首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Applied soil ecology》2007,37(2-3):130-135
In this study, we assessed the influence of prey quality and prey biomass during a standardized 3-week test on adult survival and reproductive output of the predatory mite Hypoaspis aculeifer when fed one of six different diets: springtails (Folsomia candida and Folsomia fimetaria), a storage mite (Caloglyphus cf. michaeli), an oligochaete (Enchytraeus crypticus), a nematode (Turbatrix silusiae), and a 1:1:1 mix of F. candida:F. fimetaria:E. crypticus. Our results revealed that a single prey species may be nutritionally sufficient for a 3-week period, as H. aculeifer performed equally well, or better, on a diet based on a 1:1:1 mix of F. candida:F. fimetaria:E. crypticus. However, when fed C. cf. michaeli, H. aculeifer had a poor reproductive output (<200 juveniles) and a reduced survival (60–70%). Thus, investigators should validate their choice of prey prior to testing H. aculeifer performance during toxicant exposure.  相似文献   

2.
耕作及轮作对土壤氮素径流流失的影响   总被引:17,自引:2,他引:17  
5年轮作和1年水平沟耕作试验表明:在不同的坡度上,与传统耕作法相比,水平沟减少产流7%,径流液铵态氮浓度提高19%,流失量达到13.01kg/(km2·a),比传统耕作多流失1.11kg/(km2·a);径流硝态氮浓度减少27%,比传统耕作减少7.68kg/(km2·a);径流硝态氮流失减少量和铵态氮增加量相差6倍,水平沟可减少6.57kg/(km2·a)矿质氮流失;水平沟拦截泥沙25%左右,泥沙中全氮富集率提高13%,土壤全氮流失457kg/(km2·a),平均减少18%;一季黑豆和一季黄豆及两季黑豆和一季黄豆参与的5年轮作周期,土壤侵蚀量仅为896t/(km2·a)和984t/(km2·a),不及糜子和土豆参与轮作周期的1/2.  相似文献   

3.
Recent research has shown a lack of long-term monitoring for detailed analysis of gully erosion response to climate characteristics. Measures carried out from 1995 to 2007 in a wheat-cultivated area in Raddusa (Sicily, Italy), represent one of the longest series of field data on ephemeral gully, EG, erosion. The data set collected in a surface area of almost 80 ha, permits analysis of the influence of rainfall on EG formation and development. Ephemeral gullies formed in the study area were measured on a yearly scale with a Post-Processing Differential GPS for length and with a steel tape for the width and depth of transversal sections. Ephemeral gully formation was observed for 8 years out of 12, which corresponds to a return period of 1.5 years. The measurements show strong temporal variability in EG erosion, in agreement with the rainfall characteristics. The total eroded volumes ranged between 0 and ca. 800 m3 year−1, with a mean of ca. 420 m3 year−1, corresponding to ca. 0.6 kg m−2 year−1. Ephemeral gully erosion in the study area is directly and mainly controlled by rainfall events. An antecedent rainfall index, the maximum value of 3-days rainfall (Hmax3_d), is the rain parameter which best accounts for EG erosion. This index is used here as a simple surrogate for soil water content. An Hmax3_d threshold of 51 mm was observed for EG formation. The return period of the Hmax3_d threshold is almost the same as the return period for EG formation. Although a mean of seven erosive rain events were recorded in a year, EG formation and development generally occur during a single erosive event, similarly to other semiarid environments. The most critical period is that comprised between October and January, when the soil is wetter and the vegetation cover is scarce. Empirical models for EG eroded volume estimation were obtained using the data set collected at this site. A simple power-type equation is proposed to estimate the eroded volumes using Hmax3_d as an independent variable. This equation shows an R2 equal to 0.67 and a standard error of estimation of 0.79.  相似文献   

