首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to determine whether administration of hCG approximately 5 d after AI would increase plasma progesterone concentrations and conception rates in beef heifers. Heifers from two locations (Location 1: n = 347, BW = 367 +/- 1.72 kg; Location 2: n = 246, BW = 408 +/- 2.35 kg) received melengestrol acetate (0.5 mg.heifer(-1).d(-1)) for 14 d and an injection of PGF2alpha (25 mg i.m.) 19 d later. Heifers were observed for estrus continuously during daylight from d 0 to 4.5 after PGF2alpha and artificially inseminated approximately 12 h after the onset of estrus. Half of the heifers inseminated at Location 1 were assigned randomly to receive an injection of hCG (3,333 IU i.m.) 8 d after PGF2alpha, and a blood sample was collected from all heifers 14 d after PGF2alpha for progesterone analysis. Half of the heifers inseminated at Location 2 were administered hCG on d 9 after PGF2alpha, and a blood sample was collected from all heifers 17 d after PGF2alpha. Heifers at Location 1 had a 94% synchronization rate, exhibited estrus 2.45 +/- 0.03 d after PGF2alpha, and received hCG 5.55 +/- 0.03 d after AI. Heifers at Location 2 had an 85% synchronization rate, exhibited estrus 2.69 +/- 0.03 d after PGF2alpha, and received hCG 6.31 +/- 0.03 d after AI. Progesterone concentrations were greater (P < 0.01) for hCG-treated heifers than for controls at both locations (8.6 vs. 4.6 ng/mL for treatment vs. control at Location 1, and 11.2 vs. 5.6 ng/mL for treatment vs. control at Location 2). Pregnancy status was determined by ultrasound approximately 50 d after AI. Conception rates (65 vs. 70% for treatment vs. control, respectively) did not differ at Location 1. Conception rates tended (P = 0.10) to be increased with hCG treatment at Location 2 (61 vs. 50% for treatment vs. control, respectively). A second experiment was conducted with 180 heifers at a third location to determine the effects of hCG administration 6 d after timed insemination at approximately 60 h after PGF2alpha in heifers synchronized as in Exp. 1. Pregnancy rate to timed AI did not differ between hCG-treated (62%) and control heifers (59%). Final pregnancy rate after timed AI and bull exposure (92%) was not affected by treatment. In summary, administration of hCG 5 to 6 d after AI did not improve conception or pregnancy rates at two out of three locations evaluated, suggesting insufficient progesterone is not a major factor contributing to early pregnancy failure in beef heifers.  相似文献   

2.
We determined the effects of hCG on ovarian response, concentration of progesterone, and fertility in a fixed-time AI (TAI) protocol. Four hundred forty-four crossbred beef heifers were synchronized with the CO-Synch + CIDR (controlled internal drug-releasing insert) protocol. In addition, heifers were randomly assigned to 1 of 4 treatments in a 2 × 2 factorial arrangement of treatments with main factors being 1) pretreatment, no treatment (control), or treatment with 1,000 IU of hCG 14 d before the initiation of the CO-Synch + CIDR protocol and 2) treatment, administration of 1,000 IU of hCG or 100 μg of GnRH at CIDR insertion of the CO-Synch + CIDR protocol. Blood samples were collected from all heifers on d -21, -14, -7, 0, and 2 relative to PGF(2α) injection. Transrectal ultrasonography was used to examine ovaries in a subset of heifers (n = 362) on d -7 and 0 relative to PGF(2α), and to determine pregnancy status of all heifers on d 33 and 82 relative to AI. Pregnancy rates were similar for heifers pretreated with control (33.0%) or hCG (36.4%), whereas pregnancy rates were greater (P < 0.01) for heifers treated with GnRH (40.1%) compared with hCG (29.0%) at CIDR insertion. Heifers pretreated with hCG had more (P < 0.01) corpora lutea present on the day of CIDR insertion and the day of CIDR removal compared with untreated heifers. A greater proportion (P < 0.01) of heifers ovulated as a result of administration of hCG at the time of CIDR insertion (59.0%) compared with GnRH (38.7%). Heifers treated with hCG at CIDR insertion had greater (P < 0.01) concentrations of progesterone compared with those receiving GnRH at the time of CIDR removal (2.42 ± 0.13 vs. 1.74 ± 0.13 ng/mL; P < 0.01) and at fixed-time AI (0.52 ± 0.03 vs. 0.39 ± 0.03 ng/mL; P < 0.01). Therefore, hCG was more effective than GnRH in its ability to ovulate follicles and to increase concentrations of progesterone in beef heifers. Presynchronization with hCG 14 d before CIDR insertion did not alter pregnancy rates, whereas replacing GnRH with hCG at CIDR insertion decreased pregnancy rates.  相似文献   

