detomidine, but heart rates returned to baseline values 5 minutes after administration of tiletamine and zolazepam. Arterial pressure was significantly higher and PaO2 significantly lower during anesthesia with detomidine-tiletamine-zolazepam than with xylazine-ketamine. Some respiratory acidosis developed with all anesthetic combinations. The authors conclude that detomidine-tiletamine-zolazepam can provide comparable anesthesia of a longer duration than xylazine and ketamine, but hypoxemia will develop in some horses.  相似文献   

3.
OBJECTIVE: To determine the anesthetic, cardiorespiratory, and metabolic effects of 4 IV anesthetic regimens in Thoroughbred horses recuperating from a brief period of maximal exercise. ANIMALS: 6 adult Thoroughbreds. PROCEDURE: Horses were preconditioned by exercising them on a treadmill. Each horse ran 4 simulated races, with a minimum of 14 days between races. Races were run at a treadmill speed that caused horses to exercise at 120% of their maximal oxygen consumption. Horses ran until fatigued or for a maximum of 2 minutes. Two minutes after exercise, horses received a combination of xylazine hydrochloride (2.2 mg/kg of body weight) and acepromazine maleate (0.04 mg/kg) IV. Five minutes after exercise, horses received 1 of the following 4 IV anesthetic regimens: ketamine hydrochloride (2.2 mg/kg); ketamine (2.2 mg/kg) and diazepam (0.1 mg/kg); tiletamine hydrochloride-zolazepam hydrochloride (1 mg/kg); and guaifenesin (50 mg/kg) and thiopental sodium (5 mg/kg). Treatments were randomized. Cardiopulmonary indices were measured, and samples of blood were collected before and at specific times for 90 minutes after each race. RESULTS: Each regimen induced lateral recumbency. The quality of induction and anesthesia after ketamine administration was significantly worse than after other regimens, and the duration of anesthesia was significantly shorter. Time to lateral recumbency was significantly longer after ketamine or guaifenesin-thiopental administration than after ketaminediazepam or tilet-amine-zolazepam administration. Arterial blood pressures after guaifenesin-thiopental administration were significantly lower than after the other regimens. CONCLUSIONS AND CLINICAL RELEVANCE: Anesthesia can be safely induced in sedated horses immediately after maximal exercise. Ketamine-diazepam and tilet-amine-zolazepam induced good quality anesthesia with acceptable perturbations in cardiopulmonary and metabolic indices. Ketamine alone and guaifenesin-thiopental regimens are not recommended.  相似文献   

4.
Objective-To compare the anesthetic and cardiorespiratory effects of total IV anesthesia with propofol (P-TIVA) or a ketamine-medetomidine-propofol combination (KMP-TIVA) in horses. Design-Randomized experimental trial. Animals-12 horses. Procedure-Horses received medetomidine (0.005 mg/kg [0.002 mg/lb], IV). Anesthesia was induced with midazolam (0.04 mg/kg [0.018 mg/lb], IV) and ketamine (2.5 mg/kg [1.14 mg/lb], IV). All horses received a loading dose of propofol (0.5 mg/kg [0.23 mg/lb], IV), and 6 horses underwent P-TIVA (propofol infusion). Six horses underwent KMP-TIVA (ketamine [1 mg/kg/h {0.45 mg/lb/h}] and medetomidine [0.00125 mg/kg/h {0.0006 mg/lb/h}] infusion; the rate of propofol infusion was adjusted to maintain anesthesia). Arterial blood pressure and heart rate were monitored. Qualities of anesthetic induction, transition to TIVA, and maintenance of and recovery from anesthesia were evaluated. Results-Administration of KMP IV provided satisfactory anesthesia in horses. Compared with the P-TIVA group, the propofol infusion rate was significantly less in horses undergoing KMP-TIVA (0.14 +/- 0.02 mg/kg/min [0.064 +/- 0.009 mg/lb/min] vs 0.22 +/- 0.03 mg/kg/min [0.1 +/- 0.014 mg/lb/min]). In the KMP-TIVA and P-TIVA groups, anesthesia time was 115 +/- 17 minutes and 112 +/- 11 minutes, respectively, and heart rate and arterial blood pressure were maintained within acceptable limits. There was no significant difference in time to standing after cessation of anesthesia between groups. Recovery from KMP-TIVA and P-TIVA was considered good and satisfactory, respectively. Conclusions and Clinical Relevance-In horses, KMP-TIVA and P-TIVA provided clinically useful anesthesia; the ketamine-medetomidine infusion provided a sparing effect on propofol requirement for maintaining anesthesia.  相似文献   

