首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previous studies comparing cultivars of different maturity groups in different soils demonstrated that early maturity group cultivars were more sensitive to glyphosate injury than those of other maturity groups. In this work, we evaluated the effect of increasing rates of glyphosate on water absorption and photosynthetic parameters in early maturity group cultivar BRS 242 GR soybean. Plants were grown in a complete nutrient solution and subjected to a range of glyphosate rates either as a single or sequential leaf application. Net photosynthesis, transpiration rate, stomatal conductance, sub-stomatal CO2, carboxylation efficiency, fluorescence, maximal fluorescence and chlorophyll content were monitored right before and at different stages after herbicide application; water absorption was measured daily. All photosynthetic parameters were affected by glyphosate. Total water absorbed and biomass production by plants were also decreased as glyphosate rates increased, with the affect being more intense with a single full rate than half the rate applied in two sequential applications. Water use efficiency (WUE) was significantly reduced with increasing rates of glyphosate.  相似文献   

2.
Alterations in some physiological processes in source leaves of sugar beet—such as chlorophyll and carbohydrate concentrations, stomatal conductance, rate of net photosynthesis and transpiration, and activity of the photosynthetic apparatus during root interaction with Aphanomyces cochlioides, were investigated. The influence of time of infection on plant health, yield quality and quantity was also examined. Plants were infected at different times of their growth period: on the sowing day and 4 or 8 weeks after sowing. A variation treatment, with non-pelleted seeds infected on the sowing day, was also analyzed. The experiment showed that development of disease symptoms depends on the time of infection and seed protection. A significant root yield decrease was observed in case of late infection, as compared to the yield of plants infected on the sowing day. The fresh weight of leaves was significantly increased where there was late infection. The infected plants showed a lower content of K+, Na+ and α-amino-N than did the controls. Infection by A. cochlioides induced chlorophyll degradation mostly in older leaves with the occurrence of natural senescence processes. Chlorophyll fluorescence parameters indicated that the photosynthetic apparatus of younger leaves was more sensitive to pathogen infection, when compared to older ones. The photochemical efficiency of photosystem II was reduced in young leaves mainly due to disturbance of the water-splitting system. In plants grown from non-pelleted seeds a strong impairment of PSII was observed only in those leaves which developed during early pathogen infection. In young leaves of plants infected in the fourth week after sowing, inhibition of the rate of net photosynthesis was correlated with the increase in intercellular CO2 concentration, indicating some disturbance in the carbon assimilation phase. In mature leaves of late infected plants the reduction of photosynthesis net rate was associated with a decrease of stomatal conductance and an increase of diffusion resistance to CO2 and H2O, which was also the cause of the transpiration rate inhibition. When the leaves developed during early infection, an increase of specific leaf weight and accumulation of carbohydrates was observed. In mature leaves of non-protected plants infected on the sowing day, the recovery of all physiological processes was observed together with a diminution of disease symptoms.  相似文献   

3.
The combined effects of NaCl-salinity and phosphorus deficiency on biomass production, nutritional status, and photosynthetic activity were studied in Catapodium rigidum: an annual Poacea with fodder potential. Plants were grown in hydroponic conditions for 55 days under two phosphorus (P) supply: 5 (low) or 180?µmol KH2PO4 (sufficient), in the absence or presence of 100?mM NaCl. Obtained results demonstrated that both salinity and P deficiency treatments applied separately reduced substantially plant growth and CO2 assimilation rate with a more marked impact of salt stress. Salinity has no substantial effect on both shoot P concentrations and phosphorus acquisition efficiency independently of P availability. The highest decrease in plant growth (?91%) was observed in plants simultaneously submitted to both stresses suggesting an additive effect of the two stresses and that P deficiency increased the susceptibility of C. rigidum to salinity. This may be linked to a significant decrease in potassium acquisition (?95%), K/Na selectivity ratio (?73%), stomatal conductance (?66%), CO2 assimilation rate (?64%), and shoot water content (66%). Furthermore, plants cultivated under combined salinity and sufficient P supply displayed higher stomatal conductance, CO2 assimilation rate, K/Na selectivity ratio, and plant growth than plants cultivated under combined effects of salinity and P deficiency. These results suggest that adding P to saline soils could be an alternative for alleviating the negative effects of salinity and may ameliorate salinity tolerance.  相似文献   