3.
The objective of the experiment was to compare pregnancy rates resulting from fixed-time AI after administration of either 1 of 2 controlled internal drug release (CIDR)-based protocols. Heifers at 3 locations (location 1, n = 78; location 2, n = 61; and location 3, n = 78) were assigned to 1 of 2 treatments within reproductive tract scores (1 = immature to 5 = cycling) by age and BW. Heifers assigned to CIDR Select received a CIDR insert (1.38 g of progesterone) from d 0 to 14 followed by GnRH (100 mug, i.m.) 9 d after CIDR removal (d 23) and PGF2alpha (PG, 25 mg, i.m.) 7 d after GnRH treatment (d 30). Heifers assigned to CO-Synch + CIDR were administered GnRH and received a CIDR insert on d 23 and PG and CIDR removal on d 30. Heifers at location 1 were fitted with a HeatWatch estrus detection system transmitter from the time of PG until 24 d after fixed-time AI to allow for continuous estrus detection. Artificial insemination was performed at predetermined fixed times for heifers in both treatments at 72 or 54 h after PG for the CIDR Select and CO-Synch + CIDR groups, respectively. All heifers were administered GnRH at the time of AI. Blood samples were collected 10 d before and immediately before treatment initiation (d 0) to determine pretreatment estrous cyclicity (progesterone > or = 0.5 ng/mL). At location 1, the estrous response during the synchronized period was greater (P = 0.06; 87 vs. 69%, respectively), and the variance for interval to estrus after PG was reduced among CIDR Select- (P < 0.01) compared with CO-Synch + CIDR-treated heifers. Fixed-time AI pregnancy rates were significantly greater (P = 0.02) after the CIDR Select protocol (62%) compared with the CO-Synch + CIDR protocol (47%). In summary, the CIDR Select protocol resulted in a greater and more synchronous estrous response and significantly greater fixed-time AI pregnancy rates compared with the CO-Synch + CIDR protocol.  相似文献   

4.
AIM: To compare the reproductive performance of heifers after oestrus synchronisation and fixed-time artificial insemination with non-synchronised heifers bred by herd sires. METHODS: Heifers from 10 spring-calving herds were randomly divided into two groups by herd, breed and age. Heifers in one group (the synchronised group, n = 478) were synchronised with a combination of progesterone, oestradiol benzoate and PGF2alpha, and inseminated 50-54 hours after progesterone treatment. Returns to first service were resynchronised with progesterone treatment 16-21 days after the fixed-time artificial insemination. Heifers in the other group (the control group, n = 470) did not receive any treatment and were bred by herd sires. RESULTS: The conception rate of synchronised heifers to the fixed-time artificial insemination was 51.2% and to the artificial insemination after resynchronisation 40.4%. The pregnancy rate at the end of the breeding season was lower (p<0.001) for the synchronised (92.9%) than for the control (97.2%) group. The interval from start of breeding to calving was earlier for synchronised (295.9 +/- 22.5 days, mean +/- s.d.) than for control (298.5 +/- 17.3 days) heifers. CONCLUSION: Results from this study indicate that the oestrus synchronisation programme used in the present study can reduce reproductive performance by increasing the empty rate compared with natural mating.  相似文献   

5.
Our objectives were to determine fertility of heifers after synchronization of estrus using PGF2alpha, preceded by progesterone (P4), GnRH, or both, and to examine the variability of estrual characteristics in heifers before first and second AI. Dairy (n = 247) and beef (n = 193) heifers were assigned randomly to each of three treatments: 1) 50 microg of GnRH (injected i.m.) administered on d -7 followed by 25 mg of PGF2alpha (i.m.) on d -1 (GnRH + PGF; modified Select Synch protocol); 2) placement of an intravaginal progesterone (P4)-releasing insert on d -7, PGF2alpha on d -1, and insert removal on d 0 (P4+PGF); and 3) 50 microg of GnRH plus a P4 insert on d -7, followed by 25 mg of PGF2alpha on d -1, and insert removal on d 0 (P4+GnRH+PGF). Characteristics of estrus were examined before first AI and before the next eligible AI (18 to 26 d later), including duration of estrus, number of standing events, and total and individual duration of standing events. In addition, all heifers were checked visually at least twice daily for estrus. Blood samples were collected on d -7, -1, and 0 for determination of P4, and pregnancy status was diagnosed by ultrasonography 27 to 34 d after AI. Rates of detected estrus were less (P < 0.05) in dairy than in beef heifers, and greater (P < 0.05) in heifers treated with P4. Pattern of conception and pregnancy rates among treatments differed between beef and dairy heifers (treatment x group interaction; P < 0.05). In dairy heifers, conception and pregnancy rates were greatest with P4+PGF, followed by P4+GnRH+PGF and GnRH+PGF, respectively. The opposite was observed among treatments in beef heifers. Administration of P4 without the preceding injection of GnRH produced the lowest pregnancy rates in beefheifers. Ofthe quantified sexual behavioral characteristics during the synchronized estrus, the number of standing events and total duration of standing events were greater (P < 0.01) than those observed during the next eligible estrus before second AI, whereas duration of estrus was unaffected.  相似文献   