4.
This paper describes the identification and utilisation of a sequence-characterised amplified region (SCAR) marker specific for the Trichoderma virens biocontrol isolate GV4. The marker was developed from a RAPD-PCR amplification product unique to isolate GV4. When used as a hybridisation probe in Southern blot analysis, it hybridised to the DNA of the species T. virens alone and not to that of other Trichoderma species or closely related genera Gliocladium and Verticillium. The marker also produced a GV4-specific RFLP, distinguishing it from other T. virens isolates when probed to blots with HindII, BamHI or PstI genomic DNA digests. Primers designed from the sequence of the RAPD marker produced a diagnostic amplification product of 346 bp for GV4 alone, distinguishing it from all other test isolates. With the exception of one, test isolates did not produce an amplification product with the SCAR primers. The exception was a single Verticillium psalliotae isolate (ICMP5509) that produced a product of approx. 400 bp that was easily distinguished from the 346 bp product of GV4. The reliability of the SCAR-based diagnostic test was further improved with the introduction of a positive PCR reaction control to each test, achieved by converting the test to a duplex PCR system. Two universal primers flanking the two ITS and the 5.8S region of the ribosomal gene complex were introduced to each reaction to provide a test for PCR reaction inhibitors to eliminate false negatives in the diagnosis. Amplification of this multi-copy genomic region did not reduce diagnostic sensitivity of the single copy SCAR marker. To further increase the sensitivity of detecting GV4 propagules while maintaining a fast sample assessment assay, soil was amended with cornmeal, as a nutrient source, and a mix of antibiotics to favour Trichoderma growth. The soil mix was subsequently incubated for 5 d before total DNA was extracted. Under these conditions, the duplex soil PCR assay detected GV4 down to a concentration of 10 spores g−1 soil in non-sterile agricultural field soil. This study is the first to report the use of a duplex-PCR diagnostic bioassay for a species within the Hypocrea/Trichoderma genus.  相似文献   

5.
The term ‘critical body residue’ (CBR) was defined as the lowest observed total body concentration of a contaminant in an organism, which is associated with the occurrence of adverse toxic effects in either individuals or populations of a defined age or stage of development. In this study, internal toxicity thresholds were determined for copper in the clitellated adult stage of earthworms (Lumbricus rubellus and Aporrectodea caliginosa). The objective was to assess the applicability of CBRs as a practical tool in soil quality assessment of contaminated sites and as a means of a sustainable protection of earthworm fauna. Laboratory studies showed that body concentrations of Cu were generally in agreement with the chemically available CaCl2-extractable fraction in soil, but that there was also some evidence of internal pH-related homeostatic regulation. Toxicological correlates of body Cu concentrations with adverse effects on cocoon production (fecundity) suggested an approximate sublethal internal threshold of about 40 mg kg−1, with mortality occurring at about 60 mg kg−1. Adult L. rubellus sampled from areas with a wide range of metal pollution showed body Cu concentrations with a minimum of 8 mg kg−1 and a maximum of 60 mg kg−1. Beyond this apparent physiological tolerance range, environmental management directed at optimal earthworm population survival may not be sustainable in contaminated fields. Studies of L. rubellus colonizing a metal-contaminated experimental sludge-treated field showed that a reduced rate of colonization can already be associated with an average body Cu concentration of 25 mg kg−1. However, in this particular field situation mixture effects of other metals that were also present in the soil and the occurrence of avoidance behaviour during colonization may have contributed to this low internal toxicity threshold. It is concluded that the CBR approach seems to be a feasible option for use as a tool in a bioavailability-based soil quality assessment, even for essential trace metals like copper, but that further insight may be needed to establish the uncertainty and reliability of the application in environmental quality assessment and decision making.  相似文献   

6.
Abstract

We have identified Crassocephalum crepidioides (Benth.) S. Moore (Compositae) as a cadmium (Cd)-accumulator plant in a heavy-metal polluted environment. In soil polluted with Cd, 5.7–17.5 mg kg?1 Cd, concentrations in the above-ground plant tissues were measured as 14.6–78.6 mg kg?1 with transfer factors in the above-ground plant tissues (concentration in above-ground tissues/soil concentration) of 1.5–6.0. No other toxic heavy metals or plant micronutrients were found to have accumulated into the above-ground plant tissues. In a hydroponic culture with 1 µmol L?1 Cd added to Hoagland's nutrient solution, Cd concentration in the above-ground plant tissues was 121.0 mg kg?1, with a transfer factor of more than 1000. In a pot culture carried out for 9 weeks in a greenhouse, the highest Cd concentration in the above-ground plant tissues, 121.2 mg kg?1, was found in a treatment with 5 mg kg?1 Cd, whereas the highest Cd content in an above-ground plant tissue, 106.1 µg, was found in a treatment with 2 mg kg?1 Cd. These results clearly showed that C. crepidioides is a Cd accumulator. In all samples, the Cd concentration in the above-ground plant tissues was higher than that in the roots. The results obtained in the present study show that this plant has a strong potential for use in phytoremediation in farm fields contaminated with Cd.  相似文献   