5.
OBJECTIVE: To determine the effect of morphine administered prior to anesthesia on the incidence of gastroesophageal reflux (GER) in dogs during the subsequent anesthetic episode. ANIMALS: 90 dogs (30 dogs/group). PROCEDURE: The randomized prospective clinical study included healthy dogs with no history of vomiting. Dogs were scheduled to undergo elective orthopedic surgery. Food was withheld for (mean+/-SD) 17.8+/-4.1 hours prior to induction of anesthesia. The anesthetic protocol included acepromazine maleate, thiopental, and isoflurane. Dogs were randomly selected to receive morphine at various dosages (0, 0.22, or 1.10 mg/kg, IM) concurrent with acepromazine administration prior to induction of anesthesia. A sensor-tipped catheter was used to measure esophageal pH, and GER was defined as a decrease in pH to < 4 or an increase to > 7.5. RESULTS: 40 dogs had acidic reflux, and 1 had biliary reflux. Proportions of dogs with GER were 8 of 30 (27%), 15 of 30 (50%), and 18 of 30 (60%) for morphine dosages of 0, 0.22, and 1.10 mg/kg, respectively. Mean duration of GER was 91.4+/-56.8 minutes. There was no significant association between GER and age, weight, vomiting after preanesthetic medication, administration of antimicrobials, or start of surgery. CONCLUSIONS AND CLINICAL RELEVANCE: Most healthy dogs vomit after a large dose of morphine, but vomiting does not increase the likelihood of GER during the subsequent anesthetic episode. Administration of morphine prior to anesthesia substantially increases the incidence of GER during the subsequent anesthetic episode.  相似文献   

6.
The cardiorespiratory effects of four opioid-tranquilizer combinations were evaluated in six dogs. The four combinations were administered to each dog in a randomized order. Buprenorphine (BUP; 0.01 mg/kg IV) or oxymorphone (OXY; 0.1 mg/kg IV) was followed in 10.4 ± 1.3 minutes by midazolam (MID; 0.3 mg/kg IV) or acepromazine (ACE; 0.05 mg/kg IV). Nalbuphine (0.16 mg/kg IV) was administered 94.1 ± 2.3 minutes after the tranquilizer was given. Heart rate (HR) and mean arterial blood pressure (MAP) decreased significantly ( P < .05) after each combination. MAP was significantly lower with combinations using ACE. Most dogs panted after opioid administration; this was associated with increased minute volume (VM) and decreased tidal volume (VT). After administration of the tranquilizer, mean breathing rate and VM index (VMI) were significantly lower with ACE combinations. There were no significant changes in pH and blood gas variables after BUP-ACE. The other three combinations were associated with significant ( P < .05) decreases in pH and increases in Paco2. Mean Pao2 decreased significantly ( P < .05) with OXY combinations but not BUP combinations. Dysrhythmias (atrial or ventricular escape complexes) were seen with each combination. HR increased significantly ( P < .05) after nalbuphine in dogs receiving OXY, but not BUP. Dogs receiving OXY became more alert after nalbuphine on six of 12 occasions, whereas dogs receiving BUP became less alert on six of 12 occasions. OXY-ACE provided the most chemical restraint/sedation and BUP-MID provided the least.  相似文献   