6.
Two hundred ninety-nine Angus-based, nulliparous heifers (253 ± 2 kg initial BW) from 3 production years were utilized to compare traditional postweaning dry lot (DL) development with a more extensive winter grazing system utilizing a combination of corn residue and winter range (EXT). Heifers developed in the DL were offered a common diet after the weaning period for 208 d in yr 1, 194 d in yr 2, and 150 d in yr 3 until breeding. Heifers developed in EXT grazed corn residue for 135 d in yr 1, 106 d in yr 2, and 91 d in yr 3, and then fed in the DL until breeding (yr 1) or grazed dormant winter grass for approximately 60 d before being fed in the DL (yr 2 and 3). All 3 years, heifers were estrus synchronized, with timed AI performed in yr 1. In yr 2 and 3, estrus was detected and those detected in estrus were artificially inseminated approximately 12 h later. Heifers were exposed to bulls 10 d after the last AI for 60 d while grazing summer pasture. During the winter grazing period, EXT heifers gained less (P = 0.01) BW than DL heifers and EXT heifers had lighter (P = 0.02) BW at breeding. Fewer (P < 0.01) EXT heifers reached puberty before breeding. Conception to AI was not different (P = 0.23); however, AI pregnancy rate tended (P = 0.08) to be less in EXT heifers. Final pregnancy rates were not different (P = 0.38) between treatment groups. Although EXT heifers had lighter (P = 0.02) BW at pregnancy diagnosis; however, they did compensate with greater (P = 0.05) ADG after breeding, resulting in similar (P = 0.22) precalving BW. Winter development system did not influence (P > 0.10) percentage of calving in the first 21 d, calf birth date, and calf birth BW, or dystocia score. Pregnancy rate after the second breeding season was not different (P = 0.56) between treatments. Heifer development using extended winter grazing reduced (P < 0.01) the cost of producing a pregnant heifer by $45 compared with DL.  相似文献   

7.
Angus × Gelbvieh rotationally crossbred yearling heifers (n = 99, yr 1; n = 105, yr 2) were used in a 2-yr randomized complete block design experiment with repeated measures to determine the effect of feeding camelina biodiesel coproducts (meal and crude glycerin) on serum concentrations of triiodothyronine, thyroxine, insulin, β-hydroxybutyrate, and glucose, as well as on growth and reproductive performance. Heifers were assigned to 1 of 15 pens, and pens were assigned initially to receive 7.03 k·?heifer(-1)·d(-1) of bromegrass hay plus 0.95 kg·heifer(-1)·d(-1) of 1 of 3 supplements for 60 d before breeding: 1) control (50% ground corn and 50% soybean meal, as-fed basis); 2) mechanically extracted camelina meal; or 3) crude glycerin (50% soybean meal, 33% ground corn, 15% crude glycerin, 2% corn gluten meal; as-fed basis). Preprandial blood samples were collected via the jugular vein on d 0, 30, and 60 of the feeding period. A 2-injection PGF(2α) protocol (d 60 and 70 of the study) was used to synchronize estrus. Heifers were artificially inseminated 12 h after estrus was first detected. Heifers not detected in estrus within 66 h received a GnRH injection and were artificially inseminated. Dietary treatment × sampling period interactions were not detected (P = 0.17 to 0.87). Dietary treatment did not affect BW (P = 0.44 to 0.59) or serum concentrations of thyroxine (P = 0.96), β-hydroxybutyrate (P = 0.46), glucose (P = 0.59), or insulin (P = 0.44). Serum concentrations of triiodothyronine were greater (P = 0.05) in heifers fed camelina meal. Additionally, dietary treatment did not affect the percentage of heifers detected in estrus before timed AI (P = 0.83), first-service pregnancy rates of those heifers detected in estrus (P = 0.97), or overall first-service pregnancy rates (P = 0.58). Heifers fed camelina meal, however, had greater (P = 0.05) first-service pregnancy rates to timed AI than did heifers fed the control and crude glycerin supplements. The cost per pregnancy was similar for heifers fed the crude glycerin or the control supplement, whereas the cost per pregnancy was the least for heifers fed camelina meal. We conclude that camelina coproducts can replace conventional corn-soybean meal supplements in the diets of developing replacement beef heifers.  相似文献   

8.
Previous research indicated that the size of the ovulatory follicle at the time of insemination significantly influenced pregnancy rates and embryonic/fetal mortality after fixed-timed AI in postpartum cows, but no effect on pregnancy rates was detected when cows ovulated spontaneously. Our objective was to evaluate relationships of fertility and embryonic/fetal mortality with preovulatory follicle size and circulating concentrations of estradiol after induced or spontaneous ovulation in beef heifers. Heifers were inseminated in 1 of 2 breeding groups: (1) timed insemination after an estrous synchronization and induced ovulation protocol (TAI n = 98); or (2) AI approximately 12 h after detection in standing estrus by electronic mount detectors during a 23-d breeding season (spontaneous ovulation; n = 110). Ovulatory follicle size at time of AI and pregnancy status 27, 41, 55, and 68 d after timed AI (d 0) were determined by transrectal ultrasonography. Only 6 heifers experienced late embryonic or early fetal mortality. Interactions between breeding groups and follicle size did not affect pregnancy rate (P = 0.13). Pooled across breeding groups, logistic regression of pregnancy rate on follicle size was curvilinear (P < 0.01) and indicated a predicted maximum pregnancy rate of 68.0 +/- 4.9% at a follicle size of 12.8 mm. Ovulation of follicles < 10.7 mm or > 15.7 mm was less likely (P < 0.05) to support pregnancy than follicles that were 12.8 mm. Ovulatory follicles < 10.7 mm were more prevalent (28% of heifers) than ovulatory follicles > 15.7 mm (4%). Heifers exhibiting standing estrus within 24 h of timed AI had greater (P < 0.01) follicle diameter (12.2 +/- 0.2 mm vs. 11.1 +/- 0.3 mm) and concentrations of estradiol (9.9 +/- 0.6 vs. 6.6 +/- 0.7) and pregnancy rates (63% vs. 20%) than contemporaries that did not exhibit behavioral estrus. However, when differences in ovulatory follicle size were accounted for, pregnancy rates were independent of expression of behavioral estrus or circulating concentration of estradiol. Therefore, the effects of serum concentrations of estradiol and behavioral estrus on pregnancy rate appear to be mediated through ovulatory follicle size, and management practices that optimize ovulatory follicle size may improve fertility.  相似文献   