7.
Shrub is one of the major vegetation types distributed mostly in the mountainous area in China, and its vegetation carbon storage is approximately one-third of both forests and grasslands. It is essential to investigate how soil temperature (Ts) and soil water content (Ws) affect soil respiration (Rs) in this ecosystem. The purpose of this study was to understand the correlations of Rs with Ts, Ws, and other factors in the shrubs. In the current study, Rs was characterized in three shrublands (hereafter, shrub 1, shrub 2, and shrub 3, respectively) located in different elevations over a 4-year period at a biweekly interval in the eastern Loess Plateau (Shanxi province) of China. Our results showed that the trend of seasonal change of Rs was controlled mainly by Ts and Ws. The measured mean Rs over 4 years was 3.64 ± 2.83 (mean ± S.D.), 2.69 ± 2.05, and 4.41 ± 3.28 μmol carbon dioxide (CO2) m?2 s?1 for shrubs 1, 2, and 3, respectively, exhibiting an increase trend with elevation increment. Over the season, Rs illustrated a significant change depending on the variation of Ts and Ws, with larger values appearing in summer when both Ts and Ws were high, and smaller values in winter or in summer whenever Ws was low. An exponential model (Rs = a e bTs) fitted well the relation between Rs and Ts for shrub 3, whereas linear (Rs = a Ws + b) and power (Rs = a Ws b) models of Rs to Ws fitted well for shrub 1. This indicated that at a lower elevation, Ws had a greater effect on Rs than that at a higher elevation. The reverse trend was true between Rs and Ts, i.e., at a higher elevation Ts had a greater effect on Rs than that at a lower elevation. The calculated Q10 values of 1.61, 3.03, and 3.73 for shrubs 1, 2, and 3 increased to 2.25, 3.63, and 4.07, respectively (when the data in low Ws conditions were excluded from the analysis), showing that Q10 increased with elevation increment. Furthermore, three two-variable models, one linear (Rs = a (Ts Ws) + b), and two nonlinear (Rs = a Ts b Ws c and Rs = a ebTs Ws c), were also well developed to predict the dependency of Rs on both Ts and Ws. Our research results might have important implications for the estimation of soil carbon emissions of the shrublands in this region.  相似文献   

8.
9.
10.
Despite the substantial interest to ecologists of the relationship between species diversity and ecosystem functioning, little is known about how the high species richness of decomposer (saprotrophic) fungi and their relative frequencies of occurrence influence the decomposition of organic matter. Three experiments were conducted to test the ability of culturable saprotrophic fungal isolates to utilise a range of artificial and more natural substrates that occur in organic matter, with the aims of (1) characterising the functional potential of ‘common’ and ‘occasional’ taxa in an upland grassland soil and (2) determining whether there was a high degree of apparent functional redundancy in these communities. ‘Function’ was defined as the ability of a fungal isolate to utilise broad categories of substrates (e.g. sugars, cellulose, lignin) that occur in organic matter and which change in proportion during decomposition. The terms ‘common/abundant/frequent’ and ‘occasional/infrequent’ usually referred here to the frequencies of occurrence of taxa estimated using Warcup soil plates. Accepting the difficulties of sampling fungi in soil, this appeared to be the most useful isolation method to produce a general picture of the microfungal community with an estimate of frequency of occurrence for every taxon obtained, and to provide cultures for use in function tests. The influence of this technique on the interpretation of the results is discussed.Forty-eight fungal isolates, obtained from an upland grassland in Roxburghshire, UK, were selected to cover the most ‘abundant’ taxa and a range of ‘occasionals’. Pure cultures of anamorphic fungi and members of the Zygomycota, Ascomycota and Basidiomycota were tested. Although there was apparently a high degree of functional redundancy (equivalence) in assemblages of culturable decomposer fungi, with ‘frequent’ and ‘infrequent’ taxa largely utilising the same substrates, the ‘infrequent’ taxa played important roles in decomposition. ‘Infrequent’ microfungi tested were potentially more active in decomposition than the ‘frequent’ taxa, i.e. several had a higher overall activity, were able to utilise a wider range of substrates and were more combative than the ‘abundant’ taxa. When ‘abundant’ and ‘occasional’ taxa from the same putative guild were inoculated together on grass litter, there was slight evidence of ‘positive’ indirect effects on decomposition and cellulose degradation. Some ‘negative’ effects on lignin degradation, probably as a result of combat, were observed.It is possible that the ‘occasional’ taxa increased the temporal resilience of the ecosystem process of decomposition, and were ‘waiting in the wings’ to replace the abundant taxa. Nevertheless, greater functional diversity could be associated with the uncultured taxa not studied here.  相似文献   

