首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
茶树油清除豇豆农药残留的效果   总被引:1,自引:0,他引:1  
为研究茶树油清除果蔬农药残留的效果,该试验选取豇豆为供试材料,以不同浓度的茶树油和水溶性茶树油等清洗处理,利用气相色谱和气相色谱-质谱联用检测豇豆内有机磷类、拟除虫菊酯类和氨基甲酸酯类的农药残留量,计算农药清除率。供试7种农药中,水胺硫磷、马拉硫磷、氧乐果、三唑磷、毒死蜱、氯氰菊酯和速灭威在豇豆中的初始浓度分别为:20.395、1.690、6.524、10.719、0.160、12.104和23.057mg/kg。茶树油处理后检测结果表明,茶树油具有清除残留在豇豆中农药的能力,清除效果随茶树油浓度增加而增强;清除有机磷类农药效果较拟除虫菊酯类和氨基甲酸酯类农药明显。茶树油比去离子水、市售果蔬农残清洗剂清除农药残留效果显著,同时,相同浓度的水溶性茶树油比相应茶树油清除农药残留能力强。0.8%水溶性茶树油清除效果最佳,清除率分别为水胺硫磷80.48%,马拉硫磷94.54%,三唑磷82.79%,毒死蜱84.58%,氧乐果72.20%,氯氰菊酯80.51%,速灭威72.21%。通过研究结果可知,茶树油可作为有开发前景的果蔬清除剂。  相似文献   

2.
采用MECC在线堆积同步检测茶叶中七种残留农药   总被引:4,自引:0,他引:4  
为解决茶叶中的痕量农药残留的快速检测问题,建立了一种基于胶束毛细管电泳在线堆积技术的茶叶中7种拟除虫菊酯类农药痕量残留的一次进样同步检测方法.通过参数优化,得到最优的柱上在线堆积浓缩操作工艺:以15%异丙醇、20%乙腈、60 mmol/L十二烷基硫酸钠(SDS)和50 mmol/L tris的混合物为背景缓冲溶液(BGS).茶叶的浸提液经过固相萃取净化吹干后,用1 mmol.L SDS溶解溶液残渣.进样100 s后施加反向电压,进行农药反向在线堆积,当电流恢复至正常分离时的95%时改变电压方向,进行正常分离.经过在线堆积浓缩,7种拟除虫菊酯类农药痕量残留堆积因子均高于17,回收率在82%以上,检测下限分别达到:功夫菊酯0.05 mg/kg、联苯菊酯0.05 mg/kg、百树菊酯0.05 mg/kg、高效氯氰菊酯0.05 mg/kg、溴氰菊酯0.2 mg/kg、二氯菊酯0.05 mg/kg、氰戊菊酯0.05 mg/kg,满足了2006年欧盟茶叶中拟除虫菊酯类农药残留的最低标准.  相似文献   

3.
利用弗罗里矽柱净化前处理方法,采用气相色谱(GC)方式,依据保留时间和特征离子丰度比,对辽宁某地区大棚内种植黄瓜及其叶片部分样品中的有机磷类农药(粉锈宁、乐果、敌敌畏、喹硫磷、辛硫磷、噻嗪酮、甲拌磷、马拉硫磷和对硫磷),拟除虫菊酯类农药(百菌清、氯氰菊酯、氰戊菊酯、溴氰菊酯)的残留量进行检测分析。结果表明,有机磷类农药检出种类不固定,拟除虫菊酯类农药检出情况较为稳定,有机磷和拟除虫菊酯类农药在叶片中的检出率均略高于在果实中的检出率,且在不同时期不同大棚检出情况略有差异。针对当前农药施用现状,应多注意有机磷类和拟除虫菊酯类农药的使用和监管,对于有机磷类高毒性农药应减少或停止施用,中低毒性的拟除虫菊酯类农药应加强其作用的宣传并控制其使用量,避免追求高产量而盲目过量的施用,造成不必要的污染。  相似文献   