7.
OBJECTIVE: To characterize behavioral and physiological responses to short-term, unsupplemented intravenous (IV) anesthesia in healthy horses at high altitude (2240 m), and to test the hypothesis that the dose of butorphanol modifies the response of the horse to propofol anesthesia following xylazine pre-medication. STUDY DESIGN: Randomized prospective butorphanol dose cross-over experimental design. Animals Eight healthy horses, 13 +/- 6 (mean +/- SD) years of age, and weighing 523 +/- 26 kg. METHODS: Each horse was anesthetized three times with at least 3 weeks between each anesthesia. After collecting pre-drug data, xylazine (0.5 mg kg(-1)) was given IV. Five minutes later butorphanol was given IV according to a randomized order of three doses: 0.025, 0.05 and 0.075 mg kg(-1). Five minutes later, anesthesia was induced with propofol, 2 mg kg(-1) IV. Data on heart rate (HR) and respiratory rate (f(r)), mean arterial blood pressure, P(a)O(2), P(a)CO(2) and pH(a) were collected before, during and for 60 minutes following anesthesia, and quality of induction and recovery was scored. RESULTS: The pre-drug values for the three butorphanol groups did not differ. The combined pre-drug values from the 24 studies were HR, 33 +/- 7 beats minute(-1); f(r), 11 +/- 3 breaths minute(-1); P(a)O(2), 67 +/- 7 mmHg; P(a)CO(2), 36 +/- 4 mmHg; and pH(a), 7.42 +/- 0.04. Five minutes after anesthetic induction P(a)O(2) decreased and P(a)CO(2) increased 14.5 +/- 7.7 and 5.1 +/- 4.9 mmHg, respectively, but returned to pre-drug levels within 15 minutes of anesthetic recovery. There were no significant butorphanol dose-related differences in physiological results, anesthetic induction and recovery quality scores or recovery time. CONCLUSIONS AND CLINICAL RELEVANCE: Dose of butorphanol did not markedly influence study results. Notably, low P(a)O(2) values related to geographic location of study and general anesthesia indicates a narrow margin of error for hypoxemia-related complications in anesthetized horses breathing unsupplemented air at high altitude.  相似文献   

8.
OBJECTIVES: To quantify the change in the minimum alveolar concentration (MAC) of isoflurane (ISO) associated with oxymorphone (OXY) or hydromorphone (HYDRO) in dogs. DESIGN: Randomized crossover study with at least 1 week between assessments. ANIMALS: Six young, healthy, mixed-breed dogs (1-3 years old), weighing 24.7 +/- 4.70 kg. METHODS: Following mask induction, anesthesia was maintained with ISO in 100% O(2) using mechanical ventilation. The dogs received 0.05 mg kg(-1) OXY, 0.1 mg kg(-1) HYDRO, or 1 mL saline (control) IV. Following equilibration (15 minutes) at each percentage ISO tested, a supramaximal electrical stimulus was applied to the toe web and the response was assessed. Two separate MAC determinations were carried out during 4.5 hours of anesthesia, with completion of the evaluations at 1.5-2 and 4-4.5 hours after drug administration. A two-factor anova was used to determine whether there was a time or treatment effect on MAC and a Tukey test compared the drug effects at each time. Significance is reported at p < 0.05. RESULTS: The mean MAC values (+/-SD) were 1.2 +/- 0.18 and 1.2 +/- 0.16% for control, 0.7 +/-0.15 and 1.0 +/- 0.15% for OXY, and 0.6 +/- 0.14 and 0.8 +/- 0.17% for HYDRO. The initial MAC with OXY and the MAC determined at both times with HYDRO were significantly different from the control MAC values. CONCLUSIONS: Both OXY and HYDRO significantly reduced the MAC of ISO in dogs at 2 hours. At approximately 4.5 hours, HYDRO had a significant MAC-sparing effect, whereas OXY did not. CLINICAL RELEVANCE: Although both OXY and HYDRO resulted in a significant reduction in the MAC of ISO at approximately 2 hours, HYDRO may be preferred for procedures of long duration and rarely needs repeated dosing before 4.5 hours.  相似文献   