11.
Incidental losses of dissolved reactive phosphorus (DRP) to a surface waterbody originate from direct losses during land application of fertilizer, or where a rainfall event occurs immediately thereafter. Another source is the soil. One way of immobilising DRP in runoff before discharge to a surface waterbody, is to amend soil within the edge of field area with a high phosphorus (P) sequestration material. One such amendment is iron ochre, a by-product of acid mine drainage. Batch experiments utilising two grassland soils at two depths (topsoil and sub-soil), six ochre amendment rates (0, 0.15, 1.5, 7.5, 15 and 30 g kg−1 mass per dry weight of soil) and five P concentrations (0, 5, 10, 20 and 40 mg L−1) were carried out. A proportional equation, which incorporated P sources and losses, was developed and used to form a statistical model. Back calculation identified optimal rates of ochre amendment to soil to ameliorate a specific DRP concentration in runoff. Ochre amendment of soils (with no further P inputs) was effective at decreasing DRP concentrations to acceptable levels. A rate of 30 g ochre kg−1 soil was needed to decrease DRP concentrations to acceptable levels for P inputs of ≤10 mg L−1, which represents the vast majority of cases in grassland runoff experiments. However, although very quick and sustained metal release above environmental limits occurred, which makes it unfeasible for use as a soil amendment to control P release to a waterbody, the methodology developed within this paper may be used to test the effectiveness and feasibility of other amendments.  相似文献   

12.
Owing to the continuously increasing concentration of atmospheric CO2, it has become a priority to understand if soil organic matter (SOM) will behave as a sink or a source of CO2 under future environmental changes. Although many studies have addressed this question, a clear understanding is still missing, particularly with respect to long-term responses. In this study, we quantified soil C stores and dynamics in relationship to soil aggregation and pool composition in a Californian chaparral ecosystem exposed for 6 years to a gradient of atmospheric CO2 concentrations, ranging from pre-industrial levels 250 to 750 μl l−1 CO2. Fossil fuel-derived CO2 depleted in 13C was used for the fumigation, thus providing a tracer of C input from the vegetation to the soil.Long-term CO2 exposure invariably affected soil aggregation, with a significant decrease in the macroaggregate fraction at highest CO2 levels relative to the other two size fractions (i.e. microaggregates and silt and clay). This soil structural change most likely reduced the stability and protection of SOM, and C content generally decreased in most fractions over the CO2 treatments, and induced faster turnover of recently fixed C at high CO2 levels. The strongest response was found in the C content of the microaggregates, which decreased significantly (P<0.05) with rising levels of CO2. We conclude that increasing atmospheric CO2 concentrations will decrease soil C in chaparral ecosystems, and that the microaggregate fraction is the most responsive to increasing concentrations of atmospheric CO2.  相似文献   