4.
Gas-exchange and biomass growth was measured on barley plants sprayed with glyphosate in order to investigate what might cause the growth increase observed in low dose glyphosate treated plants. Gas-exchange over 7 days after spraying was measured together with photosynthesis/irradiance and photosynthesis/CO2 curves. In addition, growth experiments at 100, 200, 400 and 800 ppm CO2 were conducted. Dark respiration rates increased in response to the glyphosate treatment, but so did photosynthesis at doses of 11-45 g a.e. ha−1. The increase in photosynthetic rates was mainly due to an increased efficiency of CO2 fixation under irradiance and CO2 saturated conditions. The photosynthesis measurements were confirmed by the growth experiments, where glyphosate growth stimulations were observed only at 400 and 800 ppm CO2. It can, hence, be concluded that low glyphosate doses can stimulate photosynthesis, though the causes behind this increase is still not understood.  相似文献   

5.
Biochemical effects of glyphosate have been examined with a variety of plant materials using mostly merislematic or actively growing tissues. The accumulation of chlorophyll was severely retarded and photosynthetic CO2 uptake was inhibited to a lesser extent. These inhibitory effects could not be alleviated by the simultaneous admixture of divalent cations. Glyphosate enhanced the initial substrate-induction of nitrate reductase, but repressed induction of nitrite reductase, in Ihe latter case correlating with both inhibition of chlorophyll accumulation and CO2 uptake. Inhibition of macromolecule synthesis in single node buds of Agropyron repens(L.) Beauv. was due partly to inhibition of 14C-precursor uptake. The specific activity of soluble acid phosphatase was enhanced as was the evolution of ethane. Ethylene production was not greatly affected. A marked decrease in microsomal protein was observed but the specific activities of several microsomal enzymes did not decline. Glyphosate had little inhibitory effect on the activity of microsomal ATPases in vitro.  相似文献   

6.
以加工番茄品系KT-7为试验材料,研究了不同浓度(0.010、0.025 mmol·L-1)外源CO对盐胁迫(150 mmol·L-1)下加工番茄的光合参数、快速荧光动力学曲线、渗透调节物质等生理特性的影响。结果表明,盐胁迫抑制了加工番茄的光合和生长,导致光合同化效率降低和PSⅡ反应中心活性下降,净光合速率Pn、干物质积累量分别降低了72.11%、35.04%。叶片喷施CO供体可不同程度地改变OJIP曲线形状,增加光合色素含量,提高光合同化效率,调控渗透性调节物质含量,降低盐胁迫对细胞膜结构的伤害;其中以Na150H1效果最佳,叶绿素a、叶绿素b含量与盐胁迫处理相比分别提高了10.58%、19.52%,净光合速率、表观CO2利用效率与盐胁迫相比分别提高了87.24%和152.58%,脯氨酸和可溶性糖含量与盐胁迫相比分别降低了40.16%、25.18%。综上所述,适宜浓度的外源CO提高了叶片的光合能力,激活自我保护机制,降低过量的活化电子对细胞光合膜结构的破...  相似文献   

7.
Leaf scald caused by Monographella albescens reduces the photosynthetic area, causing yield losses in rice. This study investigated the efficacy of the rhizobacteria Burkholderia pyrrocinia (BRM‐32113) and Pseudomonas fluorescens (BRM‐32111), combined with silicon (Si) fertilization, to reduce lesion size and the area under the disease progress curve (AUDPC), as well as to minimize the negative effects on gas exchange, chlorophyll a fluorescence, chlorophyll content and the activity of oxidative stress enzymes. The experiment used a completely randomized design with four replications and seven treatments. Compared with plants only fertilized with Si, plants fertilized with Si and treated with BRM‐32113 showed reductions of 22% in scald lesion expansion and 37% in AUDPC, a 27% increase in the rate of CO2 assimilation (A), a 33% decrease in the internal CO2 concentration (Ci), and a 40% increase in ascorbate peroxidase activity. It was therefore concluded that the combination of BRM‐32113 with Si fertilization reduces the severity of leaf scald, protecting the photosynthetic apparatus, thus representing a sustainable method of reducing the loss of income caused by leaf scald in rice.  相似文献   