9.
OBJECTIVE: To compare anesthesia-related events associated with IV administration of 2 novel micellar microemulsion preparations (1% and 5%) and a commercially available formulation (1%) of propofol in horses. Animals-9 healthy horses. PROCEDURES: On 3 occasions, each horse was anesthetized with 1 of the 3 propofol formulations (1% or 5% microemulsion or 1% commercial preparation). All horses received xylazine (1 mg/kg, IV), and anesthesia was induced with propofol (2 mg/kg, IV). Induction and recovery events were quantitatively and qualitatively assessed. Venous blood samples were obtained before and at intervals following anesthesia for quantification of clinicopathologic variables. RESULTS: Compared with the commercial formulation, the quality of anesthesia induction in horses was slightly better with the micellar microemulsion formulas. In contrast, recovery characteristics were qualitatively and quantitatively indistinguishable among treatment groups (eg, time to stand after anesthesia was 34.3 +/- 7.3 minutes, 34.1 +/- 8.8 minutes, and 39.0 +/- 7.6 minutes in horses treated with the commercial formulation, 1% microemulsion, and 5% microemulsion, respectively). During recovery from anesthesia, all horses stood on the first attempt and walked within 5 minutes of standing. No clinically relevant changes in hematologic and serum biochemical analytes were detected during a 3-day period following anesthesia. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that the micellar microemulsion preparation of propofol (1% or 5%) has similar anesthetic effects in horses, compared with the commercially available lipid propofol formulation. Additionally, the micellar microemulsion preparation is anticipated to have comparatively low production costs and can be manufactured in various concentrations.  相似文献   

10.
OBJECTIVE: To evaluate the effect of intratesticular administration of lidocaine on cardiovascular responses and cremaster muscle tension during castration of isoflurane-anesthetized stallions. ANIMALS: 28 healthy stallions (mean +/- SD age, 4.2 +/- 2.8 years) with no testicular abnormalities that were scheduled for castration. PROCEDURE: Each horse was given acepromazine (20 microg/kg, IM), romifidine (50 microg/kg, IV), and butorphanol (20 microg/kg, IV). Anesthesia was induced with ketamine (2.5 mg/kg, IV) and midazolam (50 microg/kg, IV) and maintained with isoflurane (1.7% end-tidal concentration). After 10 minutes at a stable anesthetic plane, a needle was placed in each testicle and either no fluid or 15 mL of 2% lidocaine was injected; 10 minutes after needle placement, surgery was commenced. Pulse rate and arterial blood pressures were measured invasively at intervals from 5 minutes prior to castration (baseline) until 5 minutes after the left spermatic cord was clamped. The surgeon subjectively scored the degree of cremaster muscle tension. In 2 horses, lidocaine labeled with radioactive carbon (C(14)) was used and testicular autoradiograms were obtained. RESULTS: Compared with baseline values, castration significantly increased blood pressure measurements; intratesticular injection of lidocaine decreased this blood pressure response and cremaster muscle tension. In 2 horses, autoradiography revealed diffuse distribution of lidocaine into the spermatic cord but poor distribution into the cremaster muscle. CONCLUSIONS AND CLINICAL RELEVANCE: In isoflurane-anesthetized stallions, intratesticular injection of lidocaine prior to castration appeared to decrease intraoperative blood pressure responses and cremaster muscle tension and may be a beneficial supplement to isoflurane anesthesia.  相似文献   

11.
Intravenous anesthesia in the horse: Comparison of xylazine-ketamine and xylaxine-tiletamine-zolazepam combinations. Six healthy adult horses were anesthetized twice at random with following intravenous combinations: 1.1 mg/kg of body weight (BW) of xylazine followed by 2.2 mg/kg BW of ketamine (X-K) and 1.1 mg/kg BW of xylazine followed by 1.65 mg/kg BW of tiletamine-zolazepam (X-TZ). The modifications of some cardiorespiratory parameters and the duration of anesthesia were evaluated and compared for the 2 protocols used. Few significant differences were observed between the 2 protocols in regard to the cardiorespiratory parameters measured. The respiratory rate was lower (7 breaths per minute) and the heart rate was higher (34 beats per minute) with the X-TZ combination. The duration of anesthesia with this technique was 33 +/- 3 minutes (X +/- Sx) and longer than with X-K (18 +/- minutes (X +/- Sx)). Superficial analgesia lasted 14,5 +/- 3 minutes with the X-K combination and 31,7 +/- 3,2 minutes for the X-TZ combination. The 2 protocols are associated with a reduction of PaO2.  相似文献   