13.
R. Corstanje  S. Grunwald  R.M. Lark 《Geoderma》2008,143(1-2):123-132
Geostatistics is commonly used to describe and predict the variation of soil properties over the landscape. However, many geostatistical methods require the assumption that our observed data are a realization of a random function which is intrinsically stationarity. Under stationarity, observations of a single realization of the random function at different positions can be treated as a form of replication. There are various ways in which a random function may breach the assumption of intrinsic stationarity and numerous geostatistical techniques have been developed that are able to cope with some forms of non-stationarity. What is currently needed is a set of diagnostic tools capable of detecting and identifying when data cannot plausibly be treated as a realization of a process which is stationary in the variance.In this paper, we propose an inferential method that can identify when stationarity in the variance cannot plausibly be assumed. The basis of our approach is to obtain a model for the random function under the assumption of intrinsic stationarity. If the global dataset can be regarded as a realization of a Gaussian process (perhaps after transformation), then the global variogram is sufficient for this purpose. By using a window-based method to locally estimate variograms, we can define some statistic of homogeneity of the sample variation of the data. This allows us to obtain a sample distribution for this statistic, under the null hypothesis of intrinsic stationarity, by generating multiple realizations of the postulation random function at the original sample points using Monte Carlo methods and recomputing the statistic for each realization. We selected as statistics the interquartile ranges of: i) the spatial dependence ratio (s), the proportion c1 / (c0 + c1), ii) a distance parameter (a), which is the maximum lag over which the random function is autocorrelated for variograms like the spherical, and iii) the local variances (v; c0 + c1), where (c0) is the nugget component and (c1) the spatially structured component. We demonstrated this method using data from the large scale sampling (n = 1341 over 8248 km2) of the Florida Everglades, United States.  相似文献   

14.
The gas phase oxidation of elemental mercury by ozone   总被引:2,自引:0,他引:2  
The gas phase reaction between elemental mercury (Hg0) and ozone (03) has been studied in sunlight, in darkness, at different temperatures, and different surface-to-volume (s/v) ratios. At 03 concentrations above 20 ppm, a loss of Hg0 and a simultaneous formation of oxidized mercury (Hg(II)) was observed. The results suggest a partly heterogeneous reaction, with a gas phase rate constant of 3±2×10?20 cm3 molec.?1 s?1 at 20 °C. This corresponds to an atmospheric Hg half-life of about one year at a mean global 03 concentration of 30 ppb.  相似文献   

15.
黄土高原不同侵蚀类型区侵蚀产沙强度变化及其治理目标   总被引:5,自引:3,他引:2  
为了确定黄土高原不同侵蚀类型区的治理目标,采取"水文—地貌法",利用98个水文站控制区和234个侵蚀产沙单元,在分析其不同治理阶段土壤侵蚀产沙变化特征与减沙幅度,不同侵蚀强度面积的变化及其空间分布的基础上,提出了未来20a黄土高原主要流失区的区域治理目标:土壤流失量控制在3.60×108 t左右,土壤侵蚀模数1 300 t/(km2.a)左右。其中,黄土峁状丘陵沟壑区为3 000t/(km2.a),黄土梁状丘陵沟壑区为2 000t/(km2.a),干旱黄土丘陵沟壑区为2 000t/(km2.a),黄土平岗丘陵沟壑区为1 000t/(km2.a),风沙黄土丘陵沟壑区为1 000t/(km2.a),黄土山麓丘陵沟壑区为1 000t/(km2.a),森林黄土丘陵沟壑区为300t/(km2.a),黄土高塬沟壑区为1 500t/(km2.a),黄土残塬沟壑区为3 000t/(km2.a),黄土阶地区为500t/(km2.a),风沙草原区为500t/(km2.a),高原土石山区为100t/(km2.a)。未来20a黄土高原的治理重点区域为黄土峁状丘陵沟壑区(2.20×104 km2)、干旱黄土丘陵沟壑区(1.50×104 km2)、黄土高塬沟壑区(8 600km2)、黄土梁状丘陵沟壑区(4 600km2)。  相似文献   

