首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 629 毫秒
1.
BACKGROUND: The behavior of the termiticide fipronil in soils was studied to assess its potential to contaminate ground and surface water. This study characterizes (1) adsorption of fipronil in three different soils, (2) transport of fipronil through leaching and runoff under simulated rainfall in these soils and (3) degradation of fipronil to fipronil sulfide and fipronil sulfone in these soils. RESULTS: The adsorption experiments showed a Freundlich isotherm for fipronil with Koc equal to 1184 L kg?1. In the leaching experiments, the concentration of fipronil and its metabolites in leachate and runoff decreased asymptotically with time. The concentration of fipronil in the leachate from the three soils correlated inversely with soil organic carbon content. The degradation experiment showed that the half‐life of fipronil in the soils ranged from 28 to 34 days when soil moisture content was 75% of field capacities, and that 10.7–23.5% of the degraded fipronil was transformed into the two metabolites (fipronil sulfide and fipronil sulfone). CONCLUSION: Fipronil showed large losses through leaching but small losses via runoff owing to low volumes of runoff water generated and/or negligible particle‐facilitated transport of fipronil. The half‐life values of fipronil in all three soils were similar. Copyright © 2011 Society of Chemical Industry  相似文献   

2.
BACKGROUND: The 2,4‐D degradation ability of the microbiota of three arable Mediterranean soils was estimated. The impact of soil moisture and temperature on 2,4‐D degradation was investigated. RESULTS: The microbiota of the three soils regularly exposed to 2,4‐D were able rapidly to mineralise this herbicide. The half‐life of 2,4‐D ranged from 8 to 30 days, and maximum mineralisation of 14C‐2,4‐D ranged from 57 to 71%. Extractable 14C‐2,4‐D and 14C‐bound residues accounted for less than 1 and 15% respectively of the 14C‐2,4‐D initially added. The highest amounts of 14C‐2,4‐D bound residues were recorded in the soil with the lowest 2,4‐D‐mineralising ability. Although all three soils were able to mineralise 2,4‐D, multivariate analysis revealed that performance of this degrading microbial activity was dependent on clay content and magnesium oxide. Soil temperature affected the global structure of soil microbial community, but it had only a moderate effect on 2,4‐D‐mineralising ability. 2,4‐D‐mineralising ability was positively correlated with soil moisture content. Negligible 2,4‐D mineralisation occurred in all three soils when incubated at 10 or 15% soil moisture content, i.e. within the range naturally occurring under the Mediterranean climate of Algeria. CONCLUSION: This study shows that, although soil microbiota can adapt to rapid mineralisation of 2,4‐D, this microbial activity is strongly dependent on climatic parameters. It suggests that only limited pesticide biodegradation occurs under Mediterranean climate, and that arable Mediterranean soils are therefore fragile and likely to accumulate pesticide residues. Copyright © 2009 Society of Chemical Industry  相似文献   

3.
BACKGROUND: This work was undertaken to determine the preharvest interval (PHI) of buprofezin to minimize its residues in grapes and thereby ensure consumer safety and avoid possible non‐compliance in terms of residue violations in export markets. Furthermore, the residue dynamics in three grapevine soils of India was explored to assess its environmental safety. RESULTS: Residues dissipated following non‐linear two‐compartment first + first‐order kinetics. In grapes, the PHI was 31 days at both treatments (312.5 and 625 g a.i. ha?1), with the residues below the maximum permissible intake even 1 h after foliar spraying. Random sampling of 5 kg comprising small bunchlets (8–10 berries) collected from a 1 ha area gave satisfactory homogeneity and representation of the population. A survey on the samples harvested after the PHI from supervised vineyards that received treatment at the recommended dose showed residues below the maximum residue limit (MRL) of 0.02 mg kg?1 applicable for the European Union. In soil, the degradation rate was fastest in clay soil, followed by sandy loam and silty clay, with a half‐life within 16 days in all the soils. CONCLUSION: The recommendation of the PHI proved to be effective in minimizing buprofezin residues in grapes. Thus, this work is of high practical significance to the domestic and export grape industry of India to ensure safety compliance in respect of buprofezin residues, keeping in view the requirements of international trade. Copyright © 2008 Society of Chemical Industry  相似文献   