9.
We hypothesized that heifers in diestrus at the beginning of a Syncro-Mate-B (SMB) regimen would have higher pregnancy rates to AI than heifers not in diestrus and that administration of a PGF2alpha analogue 11 d before a SMB regimen would increase pregnancy rates to AI. In both replicate years of Exp. 1, heifers (n = 150) were classified by stage of the estrous cycle at the beginning of a SMB regimen (d 0). Following implant removal (d 9), heifers were artificially inseminated 12 h after the onset of estrus (95.5% in estrus by 72 h). Blood samples were collected for progesterone (P4) analysis on d 0, 9, and 20. Pregnancy rates did not differ between yr 1 and 2. Pregnancy rate for heifers classified in diestrus (53.6%; n = 69) was higher (P = 0.06) than for heifers in metestrus (43.7%; n = 48). Pregnancy rate for proestrus (44.4%; n = 18) heifers was not different from that for heifers in the metestrus or diestrus groups. Mean plasma P4 concentration was affected by both treatment and day. Pregnancy rate was higher (P < 0.01) for heifers with P4 > 1 ng/mL plasma (51.6%; n = 120) than for heifers with P4 < or = 1 ng/mL plasma (23.3%; n = 30) on d 0. In Exp. 2, beef heifers (Santa Cruz; n = 195) were allotted to two treatments. Heifers (n = 98) in the control group were administered a conventional SMB treatment. Heifers (n = 97) in the PGF group were injected with PGF2alpha 11 d (d -11) before a SMB regimen. Progesterone concentration was determined from blood samples collected on d -11, -2, 0, and 9. All heifers were artificially inseminated 48 to 50 h after implant removal. At the beginning of the SMB regimen (d 0), a greater (P < 0.05) percentage of PGF (74.2%) than of control heifers (59.2%) were in diestrus (P4 > 1 ng/mL). Mean P4 concentration was not affected by treatment or day x treatment but differed (P < 0.05) among days. Pregnancy rate of cycling heifers was similar for PGF (36%) and control heifers (35.9%). Pregnancy rate was higher (P < 0.01) for heifers with P4 > 1 ng/mL plasma (37.6%) than for heifers with P4 < or = 1 ng/mL plasma (18.5%) on d 0. These results support the hypothesis that fertility is enhanced when a progestin synchrony regimen is initiated during diestrus, but methods to program estrous cycles to increase fertility warrant investigation.  相似文献   

10.
The objective of this study was to evaluate synchronization and pregnancy rates of beef heifers supplemented with 0.91 kg of whole sunflower seeds for 0, 30, or 60 d before AI. Beef heifers from four locations (n = 1,014) were assigned by BW to treatment (within location) and randomly to AI sire. Heifers at Location 1 (n = 176; mean BW = 332 kg) received either 0- or 60-d sunflower seed treatments. Heifers at Location 2 (n = 397; mean BW = 334 kg) were fed sunflower seeds for 0, 30, or 60 d. Heifers at Locations 3 (n = 211; mean BW = 345 kg) and 4 (n = 230; mean BW = 343 kg) received 0- or 30-d sunflower seed treatments. Within location, diets were formulated to be isocaloric and isonitrogenous. All heifers received melengesterol acetate (0.5 mg/d per head) for 14 d followed 19 d later by an injection of prostaglandin F2a (PGF) (25 mg). Heifers were bred by AI according to the AM/PM rule except on d 3 when all heifers that had not exhibited estrus were artificially inseminated in mass. Neither 72-h estrous response nor pregnancy rate was affected (P>0.10) by 30- or 60-d sunflower feeding. In summary, feeding 0.91 kg of whole sunflower seeds for either 30 or 60 d before AI did not improve estrous response or pregnancy rate when compared with controls.  相似文献   

11.
The working hypotheses in this experiment were: that ovarian estradiol would inhibit luteinizing hormone (LH) secretion in heifers that were anestrus as a result of restricted dietary energy intake and the responsiveness of LH secretion to estradiol negative feedback would decrease during the period when restoration of estrous cycles occurred following feeding of diets adequate in energy. Fifteen heifers weighing 341 +/- 12 (mean +/- SE) kg were fed a diet containing 50% of the energy required for maintenance until 40 to 50 d following cessation of estrous cycles. Heifers were assigned to intact control (C, n = 5), ovariectomized (OVX, n = 5) or ovariectomized-estradiol-17 beta-implanted (OVX + E2, n = 5) treatments. Heifers were subsequently provided a high-energy (HE) diet until termination of the study. Progesterone concentrations indicating cessation of corpus luteum function were detected after heifers had lost 71 +/- 8 kg body weight over 186 +/- 28 d. Control heifers re-initiated estrous cycles as indicated by increased progesterone concentrations in serum at 49 +/- 9 d after initiation of feeding the HE diet (360 +/- 18 kg body weight). Initiation of pulsatile LH secretion was observed in heifers by d 12 following OVX. Estradiol suppressed LH secretion in OVX + E2 heifers during the period of nutritional anestrus in C heifers. Suppressive effects of E2 on LH secretion continued in OVX heifers after C heifers had initiated corpus luteum function. Therefore, the working hypothesis that LH secretion is inhibited by E2 in the nutritionally anestrous heifer is accepted but responsiveness to estradiol does not subside with re-initiation of estrous cycles, thus this working hypothesis is rejected.  相似文献   