4.
Bar-Ilan  I.  Shmerkin  S.  Mingelgrin  U.  Levanon  D. 《Water, air, and soil pollution》2000,119(1-4):139-156
A survey was conducted of pesticide distribution in the water ofthe upper Jordan basin, due to the importance of its quality asthe main source of drinking water in Israel.A preliminary survey of pesticide distributers and farmersrevealed intensive use of many pesticides in agriculture. Fourof these were selected as targets for monitoring in the surfacewater of the region, at seven sampling stations. The highestresidue found was of aldicarb and its metabolites, with lowercontent of organophosphate and organochlorine insecticides. Noconcentrations reached the maximum levels permitted by the EPAfor drinking water, but recommendations were made, nonetheless,for continuous monitoring of pesticides in the region.Subsequent monitoring (1993–1997) showed a steady decrease in aldicarb residues.  相似文献   

5.
This paper reviews the findings of research reported in the currently available literature regarding the occurrence and transformations of pesticides through the composting process and the use of compost. Part I summarizes the composting process, pesticides and mechanisms of pesticide degradation. Part II reviews research studies concerning the occurrence and fate of pesticides during composting. Investigations of pesticide residues in composting feedstocks and finished compost detected few of the target pesticides. The compounds that were found occurred at low concentrations. The majority of the compounds detected were insecticides in the organochlorine category, including chemicals that have been banned from use in the U.S. for many years. Generally, organophosphate and carbamate insecticides and most herbicides were rarely detected. Comparisons of pesticide concentrations before and after composting also showed organochlorine compounds to be most resistant to biodegradation during composting. With some exceptions, pesticides in other categories decomposed moderately well to very well. Studies that followed the mechanisms of degradation indicate that mineralization accounts for only a small portion of pesticide disappearance. Other prominent fates include partial degradation to secondary compounds, adsorption, humification, and volatilization. In general the research results suggest that the pattern of pesticide degradation during composting is similar to the degradatiion observed in soils. With a few important distinctions, composting can be considered a biologically active soil environment in which degradation is accelerated. However, as some studies noted, composting does not always speed the degradation of all pesticides. The nature of the pesticide, specific composting conditions and procedures, the microbial communities present, and the duration of composting affect the extent and the mechanisms of degradation.  相似文献   

6.
This paper reviews the findings of research reported in the currently available literature regarding the occurrence and transformations of pesticides through the composting process and the use of compost. Part I summarizes the composting process, pesticides and mechanisms of pesticide degradation. Part II reviews research studies concerning the occurrence and fate of pesticides during composting. Investigations of pesticide residues in composting feedstocks and finished compost detected few of the target pesticides. The compounds that were found occurred at low concentrations. The majority of the compounds detected were insecticides in the organochlorine category, including chemicals that have been banned from use in the U.S. for many years. Generally, organophosphate and carbamate insecticides and most herbicides were rarely detected. Comparisons of pesticide concentrations before and after composting also showed organochlorine compounds to be most resistant to biodegradation during composting. With some exceptions, pesticides in other categories decomposed moderately well to very well. Studies that followed the mechanisms of degradation indicate that mineralization accounts for only a small portion of pesticide disappearance. Other prominent fates include partial degradation to secondary compounds, adsorption, humification, and volatilization. In general the research results suggest that the pattern of pesticide degradation during composting is similar to the degradation observed in soils. With a few important distinctions, composting can be considered a biologically active soil environment in which degradation is accelerated. However, as some studies noted, composting does not always speed the degradation of all pesticides. The nature of the pesticide, specific composting conditions and procedures, the microbial communities present, and the duration of composting affect the extent and the mechanisms of degradation.  相似文献   