4.
1,3‐Dichloropropene (1,3‐D), which consists of two isomers, (Z)‐ and (E)‐1,3‐D, is considered to be a viable alternative to methyl bromide, but atmospheric emission of 1,3‐D is often associated with deterioration of air quality. To minimize environmental impacts of 1,3‐D, emission control strategies are in need of investigation. One approach to reduce 1,3‐D emissions is to accelerate its degradation by incorporating organic amendments into the soil surface. In this study, we investigated the ability of four organic amendments to enhance the rate of degradation of (Z)‐ and (E)‐1,3‐D in a sandy loam soil. Degradation of (Z)‐ and (E)‐1,3‐D was well described by first‐order kinetics, and rates of degradation for the two isomers were similar. Composted steer manure (SM) was the most reactive of the organic amendments tested. The half‐life of both the (Z)‐ and (E)‐isomers in unamended soil at 20 °C was 6.3 days; those in 5% SM‐amended soil were 1.8 and 1.9 days, respectively. At 40 °C, the half‐life of both isomers in 5% SM‐amended soil was 0.5 day. Activation energy values for amended soil at 2, 5 and 10% SM were 56.5, 53.4 and 64.5 kJ mol?1, respectively. At 20 °C, the contribution of degradation from biological mechanisms was largest in soil amended with SM, but chemical mechanisms still accounted for more than 58% of the (Z)‐ and (E)‐1,3‐D degradation. The effect of temperature and amendment rate upon degradation should be considered when describing the fate and transport of 1,3‐D isomers in soil. Use of organic soil amendments appears to be a promising method to enhance fumigant degradation and reduce volatile emissions. Published in 2001 for SCI by John Wiley & Sons, Ltd  相似文献   

5.
6.
BACKGROUND: Pyrazosulfuron ethyl, a new rice herbicide belonging to the sulfonylurea group, has recently been registered in India for weed control in rice crops. Many field experiments revealed the bioefficacy of this herbicide; however, no information is available on the persistence of this herbicide in paddy soil under Indian tropical conditions. Therefore, a field experiment was undertaken to investigate the fate of pyrazosulfuron ethyl in soil and water of rice fields. Persistence studies were also carried out under laboratory conditions in sterile and non‐sterile soil to evaluate the microbial contribution to degradation. RESULTS: High‐performance liquid chromatography (HPLC) of pyrazosulfuron ethyl gave a single sharp peak at 3.41 min. The instrument detection limit (IDL) for pyrazosulfuron ethyl by HPLC was 0.1 µg mL?1, with a sensitivity of 2 ng. The estimated method detection limit (EMDL) was 0.001 µg mL?1 and 0.002 µg g?1 for water and soil respectively. Two applications at an interval of 10 days gave good weed control. The herbicide residues dissipated faster in water than in soil. In the present study, with a field‐soil pH of 8.2 and an organic matter content of 0.5%, the pyrazosulfuron ethyl residues dissipated with a half‐life of 5.4 and 0.9 days in soil and water respectively. Dissipation followed first‐order kinetics. Under laboratory conditions, degradation of pyrazosulfuron ethyl was faster in non‐sterile soil (t1/2 = 9.7 days) than in sterile soil (t1/2 = 16.9 days). CONCLUSION: Pyrazosulfuron ethyl is a short‐lived molecule, and it dissipated rapidly in field soil and water. The faster degradation of pyrazosulfuron in non‐sterile soil than in sterile soil indicated microbial degradation of this herbicide. Copyright © 2012 Society of Chemical Industry  相似文献   