8.
The effect of pre-emergently applied herbicide clomazone on the photosynthetic apparatus of primary barley leaves (Hordeum vulgare L.) was studied. Clomazone application caused a reduction in chlorophyll (a+b) and carotenoid levels that was accompanied by a decline in the content of light harvesting complexes as judged from the increasing chlorophyll a/b ratio. The pigment reduction also resulted in changes in 77 K chlorophyll fluorescence emission spectra indicating lower chlorophyll (Chl) fluorescence reabsorption and absence of the long-wavelength emission forms of photosystem I. The maximal photochemical yield of photosystem II (PSII) and the reoxidation kinetics of the primary quinone acceptor QA were not significantly influenced by clomazone. A higher initial slope of Chl fluorescence rise in the Chl fluorescence induction kinetic indicated an increased delivery of excitations to PSII. Simultaneously, analysis of the Chl fluorescence quenching revealed that clomazone reduced function of the electron transport chain behind PSII. The decrease in the saturation rates of CO2 assimilation paralleled the decrease of the Chl content and has been suggested to be caused by a suppressed number of the electron transport chains in the thylakoid membranes or by their decreased functionality. The obtained results are discussed in view of physiological similarity of the clomazone effect with changes of photosynthetic apparatus during photoadaptation.  相似文献   

9.
为研究枯萎病对马铃薯光合特性的影响,在幼苗期接种尖孢镰刀菌Fusarium oxysporum后,统计抗病品种陇薯10号和感病品种新大坪的病情指数,并测定叶绿素含量、光合及荧光参数。结果表明,尖孢镰刀菌侵染30 d后马铃薯表现出枯萎病症状,叶绿素含量显著降低,其中叶绿素a含量降幅最大,抗病品种陇薯10号比对照降低9.64%,感病品种新大坪比对照降低14.24%。尖孢镰刀菌侵染后马铃薯光合效率显著降低,侵染30 d后,抗病品种陇薯10号净光合速率比对照降低39.56%,感病品种新大坪比对照降低47.13%。病株的光响应曲线参数光补偿点、暗呼吸速率和表观量子效率都显著提高;而光饱和点和最大净光合速率都显著低于对照,表明尖孢镰刀菌侵染缩小了马铃薯对光能的利用有效范围。病株CO2响应曲线参数CO2饱和点、最大净光合速率和羧化效率分别显著低于对照;病株CO2补偿点和光呼吸速率反而升高,说明碳同化过程受到尖孢镰刀菌的限制。暗适应下的初始荧光、最小荧光、最大荧光、PSII最大光化学效率、光适应下PSII最大光化学效率及实际光化学效率、光化学猝灭系数、非光化学猝灭系数和光合电子传递速率均显著低于对照,...  相似文献   

10.
为探索能够减轻或消除Mn2+对草甘膦拮抗效应的方法,以高羊茅为试材,将赤霉素(GA3)与草甘膦和硫酸锰(Mn2+质量分数为0.1%)混用,研究了赤霉素对Mn2+降低草甘膦药效的缓解作用。结果表明:赤霉素+草甘膦+硫酸锰处理组高羊茅比同剂量草甘膦+硫酸锰处理组叶色更黄,萎蔫更严重,与同剂量草甘膦单剂处理组比较接近,其中加入50 mg/L赤霉素处理组缓解草甘膦拮抗效应的效果最好。赤霉素+草甘膦+硫酸锰处理组高羊茅的干、鲜重及叶绿素含量均低于草甘膦+硫酸锰处理组,而丙二醛和莽草酸含量均明显高于草甘膦+硫酸锰处理组。处理后第6天,赤霉素+草甘膦+硫酸锰组莽草酸含量分别比草甘膦+硫酸锰组增加了49.8%(加入50 mg/L赤霉素)和28.8%(加入30 mg/L赤霉素),差异显著;处理后第2天,赤霉素+草甘膦+硫酸锰组丙二醛含量分别比草甘膦+硫酸锰组增加了54.1%(加入50 mg/L赤霉素)和52.9%(加入30 mg/L赤霉素),差异显著。研究表明,将赤霉素与锰肥和草甘膦混合喷施,将有可能在一定程度上缓解Mn2+对草甘膦的拮抗效应,保证草甘膦的除草效果。  相似文献   