16.
Fires in grasslands significantly alter nutrient cycling processes. Seasonal climatic changes can interact with fire to further modify nutrient cycling processes. To investigate the effects of fire on soil nitrogen transformation processes and their seasonal change and interannual variability in a typical steppe in Inner Mongolia, we determined the rates of net nitrogen mineralization and nitrification over two growing seasons and a winter following a prescribed spring fire in May 2006. Fire significantly decreased rates of both net nitrogen mineralization and net nitrification during the first growing season and winter following burning. Cumulative net nitrogen mineralization in unburned and burned plots in the 2006 growing season was 133% and 183% higher, respectively, than in the drier 2007 growing season. Nitrogen mineralization apparently occurred in winter and the cumulative net nitrogen mineralization from October 2, 2006, to April 27, 2007 in unburned and burned plots amounted to 1.18 ± 0.25 g N m−2 and 0.51 ± 0.08 g N m−2, respectively. Cumulative net nitrogen mineralization was higher in a wet 2006 than in a dry 2007 growing season, indicating that the net N mineralization rate was sensitive to soil moisture in a dry season. Our study demonstrated that a one-time prescribed fire decreased net N mineralization rates only for a short period of time after burning while interannual variation in climate had more significant effects on the process of nitrogen mineralization.  相似文献   

17.
Despite their shortcomings, choropleth soil maps remain the most widespread source of information on soil resources. Since most nationwide soil surveys were conducted in the second half of the previous century, a need for upgrading emerges. We evaluated the potential of detailed observations made by a mobile, non-invasive proximal soil sensor to upgrade a part of the 1/20,000 choropleth soil map of Belgium. This study was conducted on a 14 ha area which had been mapped twice in the 1950s: first, during the national soil survey yielding a 1/20,000 soil map, and second, during a detailed investigation resulting in a 1/5000 map. The first map failed to identify the presence of a Tertiary clay substratum at variable depths, while the second map indicated this substratum to be present within 1.2 m below the soil surface for about a third of the area. A recent survey with the EM38DD soil sensor provided 9192 measurements of the apparent electrical conductivity (ECa) within the study area. The depth of the substratum (Dts) was noted at 60 calibration locations by augering and the relationship between ECa and Dts was modelled by an exponential curve with an R2 of 0.80. This allowed the detailed mapping of Dts by regression kriging. The predictions were validated using 46 independent observations of Dts indicating a reasonable average error of 0.24 m and a very good correlation coefficient between observed and predicted values of 0.94. A map accuracy assessment indicated that even after classification, the Dts classes were better predicted by the sensor data than the 1/5000 map which was based on many more auger observations. Finally an upgraded 1/20,000 soil map was presented, illustrating the potential of combining existing soil maps with proximal soil sensing technology.  相似文献   

18.
19.
We analysed the ability of soil units of millimetre size to mineralise a herbicide, 2,4-D, using incubations of individual aggregates (2-7 mm diameter) and 6×6×6 mm3 cubes dissected from soil cores, under standard conditions. Mineralisation of 14C-ring labelled 2,4-D was measured using a barite paper trap and a Phosphorimager to record the evolved 14C-CO2 from these very small soil samples. We found a large variability of 2,4-D mineralisation potential between aggregate size classes, between individual aggregates of the same size and between the different dissected cubes from a given core. We explained this variability by an uneven distribution of the degrading microorganisms at this scale, and to a lesser extent, an uneven distribution of C, necessary for co-metabolism. Furthermore, we found that in a soil core, the dissected cubes with a large mineralisation potential were not randomly distributed, but rather organised into centimetre sized hot spots.  相似文献   

20.
Landuse changes may dramatically enhance erosion risk. Besides deforestation, also arable landuse may have an important influence on soil loss. We investigated the erosion risk in a 151 km2 subwatershed of the Cuyaguateje watershed (Cuba) using the RUSLE model. It was found that the valleys used for agriculture have the highest erosion risk, with actual erosion surpassing soil loss tolerance. Over the period 1985–2000, about 14 km2 of forest has been converted into arable land. As a result, the area with a very high erosion risk increased with 12%. On arable land it was found that the crop management factor C of a “tobacco/maize” rotation was 0.478, compared to 0.245 for a rotation of various crops (sweet potato, beans, maize, cassava and fallow). When maize in the “tobacco/maize” rotation was intercropped with a leguminous crop (hyacinth bean) the C factor decreased to a value of 0.369. Also contouring may halve soil loss on moderate slopes (< 10%) when high ridges are applied, which is in Cuba generally the case for maize, cassava and sweet potato.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号