7.
BACKGROUND: Thiamethoxam, a neonicotinoid insecticide, has been widely accepted for use in various crops, including vegetables, owing to its high efficacy against various chewing and sucking insect pests. In this particular study, the authors examined the residue dynamics of this insecticide in tomato and soil and calculated a safety index for this insecticide in an Indian context. RESULTS: In tomato fruits, the insecticide dissipated from 82 to 87% in 10 days with a half‐life of 4 days, whereas dissipation in soil, under tomato crop, varied between 72 and 75% in 15 days with a half‐life of 9 days. Total residues reached below detectable level in 15 days in tomato fruits and 20 days in soil. Maximum damage (30%) was found in control plots, as opposed to 8–10% of fruit damage in treated plots. One degradation product was detected on the tomato fruit surface, and three metabolites were identified in tomato fruits by the LC‐MS technique. The metabolites have been reported for the first time in tomato fruits. CONCLUSION: Thiamethoxam at normal and double the recommended use rate effectively controlled aphids, whiteflies and Helicoverpa, as the insect population decreased to a minimum within 10 days of spraying in comparison with the control. There was no significant difference between the two rates of application, and both thiamethoxam treatments significantly increased tomato fruit yield compared with the untreated control. A maximum residue limit (MRL) of 0.05 mg kg?1 for tomato has been proposed, with a corresponding preharvest interval (PHI) of 8 days. These parallel advances in toxicology and analytical chemistry have strengthened the observations that thiamethoxam can be used safely and efficiently in crop protection programmes. Copyright © 2009 Society of Chemical Industry  相似文献   

8.
BACKGROUND: Acetochlor, introduced on the market in 1994, is used extensively worldwide, but sorption and degradation studies, including subsurface, are scarce, and there appear to be no such studies with aquifer sediment according to the present mini‐review. Sorption, degradation and mineralisation of acetochlor were investigated in heterogeneous limestone down to 43 m below surface (mbs) in four European aquifers (1.7–59 mbs), both aerobic and anaerobic. RESULTS: Sorption revealed Kd values of 3.39–4.96 L kg?1 in topsoil, < 0.01–2.02 L kg?1 in heterogeneous limestone, 0.06–0.72 L kg?1 in aerobic aquifers and 1.03–4.60 L kg?1 in microaerobic or anaerobic aquifers. The mineralisation half‐lives in the samples from 0.0–0.6 mbs were 0.8–2.1 years and 4.7–95 years in the unsaturated limestone samples from 1–43 mbs. Out of 22 samples from four different European aquifers, acetochlor was mineralised in five samples (half‐lives of 9–19 years), all from the same aquifer and core section (19.25–19.53 mbs). CONCLUSION: Sorption was weak in limestone and aerobic sandy aquifers, and strong in topsoils and in reduced sandy aquifers. Redox conditions controlled the extent of acetochlor sorption in aquifers, as reduced conditions induced increased sorption. Acetochlor was mineralised in deep subsurface, though slowly, and, as mineralisation is the only true removal mechanism in natural attenuation, even slow mineralisation in aquifers with long residence times can have a significant impact. Copyright © 2010 Society of Chemical Industry  相似文献   

9.
BACKGROUND: Clomazone is a popular herbicide used on California rice fields and exhibits rapid anaerobic microbial degradation (t1/2 = 7.9 days). To test the potential of direct and indirect photolytic degradation as a cofactor in the overall degradation rate, sacrificial time‐series microcosms were amended with water, non‐sterilized soil + water and sterilized soil + water. Clomazone was added to each microcosm, which was then exposed to natural and artificial sunlight over 35 days. Water and acetonitrile extracts were analyzed for clomazone and metabolites via LC/MS/MS. RESULTS: The calculated pseudo‐first‐order degradation rate constants (k) were kwater = 0–0.005 ± 0.003 day?1, ksterile = 0–0.005 ± 0.003 day?1 and knon?sterile = 0.010 ± 0.002–0.044 ± 0.007 day?1, depending on light type. The formation of ring‐open clomazone, a microbial metabolite, correlated with clomazone degradation. Trace amounts of 5‐hydroxyclomazone (m/z = 256 → 125), aromatic hydroxyclomazone (m/z = 256 → 141) and an unknown product (m/z = 268 → 125) were observed. CONCLUSIONS: The photolytic degradation rate depends on both light type and the quality of the chromophores that induce indirect photolysis. Microbial degradation was found to be sensitive to temperature fluctuations. Overall, microbes are shown to be more detrimental to the environmental fate of clomazone than photolysis. Copyright © 2012 Society of Chemical Industry  相似文献   