11.
The effect of DDT (2,2-bis-(p-chlorophenyl)-1,1,1-trichloroethane) on carbon assimilation of a green alga, Selanastrum capricormutum was studied. DDT at concentrations between 3.6 and 36 ppb was inhibitory to the photosynthetic CO2 fixation (ethanol-soluble and/or ethanol-insoluble) and the longer the exposure to DDT, the greater the inhibition. Kinetic studies of photosynthetic CO2 fixation indicated that DDT stimulated the incorporation of carbon-14 into glycolic acid, a major compound of photorespiration and caused the concomittant suppression of flow of carbon-14 into aspartic acid, a major component of the C4-dicarboxylic acid pathway. The shift from an efficient pathway into a nonefficient pathway by DDT was interpreted to be through interruption of cyclic photophosphorylation.  相似文献   

12.
Symptom development in Matricaria inodora and Viola arvensis is compared following field rate application of ioxynil and bromoxynil salts. M. inodora is moderately susceptible to ioxynil-Na and susceptible to bromoxynil-K, whereas V. arvensis is moderately resistant to ioxynil-Na and resistant to bromoxynil-K. Levels of protein, amino acid, and reducing sugars reflected the susceptibility of M. inodora and the transient growth cessation of V. arvensis after hydroxybenzonitrile treatment. Rapid development of chlorotic and necrotic symptoms in M. inodora corresponded with complete inhibition of CO2 fixation within 4 days of treatment. Chloroplasts were swollen, and, after 7 days, ioxynil-Na induced ultrastructural changes typical of photooxidative processes including thylakoid swelling and vesicle formation in the chloroplast. Bromoxynil-K treated mesophyll cells exhibited general cellular disruption including chloroplast swelling and plasmalemma and tonoplast rupture. In contrast, CO2 fixation remained at 35% of control levels in bromoxynil-K-treated V. arvensis. Chloroplast grana contained twice the number of thylakoids of untreated chloroplasts and there was a small reduction in the chlorophyll a:b ratio of treated foliage. Ioxynil-Na induced a similar response with additional chloroplast swelling reflecting the greater inhibition of CO2 fixation by this herbicide.  相似文献   

13.
Herbicide applications are meant to eliminate weed competition; however, herbicides may also impose abiotic stress on registered crops. Leaf tissue carotenoid pigments play vital roles in the photoprotection of photosynthetic membranes and contribute to non-photochemical quenching (NPQ) of excitation energy, both important to plant environmental stress tolerance. Our research objectives were to characterize leaf tissue pigments and chlorophyll fluorescence parameters following post-emergence herbicide applications (simulating an abiotic stress) to sweet corn (Zea mays var. rugosa) genotypes of differential herbicide sensitivities. Post-emergence herbicide applications of combinations of mesotrione (105 g ai/ha) and atrazine (560 g ai/ha) were applied to ‘Merit’ (sensitive), ‘Temptation’ (tolerant), and ‘Incredible’ (moderately sensitive) sweet corn genotypes. Leaf tissues were sampled after herbicide applications and measured for chlorophyll fluorescence parameters, and the same tissues were analyzed for carotenoid and chlorophyll pigments. Leaf pigments and chlorophyll fluorescence were not affected by any herbicide treatment; however, data revealed significant differences between genotypes for leaf tissue antheraxanthin, β-carotene, zeaxanthin, chlorophyll a/b ratios, and for values of Fo, Fm, Fv, and NPQ, with ‘Merit’ leaf tissue having higher values than the other two genotypes evaluated. Results demonstrate that genotypic sensitivities to certain post-emergence herbicides may be related to concentrations of photo-protective carotenoids in sweet corn leaf tissues.  相似文献   

14.