7.
This research describes the results of a gas chromatography/microwave induced plasma/atomic emission detection (GC/MIP/AED) method performed on a Hewlett-Packard 5921A system for pesticide residue analysis in fruits and vegetables. A total of 6 experiments were conducted: (1) sensitivity and linearity studies for elements S, P, Cl, and N by analyzing dursban; (2) a study of instrument response to Cl concentration in pesticide molecules; (3) organochlorinated pesticide recoveries; (4) organophosphate pesticide recoveries; (5) carbamate pesticide recoveries; and (6) investigation of metallic pesticides with plictran and vendex as standards. The rank according to sensitivity and linearity was found to be as follows: S-181 greater than P-178 greater than Cl-479 greater than N-174. Instrument response to the concentration of chlorine atoms in the pesticide molecule was linear, with a correlation coefficient of 0.89. Recoveries of organochlorinated pesticides were 91.7-109.3%, with the exception of citrus, whose recovery was affected by coeluting interferences. Organophosphate recoveries were 73.2% or higher, except for the cygon oxygen analog, which degraded in the GC system under all circumstances. Carbamate recoveries were inconsistent quantitatively; however, the information generated from elements N and S were useful for qualitative confirmation of other methods, such as LC postcolumn derivatization analysis. Overall, the GC/MIP/AED method is powerful for qualitative confirmation in pesticide residue analysis. The instrument's capability of acquiring multi-elements (Cl and P) selectively and accurately is an alternative method for organochlorinated and organophosphate pesticide residue analyses. In addition, the GC/MIP/AED system is easy to use, simple to maintain, and its chromatograms can be interpreted by any chromatography analyst without much prior training.  相似文献   

8.
Carbamate pesticide residues are extracted from vegetables and fruits with methylene chloride. The extracts are spotted on silica gel plates and the pesticides are detected by an enzymatic inhibition technique. For quantitative determination, aliquots of the methylene chloride extracts are evaporated to dryness in a rotary evaporator. After the residues are dissolved in ethanol, 0.5N NaOH is added in the hydrolysis step. To remove a number of possible interferences the hydrolyzed phenols are steam-distilled and treated with 1-fluoro-2,4-dinitrobenzene and/or 4-chloro-alpha,alpha,alpha-trifluoro-3,5-dinitrotoluene to form the ether derivatives. Efficiency in the conversion of the phenolic moieties to the phenyl ethers is about 100%. The resulting electron-capturing derivatives enable the carbamate pesticides to be detected in vegetables and fruits at the 0.05 ppm level. Recoveries of 90-94% were obtained from vegetables and fruits fortified with 0.5-2.0 ppm carbaryl, Mesurol, and propoxur.  相似文献   

9.
农产品/食品中农药残留快速检测方法研究进展   总被引:5,自引:1,他引:4  
农药残留的识别和量化通常依赖于气相色谱法、高效液相色谱法、气/液相色谱-质谱联用法以及毛细管电泳法,这些方法需涉及大而贵重的仪器、费时的样品处理以及专门的技术培训。因此,建立在线、高灵敏度、高选择性、简单高效、低成本的农药残留快速检测方法和技术非常重要。该文综述了用于农产品/食品的农药残留分析快速检测方法,主要包括酶抑制法、免疫分析法、光谱法(包括可见/近红外、红外、拉曼和激光诱导击穿光谱等)以及各种生物传感器等,分别介绍了这些方法最新的研究进展,同时分析并总结了这些快速检测方法和技术的基本原理和特点。目前的研究在灵敏度、重复性、准确性方面存在着一些不足,商品化的农药残留检测仪器也比较单一。由于纳米生物技术、分子印迹技术和微流控技术等技术有着巨大的应用潜力,因此特别介绍了这些技术在农药残留分析中的应用。农药残留快速分析技术未来将会朝着检测仪器的小型化和集成化、多通道检测、无线通讯方向发展,提高快速检测方法和仪器的稳定性和可靠性是必然趋势。  相似文献   

10.

Purpose

The purpose of the present study are to analyze the temporal and spatial trends of the pesticide use on almond crops and assess their associated risk to soil, surface water, and air, and to investigate the impacts of pesticide risk on biodiversity.