10.
The stability of some diluted emulsifiable concentrate formulations in clear liquid fertilizers, as affected by the nature and concentration of the salt solutions, was checked by a static test. The time-induced changes in the concentration of the dispersed phase were estimated by visual observations and turbidity measurements. For each formulation a specific relationship between the electrical conductivity of all the fertilizer solutions and the emulsion stability was found. This was valid for a pH range between 4.6–6.3; in alkaline conditions the emulsion stability was relatively lower. A critical electrical conductivity range, above which irreversible destabilization occurred, was observed for each formulation: 100-120 dS m?1 for fenamiphos, 60-70 dS m?1 for metolachlor, 30-50 dS m?1 for chlorpyrifos, and about 45 dS m?1 for S-ethyl dipropylthiocarbamate (EPTC). The correlation observed between the emulsion stability and the electrical conductivity could be used in a simple and rapid qualitative test to estimate the physical compatibility between emulsifiable concentrate formulations and liquid fertilizers.  相似文献   

11.
BACKGROUND: The immediate lethality caused by spinosad has been widely studied on Spodoptera exigua (Hübner). However, long‐term effects can also provide valuable information on insecticide toxic action. Here, the persistence of spinosad on Capsicum annuum L. foliage and the lethal and sublethal effects of greenhouse‐aged foliar residues of this insecticide on third instars of S. exigua are reported. RESULTS: Foliage was collected at 0, 3, 5, 10, 20, 30, 40 and 50 days after application, and spinosad residues were measured. Residues decreased over time according to first‐order kinetics. The average rate constant and half‐life of disappearance were 4.44 × 10?3 and 156 days and 5.80 × 10?3 and 120 days for 60 and 120 mg L?1 respectively. Larval mortality gradually decreased, corresponding to the residues, but was still appreciable (35 and 65% for 60 and 120 mg L?1 respectively) when the larvae were fed with foliage collected 50 days after treatment. Subsequently, pupal development was reduced and varied between 20 and 60% and between 21 and 41% for 60 and 120 mg L?1, respectively, in all ages of leaf residues that were bioassayed. At all time points, the consumption rate by the larvae was reduced between 62 and 84% for both concentrations that were bioassayed. CONCLUSION: It is concluded that, under the present greenhouse conditions, the degradation of spinosad was slower than that reported by other authors in the field, and, because of that, its residues could cause lethal and sublethal effects to S. exigua larvae. Copyright © 2011 Society of Chemical Industry  相似文献   

12.
Chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate] is an organophosphorus insecticide applied to soil to control pests both in agricultural and in urban developments. Typical agricultural soil applications (0.56 to 5.6 kg ha?1) result in initial soil surface residues of 0.3 to 32 μg g?1. In contrast, termiticidal soil barrier treatments, a common urban use pattern, often result in initial soil residues of 1000 μg g?1 or greater. The purpose of the present investigation was to understand better the degradation of chlorpyrifos in soil at termiticidal application rates and factors affecting its behaviour. Therefore, studies with [14C]chlorpyrifos were conducted under a variety of conditions in the laboratory. Initially, the degradation of chlorpyrifos at 1000 μg g?1 initial concentration was examined in five different soils from termite-infested regions (Arizona, Florida, Hawaii, Texas) under standard conditions (25°C, field moisture capacity, darkness). Degradation half-lives in these soils ranged from 175 to 1576 days. The major metabolite formed in chlorpyrifos-treated soils was 3,5,6-trichloro-2-pyrid-inol, which represented up to 61% of applied radiocarbon after 13 months of incubation. Minor quantities of [14C]carbon dioxide (< 5%) and soil-bound residues (? 12%) were also present at that time. Subsequently, a factorial experiment examining chlorpyrifos degradation as affected by initial concentration (10, 100, 1000 μg g?1), soil moisture (field moisture capacity, 1.5 MPa, air dry), and temperature 15, 25, 35°C) was conducted in the two soils which had displayed the most (Texas) and least (Florida) rapid rates of degradation. Chlorpyrifos degradation was significantly retarded at the 1000 μg g?1 rate as compared to the 10 μg g?1 rate. Temperature also had a dramatic effect on degradation rate, which approximately doubled with each 10°C increase in temperature. Results suggest that the extended (3–24 + years) termiticidal efficacy of chlorpyrifos observed in the field may be due both to the high initial concentrations employed (termite LC 50 = 0.2– 2 μg g?1) and the extended persistence which results from employment of these rates. The study also highlights the importance of investigating the behaviour of a pesticide under the diversity of agricultural and urban use scenarios in which it is employed.  相似文献   