12.
Two experiments were conducted to compare pregnancy rates resulting from fixed-time AI (FTAI) after administration of 1 of 2 long-term controlled internal drug release (CIDR)-based protocols. Heifers were assigned to treatment by age, BW, and pubertal status. The CIDR Select-treated heifers (Exp. 1, n = 37; Exp. 2, n = 192) received a CIDR (1.38 g of progesterone) from d 0 to 14, followed by 100 μg of GnRH, intramuscularly (i.m.) 9 d after CIDR removal (d 23) and PGF(2α) (25 mg, i.m.) 7 d after GnRH treatment (d 30). Heifers assigned to the Show-Me-Synch protocol (Exp. 1, n = 40; Exp. 2, n = 200) received a CIDR from d 0 to 14, followed by PGF(2α) 16 d later (d 30). Artificial insemination was performed at 72 or 66 h after PGF(2α) treatment for the CIDR Select- and Show-Me-Synch-treated heifers, respectively, and each heifer was given GnRH (100 μg, i.m.) at the time of AI. In Exp. 1, ovaries of each heifer were examined by transrectal ultrasonography on d 23 and 30 to characterize follicular dynamics. Follicles ≥5 mm and the presence of corpora lutea were recorded. On d 25, ovaries of each heifer were examined to characterize the status of dominant follicles recorded on d 23. Heifers were fitted with HeatWatch (DDx Inc., Denver, CO) estrus-detection transmitters at PGF(2α) to characterize estrus distribution up to FTAI. The diameter of dominant follicles on d 23 at PGF(2α) and on d 30, and the estrous response after PGF(2α) treatment up to the point of FTAI did not differ between CIDR Select- and Show-Me-Synch-treated heifers. Concentrations of progesterone in serum at PGF(2α) were greater (P = 0.07) in Show-Me-Synch- than CIDR Select-treated heifers (6.0 vs. 4.8 ng/mL, respectively). Pregnancy rates of heifers resulting from FTAI did not differ (P = 0.33) between CIDR Select- and Show-Me-Synch-treated heifers (CIDR Select, 59%; Show-Me-Synch, 70%). In Exp. 2, FTAI pregnancy rates tended (P = 0.07) to be greater in Show-Me-Synch-treated (62%) than in CIDR Select-treated (51%) heifers. Pregnancy rates at the end of the breeding season did not differ (P = 0.72; CIDR Select, 85%; Show-Me-Synch, 83%) between treatments. In summary, pregnancy rates resulting from FTAI were comparable for heifers assigned to each of the 2 long-term progestin-based protocols. The reduced treatment cost and animal handling associated with administration of the Show-Me-Synch protocol offer distinct advantages over the CIDR Select protocol despite similarities in pregnancy rates resulting from FTAI.  相似文献   

13.
OBJECTIVE: To compare the timing of onset of oestrus and ovulation, characteristics of oestrus, and fertility in Bos indicus heifers synchronised with a progesterone releasing intravaginal insert (IVP4) and administration of oestradiol benzoate (ODB) either at the time of removal of the insert or 24 h later. Design: Cohort study. PROCEDURE: Bos indicus and Bos indicus cross heifers were treated on two farms (Farm A, n = 273; Farm B, n = 47) with an IVP4 for 8 days with 1.0 mg of ODB administered at the time of device insertion and 250 mg of cloprostenol at the time of device removal. Heifers in the ODB-0 group were administered 0.75 mg of ODB at the time of device removal while heifers in the ODB-24 group were administered the same dose of ODB 24 h after device removal. Heifers were inseminated once daily after detection of oestrus. Heifers not detected in oestrus by 72 h after removal of inserts were inseminated at that time. Oestrus was detected in heifers on Farm A using heatmount detectors while on Farm B oestrus in heifers was monitored using radiotelemetry of mounting pressure. Ovarian follicular development was monitored daily in 30 heifers on Farm B from the time of administration of inserts until ovulation to a maximum of 96 h after removal of inserts, and again 11 days after removal of inserts (Day 19). A blood sample was collected from all heifers on Farm B on Day 19 and analysed for plasma concentration of progesterone. Pregnancy was diagnosed 6 to 8 weeks after insemination. RESULTS: Administration of ODB at the time of removal of inserts shortened the time interval to oestrus and ovulation (P < 0.001), increased the number of mounts recorded during oestrus (P = 0.04) and reduced the odds of pregnancy (P = 0.03). The proportion of heifers ovulating on Farm B was 67% and was not affected by treatment group (P = 0.61). The mean diameter of the largest follicle measured in ovaries was greater at the time of removal of inserts (9.1 +/- 0.6 vs 10.7 +/- 0.4; P = 0.03) and at the expected time of the LH surge (8.1 +/- 0.4 vs 11.5 +/- 0.3 mm; P < 0.001) in heifers that ovulated compared to heifers that failed to ovulate, respectively. Emergence of a new follicular wave was not detected during the synchronisation treatment in heifers that failed to ovulate. Concentrations of progesterone in plasma on Day 19 were less in non-pregnant heifers (P = 0.05) compared to heifers subsequently diagnosed as pregnant to insemination and were affected by the diameter of the ovulatory follicle (P = 0.01). CONCLUSION: Administration of ODB at the time of removal of inserts can shorten the time interval to oestrus and ovulation and can reduce fertility when insemination is carried out once daily. Further work is needed to determine if prolonged suppression of follicular development, anovulatory oestrus and premature ovulation occuring in some heifers is associated with administration of ODB.  相似文献   