Phosphites and chitosan were evaluated in target spot control, nutrition and gas exchange in cucumbers. Three weekly sprayings of commercial products were conducted, and Corynespora cassiicola (causal agent of target spot) was inoculated in the second and third true leaves four days after the last spraying. Zn, Mn, K and Cu phosphites reduced the disease severity, but the treatments had no effect on the development of the plants and the accumulation of macronutrients in the above ground part, with the exception of sulfur. The accumulation of Cu, Mn and Zn micronutrients were higher in plants treated with Cu, Mn and Zn phosphites, respectively. The green color index was influenced by the treatments after pathogen inoculation, with the highest values for Zn and Cu phosphites. Before inoculation, the products influenced net CO2 assimilation rate (A), stomatal conductance (gs) and internal CO2 concentration (Ci). The parameters gs and Ci increased, which indicates that the treatments can physiologically benefit the plants in the absence of a stress condition. After fungal inoculation, the Cu, Mn and Zn phosphites caused positive physiological effects, leading to the highest A values and adequate carboxylation efficiency (CE), which increases the capacity of plants to assimilate CO2. These phosphites also maintained adequate water use efficiency and gs and Ci values. Such indexes corresponded to lower disease severity, indicating that Mn, Zn and Cu phosphites reduced the stress caused by the disease, preserving the functionality of the photosynthetic apparatus.

  相似文献   

15.
短时水分胁迫对水稻叶片光合作用的影响   总被引:2,自引:0,他引:2  
为揭示水分胁迫下水稻叶片光合特性下降的生理原因,以水培的水稻幼苗为材料,测定30%PEG-6000模拟水分胁迫150 min过程水稻叶片光合特性、荧光参数和光合机构关键酶活性的变化。结果表明:短时水分胁迫处理0~60 min气孔导度快速下降,胞间CO_2浓度、净光合速率、蒸腾速率和荧光参数均降低;60~120 min气孔导度缓慢下降,Ru BP羧化酶活性开始快速下降,胞间CO_2浓度开始上升,非光化学猝灭仍然是上升趋势,其它光合荧光参数持续降低。120 min后,非光化学猝灭出现下降趋势,Ru BP羧化酶活性和胞间CO_2浓度分别保持下降和上升趋势,其它光合荧光参数持续降低。短时胁迫处理结果暗示,光合作用0~60 min主要受气孔限制,60~120 min受气孔限制和非气孔限制共同作用,120 min后主要受非气孔限制。  相似文献   

16.
试验研究了干旱条件下鸡爪×吉林和正椒13号两种辣撤叶片气体交换和叶绿素荧光参数的变化.结果表明,干旱处理5 d导致叶片相对含水量(RWC)、相对电导率(REC)、净光合作用(Pn)和暗适应下PSII最大光化学效率(Fv/Fm)下降,其中对鸡爪×吉林影响大于正椒13号.干旱处理下两辣椒品种的气孔导度(Gs)下降,而水分利用效率(WUE)、非光化学猝灭系数(NPQ)和光呼吸速率/净光合速率(Pr/Pn)均明显增加,其中正椒13号上升幅度高于鸡爪×吉林,这可能是正椒13号比鸡爪×吉林更耐旱的原因.  相似文献   

17.
The phytotoxicity of glyphosate(N-(phosphonomethyl glycine) to seedlings of white mustard (Sinapis alba) cultivated indoors was studied. Yellowing and wrinkling of leaves was observed, necrotic spots appeared and the elongation of the seedlings was significantly reduced at doses 0–49 kg ai/ha and above. Only when sprayed at 4–97 kg ai/ha was the effect of glyphosate 100% lethal (5–7 days after spraying) At the highest concentration of herbicide a marked decrease in chlorophyll content was found but with 0–49 kg ai/ha the chlorophyll content was found to be higher than that in the leaves of control plants. Two and fourteen days after spraying with glyphosate and the commercial product samples of leaf and stem were harvested for electron microscopy. Cellular defects in the leaves ranging from slight swelling to complete disruption of the chloroplasts were detected at the two highest herbicide doses 48 h after spraying. These defects were intensified with time und in addition other sub-morphological changes occurred: decrease in starch grain content, an increase in the number of dictyosomes and mitochondria, disruption of tonoplasts and increase of plastoglobuli In the more central parts of stem segments the commercial product resulted in greater cellular effects than did glyphosate. It is suggested that the differences may be due to the surfactant.  相似文献   