13.
介孔活性炭阿维菌素载药系统的性能研究   总被引:1,自引:1,他引:0  
研究了介孔活性炭对阿维菌素的载药特性,以判断其作为阿维菌素载体的可能性。以扫描电子显微镜、比表面积分析仪和粒度分析仪对其进行了物理性状表征。将其负载阿维菌素的能力与常规农药载体进行比较,并进一步分析和评价了该载药系统的吸附动力学特性、缓-控释性能和抗紫外光降解能力。结果表明:供试活性炭载体为不规则球形颗粒状介孔材料,平均粒径为814 nm,比表面积为1 719.25 cm2/g,孔容积为0.043 cm3/g,孔径为4.80 nm。吸收动力学数据符合伪二级动力学模型,对阿维菌素的载药量为220.6 mg/g,显著高于其他常规农药载体,呈现了优良的吸附性能;载药系统的释药时间从90 h延长到672 h以上,表现出了良好的缓释效果;紫外光照射72 h后,阿维菌素原药的分解率为77%,而有活性炭载体保护的阿维菌素的分解率为30% ,表明该载药系统有效地减缓了阿维菌素的光降解速率。研究表明,以介孔活性炭作为阿维菌素载体,可显著改善药物的缓-控释特性以及分散性和光稳定性。  相似文献   

14.
BACKGROUND: The correlation between pesticide residue levels and formulation of an active substance is often not considered, even if it is reasonable to expect some differences arising from behaviour during dilution and spraying, from adhesion to plant and from degradation. An experimental study to investigate the magnitude of tebuconazole residues as a function of different tebuconazole formulated products was carried out in Italy. The fungicide was applied as wettable powder (WP) and water‐dispersible granule (WG) formulations to peach, plum, apricot and nectarine orchards, on four different sites. The fruit samples gained from the field trials were quantitatively analysed by gas chromatography with a nitrogen phosphorus detector (GC/NPD) for tebuconazole residues. RESULTS: Tebuconazole residues in the fruits gained from the plot treated with the WP formulation, 14 days after application, were in the range 0.01–0.07 mg kg?1, while corresponding residues in the plot treated with the WG formulation were in the range 0.01–0.06 mg kg?1. CONCLUSION: No significant differences in the residue levels of tebuconazole could be observed between the trials conducted with the WP and the WG formulation. Copyright © 2009 Society of Chemical Industry  相似文献   