Materials and methods

California Pesticide Use Report database was used to determine the organophosphate (OP) and pyrethroid use trends in the San Joaquin Valley for almonds from 1992 to 2005. Environmental potential risk indicator for pesticides model was employed to evaluate associated environmental relative risks in soil and in surface water. Emission potential of pesticide product was used to estimate the air relative risk. Geographical Information System was used to delineate the spatial distribution patterns of environmental risk evaluation in almonds and biodiversity.

Results and discussion

OP pesticide use has been declined in any measurement in almonds. However, a converse result was found for pyrethroid pesticide. Pesticide use trends reflect the profound changes in pest management strategies in the California almond farm community. The model results in this study showed evidence that pyrethroid posed less environmental risks to soil, air, and water resources than OP. The physiochemical properties of pyrethroid reflect a strong tendency to adsorb to organic carbons, and therefore, potentially move off-site attached to sediment. Once in sediments, they can be bioavailable to the aquatic food web. So, more future study on environmental model should address pyrethroid environmental risk on sediment. Ecologists revealed that endangered species diversity has good correlation with total species diversity, so we developed a biodiversity index by using the survey data of endangered and rare animals in California. The results showed a negative relationship between count of animal occurrence and predicted environmental risk. This result would be useful to help conserve California??s biological diversity by providing information to promote agricultural management and land-use decisions.

Conclusions

Pesticide use trend is directly related to environmental risk. Pyrethroid posed less environmental risk than OP in this study. And also, this study got a noticeable result that pesticide uses in intensive agriculture and their associated environmental risks pose negative impacts on biodiversity.  相似文献   

11.
A method was developed to determine pesticides in wines. The pesticides were extracted from the wine using solid-phase extraction on a polymeric cartridge, and the coextractives were removed with an aminopropyl-MgSO(4) cartridge. Analysis was performed using capillary gas chromatography with electron impact mass spectrometric detection in selective ion monitoring mode (GC-MSD/SIM). Three injections are required to analyze all 153 organohalogen, organonitrogen, organophosphate, and organosulfur pesticides and residues. Pesticides were confirmed by retention times of the target ions and three qualifier-to-target ion ratios. Detection limits for most of the pesticides were less than 0.005 mg/L, and quantitation was determined from approximately 0.01 to 5 mg/L. Spike recoveries were performed by fortifying red and white wines at 0.01 and 0.10 mg/L. At the 0.01 ppm level, the spike recoveries were greater than 70% for 116 and 124 pesticides (out of 153) in red and white wines, respectively, whereas at the higher spike concentration of 0.10 mg/L, the recoveries were greater than 70% for 123 and 128 pesticides in red and white wines, respectively. The recoveries of less than 70% were most likely from pesticide polarity or lability, resulting in the inefficient adsorption of the pesticide to the polymeric sorbent, ineffective elution of the pesticide from the sorbent, or thermal degradation of the pesticide under GC-MSD conditions.  相似文献   

12.
拟除虫菊酯类农药微生物降解研究进展   总被引:21,自引:3,他引:21  
王兆守  李顺鹏 《土壤》2005,37(6):577-580
拟除虫菊酯类农药是杀虫剂中的第三大类,这类农药残留已成为目前农产品中的主要农药残留类型之一。而微生物在降解农药残留中具有重要的作用,微生物降解技术已成为去除农药残留的绿色生产技术。拟除虫菊酯类农药的微生物降解国内外已有的研究主要集中在降解现象,菌株的分离、鉴定及生理生化特性,酶学,不同光学异构体的降解、降解途径等方面,本文对此进行了较详细的回顾,并对将来的研究方向进行了展望。  相似文献   