18.
The inhibitory effects of nine nitro and/or bromo-substituted benzonitrile compounds on the photosynthetic electron flow in isolated chloroplasts and on the in vivo CO2 fixation of spinach (Spinacia oteracea L.) and wheat (Triticum aesticum L. cv. Bezoslaya) were investigated. Bromoxynil and 3-nitro-5-hromo-4-hydroxy-bcnzonitrile were the strongest and equally effective inhibitors of Ihe in vivo CO2 fixation of spinach, hut in wheat the nitro-bromo-compound is ineffective and 3-nitro-benzonitrile is even more inhibitory than bromoxynil. None of the substances affected DCPIPH → methylviologen reduction. In the inhibition of the DCPIP reduction only the 3,5-disuhstituted 4-hydroxy-derivatives were effective. The fact that these compounds affect only the PS II reaction with both H2O and DPC as electron donors suggests a site of inhibition on the reducing side of PS II, between Ihe PS II reaction centre and ihe DCPIP Site. It is suggested that in the inhibition of the DCPIP reduction only steric factors are important and the different electron configuration of the sterieally similar molecules may be involved only in the absorption and translocation processes of the compounds.  相似文献   

19.
PEG胁迫下不同品系藜麦抗旱性评价   总被引:2,自引:0,他引:2  
利用不同浓度PEG溶液模拟干旱胁迫,研究5种品系藜麦幼苗的形态、生理生化及光合特性,并对其进行耐旱性评价。结果表明:15%PEG处理下各品系藜麦株高增量、叶面积及生物量显著(P<0.05)低于对照,其中株高增量、叶面积、生物量下降幅度最小的品系分别是NK1、NK2和NK5,分别比对照下降了44.38%、25.39%和48.23%;随着干旱胁迫加剧, 各藜麦品系叶片内相对含水量显著(P<0.05)下降, 叶片的质膜透性、丙二醛(MDA)含量、脯氨酸(Pro)含量上升,15%PEG胁迫下NK2和NK3的Pro含量分别是对照的2.69和1.93倍, 超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)活性均先升后降,SOD、CAT和APX活性在5%PEG处理下达到最大值, 而POD活性在10%PEG处理下达到最大; 随干旱胁迫增强,5种品系藜麦幼苗的净光合速率(Pn)、蒸腾速率(Tr)和气孔导度(Gs)降低,胞间CO2浓度(Ci)先降后升,叶绿素(Chl)先升后降,其中NK5品系Pn下降幅度最小,比对照下降了51.15%。运用隶属函数法对藜麦抗旱能力进行综合评定,不同藜麦品系耐旱性为NK5>NK1>NK2>NK4>NK3。  相似文献   

20.
Increased atmospheric carbon dioxide (CO2) and soil nitrogen (N) may confer competitive advantages to invasive species over native plant species. We conducted a two‐way factorial experiment, growing the model invasive plant Arundo donax in CO2 growth chambers to test how CO2 and N availability interact to affect plant growth and biomass allocation. CO2 was supplied at c. 400 mg L?1 and c. 750 mg L?1. N was supplied as ammonium nitrate at 640, 320 and 80 mg L?1. We hypothesised that the fertilisation effect of CO2 enrichment would offset limitations from N deficiency. The results indicated that A. donax plants grown with enriched CO2 and abundant N accumulated approximately 50–100% more biomass and allocated approximately 50% more biomass to rhizomes than plants grown under ambient CO2 conditions. Neither treatment affected the leaf area per unit mass (specific leaf area; SLA). Greater growth will likely increase A. donax's competitive potential, because increased rhizome biomass has been associated with increased stress tolerance and post‐disturbance resprouting capacity. The consistent SLA under all treatments suggests that A. donax has a morphological strategy that prioritises increasing leaf quantity over increasing individual leaves' photosynthetic potential. These results reveal the ecological strategies that contribute to the successful establishment, dominance and persistence of this invasive plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号