15.
A glasshouse study was conducted to evaluate the effects of different rates (0, 50, 100, 200 and 400 kg ha?1) of nitrogen (N) fertilizer application on the growth, biomass production and N‐uptake efficiency of torpedograss. The growth responses of torpedograss to the N application were significant throughout the observation periods. Torpedograss grown for 60 days obtained the highest total biomass of 23.0 g plant?1 with an application of 200 kg ha?1 N, followed by 20.4 g plant?1 with an application of 100 kg ha?1 N; when it was grown for 90 days a significantly higher biomass of 102.3–106.0 g plant?1 was obtained with the 200–400 kg ha?1 N than the biomass (68.0 g plant?1) obtained with the fertilizer applied at a lower rate. When the torpedograss was grown for 130 days the highest biomass was 230.0 g plant?1 with the 400 kg ha?1 N application, followed by a biomass of 150.0 g plant?1 with the 200 kg ha?1 N application, but the above‐ground shoot in all treatments was over mature for animal food. The ratio of the above‐ground shoot to the underground part increased with the increase in N application up to 400 kg ha?1 during the 90 days after planting (DAP), but the above‐ground shoot biomass was the same with the 200 and 400 kg ha?1 N. The agronomic efficiency of the N application decreased to 5–38 with the increase in N application to 400 kg ha?1, which was less than half the agronomic efficiency with the 200 kg ha?1 N. The agronomic efficiency of N was very low (5–22) during the 60 DAP, which indicated that the N application would not be economically viable in this period for torpedograss as a pasture, and short‐duration plants could be cultivated in torpedograss‐infested fields to minimize weed‐crop competition. The nitrogen concentration (%) in the torpedograss increased with the increase in N application, but N‐uptake efficiency was the opposite and the value was very low with the 400 kg ha?1 N. The above results lead us to conclude that the N application rate of 200 kg ha?1 is the most effective for torpedograss growth.  相似文献   

16.
BACKGROUND: Variations in soil properties with depth influence retention and degradation of pesticides. Understanding how soil properties within a profile affect pesticide retention and degradation will result in more accurate prediction by simulation models of pesticide fate and potential groundwater contamination. Metolachlor is more persistent than other acetanilide herbicides in the soil environment and has the potential to leach into groundwater. Reasonably, information is needed about the dissipation and eventual fate of metolachlor in subsoils. The objectives were to evaluate the adsorption and desorption characteristics and to determine the dissipation rates of metolachlor in both surface and subsurface soil samples. RESULTS: Adsorption of metolachlor was greater in the high‐organic‐matter surface soil than in subsoils. Lower adsorption distribution coefficient (Kads) values with increasing depth indicated less adsorption at lower depths and greater leaching potential of metolachlor after passage through the surface horizon. Desorption of metolachlor showed hysteresis, indicated by the higher adsorption slope (1/nads) compared with the desorption slope (1/ndes). Soils that adsorbed more metolachlor also desorbed less metolachlor. Metolachlor dissipation rates generally decreased with increasing soil depth. The first‐order dissipation rate was highest at the 0–50 cm depth (0.140 week?1) and lowest at the 350–425 cm depth (0.005 week?1). Degradation of the herbicide was significantly correlated with microbial activity in soils. CONCLUSION: Metolachlor that has escaped degradation or binding to organic matter at the soil surface might leach into the subsurface soil where it will dissipate slowly and be subject to transport to groundwater. Copyright © 2009 Society of Chemical Industry  相似文献   

17.
18.
C. Zhang  H. Wu  X. Li  H. Shi  F. Wei  G. Zhu 《Plant pathology》2013,62(6):1378-1383
During 2009–2010, a total of 323 isolates of Xanthomonas oryzae pv. oryzae were obtained from rice with symptoms of bacterial leaf blight (BLB) in four provinces (Zhejiang, Jiangsu, Anhui and Hubei) in China. These isolates were tested for baseline sensitivity to zinc thiazole, a novel bactericide with strong antibacterial activity against Xanthomonas. The sampled pathogenic population had similar sensitivity to zinc thiazole (0·1–16·8 mg L?1) in all four regions and over the whole two‐year study period. The baseline sensitivity was distributed as a unimodal curve with a mean EC50 value of 6·79 ± 1·61 mg L?1. The risk of mutation to resistance of zinc thiazole in X. oryzae pv. oryzae was further evaluated in vitro and in vivo. Twelve zinc thiazole‐resistant mutants were obtained through ultraviolet (UV) irradiation, culturing on zinc thiazole‐amended nutrient agar (NA) plates, and culturing on zinc thiazole‐treated rice plants. These zinc thiazole‐resistant mutants had resistance factors (RF = EC50 value of a mutant / EC50 value of the wildtype parent of this mutant) of 12·4 to 186·1 with a mean RF value of 44·1. Mutants obtained via UV irradiation, culturing on NA plates and culturing on rice plants had mean RF values of 51·8, 24·5 and 14·4, respectively. All mutants showed decreases in resistance to zinc thiazole after 20 successive transfers on bactericide‐free media or 10 successive inoculation–reisolations on bactericide‐free rice plants. No significant difference was found in bacterial growth and sensitivity to bismerthiazol between zinc thiazole‐resistant mutants and their parents. However, a significant decrease was observed in the pathogenicity of zinc thiazole‐resistant mutants compared with their parents, especially for mutants obtained via UV irradiation.  相似文献   