12.
Alteration in the arrhythmogenic dose of epinephrine (ADE) was determined in 6 healthy dogs under halothane anesthesia following the administration of xylazine at 1.1 mg/kg i.v. and acepromazine at 0.025 mg/kg i.v. The order of treatment was randomly assigned with each dog receiving both treatments and testing was carried out on 2 separate occasions with at least a 1 wk interval. The ADE determinations were made prior to drug administration during halothane anesthesia (CNTL) and then 20 min and 4 h following drug treatment. Epinephrine was infused for 3 min at increasing dose rates (2.5, 5.0, 10.0 micrograms/kg/min) until the arrhythmia criterion (4 or more intermittent or continuous premature ventricular contractions) was reached within the 3 min of infusion or the 1 min following cessation. The interinfusion interval was 20 min. There was a significant difference (P = 0.0001) in the ADE determined following acepromazine administration at 20 min (20.95 micrograms/kg +/- 2.28 SEM) compared to CNTL (6.64 micrograms/kg +/- 1.09), xylazine at 20 min (5.82 micrograms/kg +/- 0.95) and 4 h (6.13 micrograms/kg +/- 1.05), and acepromazine at 4 h (7.32 micrograms/kg +/- 0.34). No other significant differences existed (P < 0.05). In this study we were unable to show any sensitization to epinephrine following xylazine administration during halothane anesthesia, while a protective effect was shown with a low dose of acepromazine.  相似文献   

13.
OBJECTIVE: To determine the effect of meperidine administered prior to anesthesia on the incidence of vomiting before, and gastroesophageal reflux (GER) and regurgitation during, the subsequent period of anesthesia in dogs. STUDY DESIGN: Randomized, controlled trial. ANIMALS: A total of 60 healthy dogs, 4.3 +/- 2.3 years old, and weighing 35.5 +/- 13.1 kg. METHODS: Dogs were admitted to the study if they were healthy, had no history of vomiting, and were scheduled to undergo elective orthopedic surgery. The anesthetic protocol used was standardized to include thiopental and isoflurane in oxygen. Dogs were randomly selected to receive one of the following pre-medications: morphine (0.66 mg kg(-1) IM) with acepromazine (0.044 mg kg(-1) IM), meperidine (8.8 mg kg(-1) IM) with acepromazine (0.044 mg kg(-1) IM) or meperidine alone (8.8 mg kg(-1) IM). A sensor-tipped catheter was placed to measure esophageal pH during anesthesia. Gastro-esophageal reflux was judged to have occurred if there was a decrease in esophageal pH below four or an increase above 7.5. RESULTS: No dogs vomited after the administration of meperidine, but 50% of dogs vomited after the administration of morphine. When compared with morphine, treatment with meperidine alone or combined with acepromazine before anesthesia was associated with a 55% and 27% reduction in absolute risk of developing GER, respectively. Dogs receiving meperidine alone were significantly less sedate than other dogs in the study, and required more thiopental to induce anesthesia. Arterial blood pressure and heart rate were not significantly different between groups at the start of the measurement period. Cutaneous erythema and swelling were evident in four dogs receiving meperidine. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of meperidine to healthy dogs prior to anesthesia was not associated with vomiting and tended to reduce the occurrence of GER, but produced less sedation when compared with morphine. Meperidine is not a useful addition to the anesthetic protocol if prevention of GER is desired.  相似文献   