13.
Supercritical fluid carbon dioxide extraction (SFE) has been evaluated for the extraction of 17 organohalogen and organophosphate pesticides in gazpacho (a table-ready food composite containing crude vegetables, white bread, vegetable oil, water, and other minor components) using anhydrous magnesium sulfate as drying agent. The effects of different parameters, such as fat content in gazpacho composites, magnesium sulfate/gazpacho ratio, supercritical fluid volume, pressure, temperature, and static modifier additions, on SFE recoveries from spiked gazpacho samples have been studied. Analyses were performed by gas chromatography (GC) with flame photometric (FPD), electron capture (ECD), and mass spectrometry (MSD) detectors. In most experiments, recoveries obtained for the nonpolar organohalogen pesticides were lower than those obtained for the most polar organophosphate pesticides, but overall pesticide recoveries determined by using the optimal SFE conditions indicate that SFE could be used to determine pesticide residue levels in gazpacho.  相似文献   

14.
Green onion and cabbage certified reference materials for the analysis of pesticide residues were issued by the National Metrology Institute of Japan, part of the National Institute of Advanced Industrial Science and Technology. Green onion and cabbage samples were grown so as to contain several kinds of organophosphorus and pyrethroid pesticides, and those were collected from a field in the Kochi Prefecture in Japan. The certification was carried out by using multiple analytical methods to ensure the reliability of analytical results; the values of target pesticides (diazinon, fenitrothion, cypermethrin, etofenprox, and permethrin for green onion and chlorpyrifos, fenitrothion, and permethrin for cabbage) were obtained by isotope dilution mass spectrometry. Certified values of target pesticides were 0.96-13.9 and 2.41-6.9 mg/kg for green onion and cabbage, respectively. These are the first green onion and cabbage powder certified reference materials in which organophosphorus and pyrethroid pesticides are determined.  相似文献   

15.
蒋黎艳  黄志强  张祖姣  谢婕  赵其阳 《核农学报》2019,33(11):2211-2220
为研究低糖姜脯加工过程对生姜中甲基硫菌灵和多菌灵残留量的影响,以江永香姜为原料,通过浸药方式强化初始残留量,采用液相色谱串联质谱法测定各主要加工工序中2种农药残留量的变化,并计算2种农药在各工序中的加工因子。结果表明,在低糖姜脯加工过程中,除2次干燥工序,其他加工工序对甲基硫菌灵和多菌灵的残留水平均有一定的降低作用,全果清洗步骤多菌灵的去除率为31.1%,甲基硫菌灵的去除率高达62.3%;去皮工序甲基硫菌灵和多菌灵的去除率分别为82.0%和72.9%,漂烫工序甲基硫菌灵和多菌灵的去除率分别为36.8%和77.3%,硬化、超声辅助加热渗糖和上胶衣过程均对甲基硫菌灵和多菌灵的去除有一定的积极影响。在整个加工过程中,各工序姜脯样品的加工因子均小于1,低糖姜脯成品中的甲基硫菌灵和多菌灵的加工因子分别为0.010和0.023,表明整个加工过程可以显著降低姜脯中甲基硫菌灵和多菌灵的残留量(P<0.05)。本研究结果为生姜加工工艺的优化和农药残留的膳食暴露风险评估提供了数据支撑和参考。  相似文献   

16.
The behavior of several pesticides in aqueous solution, namely bifenthrin, amethrin (pyrethroid insecticides), endosulfan and endosulfan sulfate (organochlorine pesticides), disulfoton, methyl pyrimiphos, and phorate (organophosphorus pesticides), submitted to the conditions typically employed in water treatment stations was investigated. Continuous pesticide depletion was monitored by solid-phase microextraction sampling followed by gas chromatography–mass spectrometry analysis. The influence of major parameters (sodium hypochloride concentration, solution pH, and exposure time to ultraviolet (UV) light) was, thus, adequately established via two complementary approaches: factorial (23, three variables—two levels) and Doehlert designs. Hence, the sodium hypochloride concentration and the solution pH produced distinct effects depending on the pesticide evaluated (for instance, acidic and basic media caused increasing rates of degradation for the organophosphorus/pyrethroid and organochlorine pesticides, respectively). Conversely, higher rates of degradation were achieved for all of the pesticides investigated when increased exposure times to UV radiation were employed. Finally, the exposure time to UV radiation that lead to complete degradation of disulfoton and endosulfan sulfate (organophosphorus and organochlorine pesticides, respectively) in aqueous media under ordinary conditions employed in water treatment stations was established; disulfoton and endosulfan sulfate were completely degraded after 10 and 40 h, respectively.  相似文献   