19.
BACKGROUND: Drip application of insecticides is an effective way to deliver the chemical to the plant that avoids off‐site movement via spray drift and minimizes applicator exposure. The aim of this paper is to present a cascade model for the uptake of pesticide into plants following drip irrigation, its application for a soil‐applied insecticide and a sensitivity analysis of the model parameters. RESULTS: The model predicted the measured increase and decline of residues following two soil applications of an insecticide to peppers, with an absolute error between model and measurement ranging from 0.002 to 0.034 mg kg fw?1. Maximum measured concentrations in pepper fruit were approximately 0.22 mg kg fw?1. Temperature was the most sensitive component for predicting the peak and final concentration in pepper fruit, through its influence on soil and plant degradation rates. CONCLUSION: Repeated simulations of pulse inputs with the cascade model adequately describe soil pesticide applications to an actual cropped system and reasonably mimic it. The model has the potential to be used for the optimization of practical features, such as application rates and waiting times between applications and before harvest, through the integrated accounting of soil, plant and environmental influences. Copyright © 2011 Society of Chemical Industry  相似文献   

20.
The sulfonylurea herbicide flupyrsulfuron was applied post‐emergence in March at the rate of 10 g a.i. ha?1 on winter wheat crops. In the 0–8 cm surface soil layer of the crops grown on sandy loam and loam soils, the flupyrsulfuron half‐life was 64 and 40 days respectively. Flupyrsulfuron and its metabolites were not detected during both crops or 1 month after crop harvest in the 8–15 and 15–20 cm soil layers. Soil degradation of flupyrsulfuron successively generated the cyclization products 1‐(4,6‐dimethoxypyrimidine‐2‐yl)‐2,4‐diketo‐7‐trifluoromethyl‐1,2,3,4‐tetrahydropyrido[2,3‐d]pyrimidine 2 and N‐(4,6‐dimethoxypyrimidine‐2‐yl)‐N‐(3‐methoxycarbonyl‐6‐trifluoromethylpyridine‐2‐yl)‐amine 3 , which were the main metabolites of flupyrsulfuron in soil. Hydrolysis of 3 successively generated N‐(4,6‐dimethoxypyrimidine‐2‐yl)‐N‐(3‐car‐ boxylic acid‐6‐trifluoromethylpyridine‐2‐yl)‐amine 4 and N‐(4‐methoxy‐6‐hydroxypyrimidine‐2‐yl)‐N‐(3‐carboxylic acid‐6‐trifluoromethylpyridine‐2‐yl)‐amine 5 . Low and temporary concentrations of 2‐sulfonamido‐3‐carbomethoxy‐6‐trifluoromethyl‐pyridine 6 and 2‐amino‐4,6‐dimethoxypyrimidine 7 were observed. Bioassays with sugarbeet as test plants indicated that 2, 3, 4, 5, 6 and 7 had herbicide activities corresponding to 100%, 80%, 75%, 75%, 75% and 15% of that of flupyrsulfuron respectively. The metabolites thus extended the herbicidal protection given by flupyrsulfuron and explain the high herbicidal protection given by the low dose of flupyrsulfuron applied. One month after the harvest of the winter wheat, no more significant residue of flupyrsulfuron or of its metabolites was detected in soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号