14.
Anesthesia in Caspian ponies   总被引:1,自引:0,他引:1  
ObjectiveTo evaluate some of the clinical and laboratory parameters following diazepam–acepromazine, thiopental, and halothane anesthesia in Caspian ponies.Study designProspective experimental trial.AnimalsSix healthy Caspian ponies of both sexes, aged 11 ± 3 years and weighing 318 ± 71 kg.MethodsThe ponies were pre-medicated with diazepam (0.2 mg kg−1) and acepromazine (0.05 mg kg−1) IV. Sodium thiopental 5% was administered IV, 10 minutes later and anesthesia was maintained with halothane in oxygen for 1 hour. Heart and respiratory rates, mean arterial blood pressure, cardiac rhythm, and signs of anesthetic depth were monitored during anesthesia. Hematological and serum biochemical parameters were evaluated before anesthesia and at 1, 2, 3, 24, 48, 72, and 96 hours. Urine specific gravity and cytology were evaluated at the same intervals following anesthesia. Parametric data were analyzed using repeated measures anova.ResultsConsiderable sedation/tranquilization without excitement was achieved following pre-medication. Heart rate significantly increased and mild hypotension occurred during anesthesia. Sinus arrhythmia and second degree AV block occurred in five horses. Respiratory rate decreased during anesthesia, with an accompanying respiratory acidosis. Body temperature also decreased. Recovery was scored ‘good’ in four horses and ‘satisfactory’ in the other two. Blood urea nitrogen concentration was significantly increased at 1–3 hours post-anesthesia. Blood glucose was significantly increased at 48, 72, and 96 hours, and creatine kinase and aspartate aminotransferase were significantly increased at 24 and 48 hours post-anesthesia.Conclusion and clinical relevance This simple anesthetic protocol can be used in Caspian ponies and an acceptable anesthetic with a reasonable recovery can be expected.  相似文献   

15.
OBJECTIVE: To determine effects of preoperative administration of ketoprofen on whole blood platelet aggregation, buccal mucosal bleeding time, and hematologic indices in dogs after elective ovariohysterectomy. DESIGN: Randomized, masked clinical trial. ANIMALS: 22 healthy dogs. PROCEDURE: 60 minutes before induction of anesthesia, 11 dogs were given 0.9% NaCl solution (control), and 11 dogs were given ketoprofen (2 mg/kg [0.9 mg/lb], IM). Thirty minutes before induction of anesthesia, glycopyrrolate (0.01mg/kg [0.005 mg/lb]), acepromazine (0.05 mg/kg [0.02 mg/lb]), and butorphanol (0.2 mg/kg 10.09 mg/lb]) were given IM to all dogs. Anesthesia was induced with thiopental (5 to 10 mg/kg [2.3 to 4.5 mg/lb], IV) and maintained with isoflurane (1 to 3%). Ovariohysterectomy was performed and butorphanol (0.1 mg/kg [0.05 mg/lb], IV) was given 15 minutes before completion of surgery. Blood samples for measurement of variables were collected at intervals before and after surgery. RESULTS: In dogs given ketoprofen, platelet aggregation was decreased 95 +/- 10% and 80 +/- 35% (mean +/- SD) immediately after surgery and 24 hours after surgery, respectively, compared with preoperative values. At both times, mean values in dogs given ketoprofen differed significantly from those in control dogs. Significant differences between groups were not observed for mucosal bleeding time or hematologic indices. CONCLUSIONS AND CLINICAL RELEVANCE: Preoperative administration of ketoprofen inhibited platelet aggre gation but did not alter bleeding time. Ketoprofen can be given before surgery to healthy dogs undergoing elective ovariohysterectomy, provided that dogs are screened for potential bleeding problems before surgery and monitored closely after surgery.  相似文献   

16.
OBJECTIVE: To evaluate the effects of acepromazine maleate on the cardiovascular changes induced by dopamine in isoflurane-anesthetized dogs. STUDY DESIGN: Prospective, randomized cross-over experimental design. ANIMALS: Six healthy adult spayed female dogs weighing 16.4 +/- 3.5 kg (mean +/- SD). METHODS: Each dog received two treatments, at least 1 week apart. Acepromazine (0.03 mg kg(-1), IV) was administered 15 minutes before anesthesia was induced with propofol (7 mg kg(-1), IV) and maintained with isoflurane (1.8% end-tidal). Acepromazine was not administered in the control treatment. Baseline cardiopulmonary parameters were measured 90 minutes after induction. Thereafter, dopamine was administered intravenously at 5, 10, and 15 microg kg(-1) minute(-1), with each infusion rate lasting 30 minutes. Cardiopulmonary data were obtained at the end of each infusion rate. RESULTS: Dopamine induced dose-related increases in cardiac index (CI), stroke index, arterial blood pressure, mean pulmonary arterial pressure, oxygen delivery index (DO(2)I) and oxygen consumption index. In the control treatment, systemic vascular resistance index (SVRI) decreased during administration of 5 and 10 microg kg(-1) minute(-1) of dopamine and returned to baseline with the highest dose (15 microg kg (-1) minute(-1)). After acepromazine treatment, SVRI decreased from baseline during dopamine administration, regardless of the infusion rate, and this resulted in a smaller increase in blood pressure at 15 microg kg (-1) minute(-1). During dopamine infusion hemoglobin concentrations were lower following acepromazine and this contributed to significantly lower arterial O(2) content. CONCLUSIONS: Acepromazine prevented the return in SVRI to baseline and reduced the magnitude of the increase in arterial pressure induced by higher doses of dopamine. However, reduced SRVI associated with lower doses of dopamine and the ability of dopamine to increase CI and DO(2)I were not modified by acepromazine premedication. CLINICAL RELEVANCE: Previous acepromazine administration reduces the efficacy of dopamine as a vasopressor agent in isoflurane anesthetized dogs. Other beneficial effects of dopamine such as increased CO are not modified by acepromazine.  相似文献   