17.
苹果中有机氯农药残留的超声波去除条件优化   总被引:4,自引:0,他引:4  
中国是世界苹果第一生产大国,但中国苹果出口仅占世界贸易量的不足10%,其主要制约因素是安全性,其中农药残留是主要原因之一。论文采用响应曲面法对超声波去除苹果中有机氯农药残留的工艺条件(功率、时间、温度)及其交互作用进行了优化,并就超声波处理对苹果主要品质指标的影响进行了分析。结果表明:超声波去除苹果中有机氯农药残留的适宜工艺参数为:超声波功率为609.16 W,时间为70.46 min,温度为15.45℃,去除率可达到64.32%;超声波处理对苹果的硬度没有显著性影响;对苹果的总糖、总酸具有一定的显著性影响,但没有超出国家标准及主要出口国苹果标准的要求。超声波处理简单快速,能有效去除苹果中有机氯农药的残留,极大提高苹果的安全性,很容易和现有鲜果清洗、分级、打蜡生产线耦合链接,其产业化应用前景极为广阔。  相似文献   

18.
为了解我国西北地区蔬菜水果和食用菌的质量安全情况及暴露风险,本试验从2018至2020年在我国甘肃省平凉市进行样品抽取,共测定2 435份蔬菜水果和食用菌样品中46种农药残留的含量.通过农药残留风险评估方法分析了 9类别蔬菜水果和食用菌中农药残留的分布和相关性,并对蔬菜和水果中农药残留情况进行了风险排序,以及暴露风险、...  相似文献   

19.
A fast, single-step, and efficient partition between n-hexane and acetonitrile on ready-to-use, disposable mini-columns of Kieselghur-type material has been developed for the cleanup of fatty extracts for organophosphate (OP) pesticide residue determination by gas chromatography with flame photometric detection. Nine OP pesticides (diazinon, etrimfos, chlorpyrifos-methyl, pyrimiphos-methyl, chlorpyrifos, bromophos, bromophos-ethyl, malathion, fenitrothion) most commonly used for protection of stored cereals, oil seeds, and legumes were separated from up to 2.0 g lipidic material with recoveries between 80 and 107% at spiking levels ranging for the different compounds from 0.1 to 5.0 ppm.  相似文献   

20.
Reduction of pesticide residues on produce by rinsing   总被引:6,自引:0,他引:6  
In 1997 this laboratory initiated a research program with the objective of examining the effect that rinsing of produce with tap water would have on pesticide residues. Samples were obtained from local markets and/or grown at our experimental farm. Because approximately 35% of produce from retail sources contains pesticide residues, growing and treating produce at an experimental farm had the advantage that all such samples contain pesticide residues. Pesticides were applied under normal field conditions to a variety of food crops and the vegetation was allowed to undergo natural weathering prior to harvest. The resulting samples contained field-incurred or "field-fortified" residues. This experimental design was employed to mimic as closely as possible real world samples. Crops were treated, harvested, and divided into equal subsamples. One subsample was processed unwashed, whereas the other was rinsed under tap water. The extraction and analysis method used was a multi-residue method developed in our laboratory. Twelve pesticides were included in this study: the fungicides captan, chlorothalonil, iprodione, and vinclozolin; and the insecticides endosulfan, permethrin, methoxychlor, malathion, diazinon, chlorpyrifos, bifenthrin, and DDE (a soil metabolite of DDT). Statistical analysis of the data using the Wilcoxon signed-rank test showed that rinsing removed residues for nine of the twelve pesticides studied. Residues of vinclozolin, bifenthrin, and chlorpyrifos were not reduced. The rinsability of a pesticide is not correlated with its water solubility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号