14.
Three experiments were conducted to evaluate methods to decrease or eliminate the detection of estrus inherent to a melengestrol acetate (MGA)-PGF2alpha (PGF) protocol for synchronization of estrus in heifers. In each experiment, all heifers received 0.5 mg of MGA x animal(-1) x d(-1) for 14 d (d -32 to -19) and PGF (25 mg, i.m.; d 0, 0 h) 19 d after the last feeding of MGA (MGA-PGF protocol). In Exp. 1, heifers (n = 709) were assigned to each of the following protocols: 1) the MGA-PGF protocol with AI 6 to 12 h after detection of estrus (estrus AI; MGA-PGF); 2) MGA-PGF plus 100 microg, i.m. of GnRH on d -7 (1x GnRH) and estrus AI; or 3) MGA-PGF, GnRH on d -7, and GnRH (100 microg, i.m.) at 48 h after PGF, coincident with insemination (2x GnRH-TB48). In Exp. 2, heifers (n = 559) received the MGA-PGF protocol and were inseminated by either estrus AI or fixed-time AI (TAI) at 60 h, coincident with an injection of GnRH (GnRH-TB60). In Exp. 3, all heifers (n = 460) received the MGA-PGF protocol and were inseminated by estrus AI when detected up to 73 h. Heifers not observed in estrus by 73 h received TAI between 76 and 80 h. Half the heifers inseminated by TAI received no further treatment (TB80), and the remaining half was injected with GnRH at insemination (GnRH-TB80). Variance associated with the interval to estrus and the proportion in estrus from d 0 to 5 was similar for 1x GnRH and MGA-PGF treatments in Exp. 1. Pregnancy rate (d 0 to 5) did not differ for the MGA-PGF and 1x GnRH treatments (62.5 and 60.4%, respectively), and both were greater (P < 0.05) than TAI pregnancy rate in the 2x GnRH-TB48 treatment (42.3%). In Exp. 2, the peak estrous response occurred 60 h after PGF. Pregnancy rate during the synchrony period was greater (P < 0.05) for the MGA-PGF (255/401; 63.6%) than the GnRH-TB60 (74/158; 46.6%) treatment. In Exp. 3, 75.7% of heifers (348/460) were detected in estrus by 73 h and were inseminated, with a conception rate of 74.4%. Pregnancy rates after TAI did not differ between TB80 and GnRH-TB80 (14/56 = 25% and 19/ 56 = 33.9%, respectively). Total pregnancy rate was 63.5% for heifers inseminated after detected estrus and by TAI. Collectively, these data indicate that the exclusive use of TAI for heifers treated with the MGA-PGF protocol resulted in lower pregnancy rates than when AI was performed after detection of estrus. However, estrus AI for 3 d and TAI at the end of d 3 could result in pregnancy rates similar to those achieved after a 5-d period of detecting estrus.  相似文献   

15.
The objective of this study was to determine if pregnancy rates (PR) differed between beef heifers bred to fertile bulls on either their puberal (E1, n = 89) or third (E3, n = 67) estrus. Heifers were obtained from two lactations (Manhattan, L1; and Miles City, L2), and the experiment was conducted at Miles City. Heifers were assigned randomly within location to either E1 or E3. Heifers were fed to gain .56 kg.head-1 X d-1 and observed twice daily for estrus. After exhibiting first estrus (puberty) and breeding, each heifer in E1 was palpated rectally on d 6, 9 and 12 +/- 1 d (estrus = d 0) for the presence of a corpus luteum, and a venous blood sample was collected for assay of progesterone by radioimmunoassay. Heifers in E3 were palpated and bled on the same schedule as heifers in E1 after first estrus and after being bred to a fertile bull at third estrus. Pregnancy rates were determined by rectal palpation at approximately 38 d post-breeding. Location of origin did not affect (P greater than .10) weight at puberty or weight at breeding; however, heifers from L1 were younger (P less than .05) than heifers from L2 at puberty and breeding. Pregnancy rates were 57 and 78% for heifers in E1 and E3, respectively (P less than .05). Weight at breeding did not influence (P greater than .10) pregnancy rates. The probability of heifers in E1 becoming pregnant increased (P less than .05) with increasing age, while age was not a factor (P greater than .10) for heifers in E3. These results indicated that fertility of puberal estrus in beef heifers is lower than third estrus. Higher fertility of third estrus may be related to maturational changes associated with cycling activity.  相似文献   