17.
Objective-To establish a safe anesthetic protocol with little effect on blood biochemical values and IV glucose tolerance test (IVGTT) results in Japanese black bears (Ursus thibetanus japonicus). Animals-16 captive female Japanese black bears (5 to 17 years of age). Procedures-Bears were randomly assigned to 4 treatment groups (4 bears/group) in which various treatment combinations were administered via blow dart: tiletamine HCl and zolazepam HCl (9 mg/kg) alone (TZ), TZ (6 mg/kg) and acepromazine maleate (0.1 mg/kg), TZ (6 mg/kg) and butorphanol tartrate (0.3 mg/kg), or TZ (3 mg/kg) and medetomidine HCl (40 μg/kg). Glucose injection for the IVGTT was started 130 minutes after TZ administration. Blood samples were obtained before, at, and intermittently after glucose injection for measurement of biochemical variables as well as plasma glucose and serum insulin concentrations during the IVGTT. Rectal temperature, pulse rate, and respiratory rate were assessed every 15 minutes during the experiment. Results-Induction and maintenance of anesthesia were safely achieved with little adverse effect on cardiopulmonary function when each of the 4 anesthetic regimens was used, although mild hypothermia was induced. No difference was evident between treatment groups in blood biochemical values. Blood glucose and insulin concentration profiles during the IVGTT were similar among the bears given TZ, with or without acepromazine or butorphanol, but hyperglycemia and hypoinsulinemia developed in bears given TZ with medetomidine. Conclusions and Clinical Relevance-All 4 anesthetic regimens yielded chemical restraint without affecting clinical and biochemical values in bears, but medetomidine appeared to affect IVGTT results. For this reason, medetomidine should not be used when anesthetizing bears for IVGTTs.  相似文献   