16.
Crossbred heifers (initially 24 mo, approximate age and 378 +/- 32.1 kg BW) were used to evaluate the influence of pregnancy and advancing gestation on DMI, BW, carcass weight, ruminal characteristics, and visceral organ mass. Heifers (naturally serviced (n = 22; nonpregnant controls, n = 17), were grouped in common pens. Heifers were provided corn silage and hay-based diets formulated to provide 0.45 kg of ADG. Treatments were pregnancy and nonpregnancy; pregnant and nonpregnant heifers were slaughtered on d 40, 120, 200, and 270. Live weight at slaughter and BW change throughout the trial were not influenced by pregnancy (P > 0.1). Carcass weight per unit of BW was decreased due to pregnancy (P < 0.05) and an interaction was found in eviscerated BW (EvBW; P < 0.1), with the pregnant heifers having greater live weights, carcass weights, and EvBW at the d-200 slaughter period. Ruminal fluid fill and total fill (g/kg BW) declined as slaughter period advanced, resulting in the pregnant heifers having less fill at d 270 (P< 0.07). However, ME intake was not different between pregnant and nonpregnant heifers (P > 0.1) at any of the slaughter periods. Heart mass responded differently when nonpregnant and pregnant were analyzed over time and an interaction was detected as slaughter period advanced (P < 0.1). Liver, duodenum, jejunum, and large intestinal mass were not responsive to pregnancy (P > 0.1). Data indicate that ruminal fill is altered by pregnancy but visceral organ mass is not greatly changed by treatment.  相似文献   

17.
We evaluated whether a fixed-time AI (TAI) protocol could yield pregnancy rates similar to a protocol requiring detection of estrus, or detection of estrus and AI plus a clean-up TAI for heifers not detected in estrus, and whether adding an injection of GnRH at controlled internal drug release (CIDR) insertion would enhance fertility in CIDR-based protocols. Estrus in 2,075 replacement beef heifers at 12 locations was synchronized, and AI was preceded by 1 of 4 treatments arranged as a 2 x 2 factorial design: 1) Estrus detection + TAI (ETAI) (n = 516): CIDR for 7 d plus 25 mg of prostaglandin F2alpha (PG) at CIDR insert removal, followed by detection of estrus for 72 h and AI for 84 h after PG (heifers not detected in estrus by 84 h received 100 microg of GnRH and TAI); 2) G+ETAI (n = 503): ETAI plus 100 microg GnRH at CIDR insertion; 3) Fixed-time AI (FTAI) (n = 525): CIDR for 7 d plus 25 mg of PG at CIDR removal, followed in 60 h by a second injection of GnRH and TAI; 4) G+FTAI (n = 531): FTAI plus 100 microg of GnRH at CIDR insertion. Blood samples were collected (d -17 and -7, relative to PG) to determine ovarian status. For heifers in ETAI and G+ETAI treatments, a minimum of twice daily observations for estrus began on d 0 and continued for at least 72 h. Inseminations were performed according to the a.m.-p.m. rule. Pregnancy was diagnosed by transrectal ultrasonography. The percentage of heifers exhibiting ovarian cyclic activity at the initiation of treatments was 89%. Pregnancy rates among locations across treatments ranged from 38 to 74%. Pregnancy rates were 54.7, 57.5, 49.3, and 53.1% for ETAI, G+ETAI, FTAI, and G+FTAI treatments, respectively. Although pregnancy rates were similar among treatments, a tendency (P = 0.065) occurred for pregnancy rates in the G+ETAI treatment to be greater than in the FTAI treatment. We concluded that the G+FTAI protocol yielded pregnancy rates similar to protocols that combine estrus detection and TAI. Further, the G+FTAI protocol produced the most consistent pregnancy rates among locations and eliminated the necessity for detection of estrus when inseminating replacement beef heifers.  相似文献   

18.
We determined whether an ovulatory estrus could be resynchronized in previously synchronized, AI nonpregnant cows without compromising pregnancy from the previous synchronized ovulation or to those inseminated at the resynchronized estrus. Ovulation was synchronized in 937 suckled beef cows at 6 locations using a CO-Synch + progesterone insert (controlled internal drug release; CIDR) protocol [a 100-microg injection of GnRH at the time of progesterone insert, followed in 7 d by a 25-mg injection of PGF(2alpha) at insert removal; at 60 h after PGF(2alpha), cows received a fixed-time AI (TAI) plus a second injection of GnRH]. After initial TAI, the cows were assigned randomly to 1 of 4 treatments: 1) untreated (control; n = 237); 2) progesterone insert at 5 d after TAI and removed 14 d after TAI (CIDR5-14; n = 234); 3) progesterone insert placed at 14 d after TAI and removed 21 d after TAI (CIDR14-21; n = 232); or 4) progesterone insert at 5 d after TAI and removed 14 d after TAI and then a new CIDR inserted at 14 d and removed 21 d after TAI (CIDR5-21; n = 234). After TAI, cows were observed twice daily until 25 d after TAI for estrus and inseminated according to the AM-PM rule. Pregnancy was determined at 30 and 60 d after TAI to determine conception to the first and second AI. Pregnancy rates to TAI were similar for control (55%), CIDR5-14 (53%), CIDR14-21 (48%), and CIDR5-21 (53%). A greater (P < 0.05) proportion of nonpregnant cows was detected in estrus in the CIDR5-21 (76/110, 69%) and CIDR14-21 (77/120, 64%) treatments than in controls (44/106, 42%) and CIDR5-14 (39/109, 36%) cows. Although overall pregnancy rates after second AI service were similar, combined conception rates of treatments without a CIDR from d 14 to 21 [68.7% (57/83); control and CIDR5-14 treatments] were greater (P = 0.03) than those with a CIDR during that same interval [53.5% (82/153); CIDR5-21 and CIDR14-21 treatments]. We conclude that placement of a progesterone insert 5 d after a TAI did not compromise or enhance pregnancy rates to TAI; however, conception rates of nonpregnant cows inseminated after a detected estrus were compromised when resynchronized with a CIDR from d 5 or 14 until 21 d after TAI.  相似文献   

19.
The objectives of this study were to determine the effects of incorporating a progesterone intravaginal insert (CIDR) between the day of GnRH and PGF2alpha treatments of a timed AI protocol using estradiol cypionate (ECP) to synchronize ovulation on display of estrus, ovulation rate, pregnancy rate, and late embryonic loss in lactating cows. Holstein cows, 227 from Site 1 and 458 from Site 2, were presynchronized with two injections of PGF2alpha on study d 0 and 14, and subjected to a timed AI protocol (100 mixrog of GnRH on study d 28, 25 mg of PGF2alpha on study d 35, 1 mg of ECP on study d 36, and timed AI on study d 38) with or without a CIDR insert. Blood was collected on study d 14 and 28 for progesterone measurements to determine cyclicity. Ovaries were scanned on d 35, 37, and 42, and pregnancy diagnosed on d 65 and 79, which corresponded to 27 and 41 d after AI. Cows receiving a CIDR had similar rates of detected estrus (77.2 vs. 73.8%), ovulation (85.6 vs. 86.6%), and pregnancy at 27 (35.8 vs. 38.8%) and 41 d (29.3 vs. 32.3%) after AI, and late embryonic loss between 27 and 41 d after AI (18.3 vs. 16.8%) compared with control cows. The CIDR eliminated cows in estrus before the last PGF2alpha injection and decreased (P < 0.001) the proportion of cows bearing a corpus luteum (CL) at the last PGF2alpha injection because of less ovulation in response to the GnRH and greater spontaneous CL regression. Cyclic cows had greater (P = 0.03) pregnancy rates than anovulatory cows at 41 d after AI (33.8 vs. 20.4%) because of decreased (P = 0.06) late embryonic loss (16.0 vs. 30.3%). The ovulatory follicle was larger (P < 0.001) in cows in estrus, and a greater proportion of cows with follicles > or = 15 mm displayed estrus (P < 0.001) and ovulated (P = 0.05) compared with cows with follicles <15 mm. Pregnancy rates were greater (P < 0.001) for cows displaying estrus, which were related to the greater (P < 0.001) ovulation rate and decreased (P = 0.08) late embryonic loss for cows in estrus at AI. Cows that were cyclic and responded to the presynchronization protocol (high progesterone at GnRH and CL at PGF2alpha) had the highest pregnancy rates. Incorporation of a CIDR insert into a presynchronized timed AI protocol using ECP to induce estrus and ovulation did not improve pregnancy rates in lactating dairy cows. Improvements in pregnancy rates in cows treated with ECP to induce ovulation in a timed AI protocol are expected when more cows display estrus, thereby increasing ovulation rate.  相似文献   

20.
The objective was to test the efficacy of an intravaginal progesterone insert and injection of PGF2alpha for synchronizing estrus and shortening the interval to pregnancy in cattle. Cattle were assigned to one of three treatments before a 31-d breeding period that employed artificial insemination. Control cattle were not treated, and treated cattle were administered PGF2alpha or an intravaginal progesterone-releasing insert (CIDR) for 7 d and treated with PGF2alpha on d 6. The treatments were applied in one of three experiments that involved postpartum beef cows (Exp. 1; n = 851; 56+/-0.6 d postpartum), beef heifers (Exp. 2; n = 724; 442.5+/-2.8 d of age), and dairy heifers (Exp. 3; n = 260; 443.2+/-4.5 d of age). Luteal activity before treatment was determined for individual cattle based on blood progesterone concentrations. In Exp. 1, there was a greater incidence of estrus during the first 3 d of the breeding period in CIDR+PGF2alpha-treated cows compared with PGF2alpha-treated or control cows (15, 33, and 59% for control, PGF2alpha, and CIDR+PGF2alpha, respectively; P < 0.001). The improved estrous response led to an increase in pregnancy rate during the 3-d period (7, 22, and 36% for control, PGF2alpha, and CIDR+PGF2alpha, respectively; P < 0.001) and tended to improve pregnancy rate for the 31-d breeding period for cows treated with CIDR+PGF2alpha, (50, 55, and 58% for control, PGF2alpha, and CIDR+PGF2alpha, respectively, P = 0.10). Improvements in rates of estrus and pregnancy after CIDR+PGF2alpha, were also observed in beef heifers. Presence of luteal activity before the treatment period affected synchronization and pregnancy rates because anestrous cows (Exp. 1) or prepubertal heifers (Exp. 2) had lesser synchronization rates and pregnancy rates during the first 3 d of the breeding period as well as during the entire 31-d breeding period. The PGF2alpha, and CIDR+PGF2alpha but not the control treatments were evaluated in dairy heifers (Exp. 3). The CIDR+PGF2alpha-treated heifers had a greater incidence of estrus (84%) during the first 3 d of the breeding period compared with the PGF2alpha-treated heifers (57%), but pregnancy rates during the first 3 d or during the 31-d breeding period were not improved for CIDR+PGF2alpha compared with PGF2alpha-treated heifers. In summary, the concurrent treatment of CIDR and PGF2alpha improved synchronization rates relative to PGF2alpha alone or control. Improved estrus synchrony led to greater pregnancy rates for beef cows and beef heifers but failed to improve pregnancy rates for dairy heifers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号