18.
OBJECTIVE: To evaluate concomitant propofol and fentanyl infusions as an anesthetic regime, in Greyhounds. ANIMALS: Eight clinically normal Greyhounds (four male, four female) weighing 25.58 +/- 3.38 kg. DESIGN: Prospective experimental study. METHODS: Dogs were premedicated with acepromazine (0.05 mg/kg) by intramuscular (i.m.) injection. Forty five minutes later anesthesia was induced with a bolus of propofol (4 mg/kg) by intravenous (i.v.) injection and a propofol infusion was begun (time = 0). Five minutes after induction of anesthesia, fentanyl (2 microg/kg) and atropine (40 microg/kg) were administered i.v. and a fentanyl infusion begun. Propofol infusion (0.2 to 0.4 mg/kg/min) lasted for 90 minutes and fentanyl infusion (0.1 to 0.5 microg/kg/min) for 70 minutes. Heart rate, blood pressure, respiratory rate, end-tidal carbon dioxide, body temperature, and depth of anesthesia were recorded. The quality of anesthesia, times to return of spontaneous ventilation, extubation, head lift, and standing were also recorded. Blood samples were collected for propofol and fentanyl analysis at varying times before, during and after anesthesia. RESULTS: Mean heart rate of all dogs varied from 52 to 140 beats/min during the infusion. During the same time period, mean blood pressure ranged from 69 to 100 mm Hg. On clinical assessment, all dogs appeared to be in light surgical anesthesia. Mean times (+/- SEM), after termination of the propofol infusion, to return of spontaneous ventilation, extubation, head lift and standing for all dogs were 26 +/- 7, 30 +/- 7, 59 +/- 12, and 105 +/- 13 minutes, respectively. Five out of eight dogs either whined or paddled their forelimbs in recovery. Whole blood concentration of propofol for all eight dogs ranged from 1.21 to 6.77 microg/mL during the infusion period. Mean residence time (MRTinf) for propofol was 104.7 +/- 6.0 minutes, mean body clearance (Clb) was 53.35 +/- 0.005 mL/kg/min, and volume of distribution at steady state (Vdss) was 3.27 +/- 0.49 L/kg. Plasma concentration of fentanyl for seven dogs during the infusion varied from 1.22 to 4.54 ng/mL. Spontaneous ventilation returned when plasma fentanyl levels were >0.77 and <1.17 ng/mL. MRTinf for fentanyl was 111.3 +/- 5.7 minutes. Mean body clearance was 29.1 +/- 2.2 mL/kg/min and Vdss was 2.21 +/- 0.19 L/kg. CONCLUSION AND CLINICAL RELEVANCE: In Greyhounds which were not undergoing any surgical stimulation, total intravenous anesthesia maintained with propofol and fentanyl infusions induced satisfactory anesthesia, provided atropine was given to counteract bradycardia. Despite some unsatisfactory recoveries the technique is worth investigating further for clinical cases, in this breed and in mixed breed dogs.  相似文献   

19.
In 2 separate experiments, groups of atropinized cats (6 cats/group) were given acepromazine (0.25 mg/kg of body weight) or xylazine (2.2 mg/kg) IM and anesthetized with pentobarbital. The mean dose of pentobarbital was decreased approximately 36% by acepromazine, and approximately 80% by xylazine, compared with published doses. Anesthetized cats were given IV saline solution (control groups) or were given the antagonists 4-aminopyridine (4-AP; 0.5 mg/kg), yohimbine (0.4 mg/kg), or 4-AP + yohimbine (0.5 mg/kg and 0.4 mg/kg, respectively). In acepromazine-treated cats, 4-AP + yohimbine was the most effective antagonist; arousal and walking occurred in an average of 10.4 minutes and 91.7 minutes, respectively. Yohimbine enhanced the antagonistic effects of 4-AP. In xylazine-treated cats, yohimbine was an effective antagonist; arousal and walking occurred in an average of 2.8 minutes and 12.8 minutes, respectively. Yohimbine did not enhance the antagonistic effects of 4-AP. Mean respiratory rates were decreased by acepromazine, but were increased by xylazine. Thus, respiratory rate depression by pentobarbital was not as marked with xylazine as it was with acepromazine. Changes in mean heart rate were not remarkable with either sedative, and cardiac irregularities were not palpated or auscultated. In healthy cats, the duration of pentobarbital anesthesia can be controlled by 4-AP + yohimbine (acepromazine-pretreated cats) or by yohimbine alone (xylazine-pretreated cats).  相似文献   

20.
Cardiopulmonary and behavioral effects of the following tranquilizer-opioid drug combinations were compared in conscious dogs: acepromazine (0.22 mg/kg of body weight, IV) and butorphanol (0.22 mg/kg, IV); acepromazine (0.22 mg/kg, IM) and butorphanol (0.22 mg/kg, IM); and acepromazine (0.22 mg/kg, IV) and oxymorphone (0.22 mg/kg, IV). Marked sedation and lateral recumbency that required minimal or no restraint was achieved with every drug combination. Analgesia was significantly better in dogs receiving oxymorphone than in dogs receiving butorphanol, as evaluated by response to toe pinch. There were no significant differences between the effects of the 3 drug combinations on heart rate, respiratory rate, arterial blood pressure, body temperature, and arterial pH, PCO2, PO2, and bicarbonate concentration. Heart rate, respiratory rate, and systolic arterial pressure decreased significantly over time with all drug combinations. Total recovery time (minutes from the initial injection to standing) was significantly longer in the dogs given acepromazine and oxymorphone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号