共查询到20条相似文献,搜索用时 15 毫秒
1.
Katherine A Damcevski Greg Dojchinov James D Woodman Victoria S Haritos 《Pest management science》2010,66(4):432-438
BACKGROUND: The ethyl formate/carbon dioxide (CO2) formulation Vapormate? is a rapid‐acting fumigant being developed for the control of stored‐grain insects. The effects have been investigated of concentration, exposure times of 1, 3, 24 and 72 h and two grain temperatures, 15 and 25 °C, on its efficacy against mixed‐stage cultures of Sitophilus oryzae (L.) Tribolium castaneum (Herbst) and strongly phosphine‐resistant Rhyzopertha dominica (F.) strain QRD569. RESULTS: High mortalities (≥92%) of mixed‐stage cultures of all three species were obtained when grain was fumigated with the formulation (193 g m?3 ethyl formate) for 1 h. Complete control of R. dominica QRD569 and T. castaneum was achieved with 63 and 76 g m?3 ethyl formate respectively, with exposure for 24 h, whereas mean mortality of S. oryzae was 86% under the same conditions. Mortalities of S. oryzae juvenile stages were significantly lower than adults under the conditions tested, which was due to pronounced tolerance of mid‐stage pupae to the fumigant. Reducing grain temperature from 25 to 15 °C had no effect on insect mortality. CONCLUSION: Ethyl formate/CO2 formulation is highly effective against stored‐grain insects over a range of concentrations and exposure times. Efficacious fumigations were conducted in as little as 1 h, and a strongly phosphine‐resistant R. dominica strain was readily controlled with the fumigant. Copyright © 2009 CSIRO, Australia. Published by John Wiley & Sons, Ltd 相似文献
2.
BACKGROUND: Methyl bromide is being phased out for use on stored commodities, as it is listed as an ozone‐depleting substance, and phosphine is the fumigant widely used on grains. However, phosphine resistance occurs worldwide, and phosphine fumigation requires a long exposure period and temperatures of > 15 °C. There is an urgent requirement for the development of a fumigant that kills insects quickly and for phosphine resistance management. This paper reports on a new fumigant formulation of 95% ethyl formate plus 5% methyl isothiocyanate as an alternative fumigant for stored grains. RESULTS: The formulation is stable for at least 4 months of storage at 45 °C. A laboratory bioassay with the formulation showed that it controlled all stages of Sitophilus oryzae (L.), Sitophilus granarius (L.), Tribolium castaneum (Herbst), Rhyzopertha dominica (F.), Trogoderma variabile Ballion and Callosobruchus maculatus (Fabricius) in infested wheat, barley, oats and peas at 80 mg L?1 for 5 days, and in canola at both 40 mg L?1 for 5 days and 80 mg L?1 for 2 days at 25 ± 2 °C. After an 8–14 day holding period, residues of ethyl formate and methyl isothiocyanate in wheat, barley, peas and canola were below the experimental permit levels of 1.0 and 0.1 mg kg?1. However, fumigated oats needed an 18 day holding period. CONCLUSIONS: The findings suggest that the ethyl formate plus methyl isothiocyanate formulation has potential as a fumigant for the control of stored‐grain insect pests in various commodities. Copyright © 2011 Society of Chemical Industry 相似文献
3.
Ethyl formate is being evaluated as a fumigant for stored grain as it is a potential alternative to the ozone-depleting fumigant methyl bromide and to phosphine, which is under pressure owing to the development of strong resistance in stored grain insects. However, use of ethyl formate faces significant challenges, such as poor penetration through grain, significant losses to grain sorption, high concentrations of fumigant required to control insects, and flammability risks, which have limited its further development. In this study it was found that the combination of carbon dioxide (5-20%) with ethyl formate significantly enhanced efficacy of the fumigant against external living stages of the rice weevil, Sitophilus oryzae (L.), the lesser grain borer, Rhyzopertha dominica F., and the flour beetle, Tribolium castaneum (Herbst). Dynamic application of ethyl formate and carbon dioxide mixture (100 mg litre-1 ethyl formate, 20% CO2) pumped through a model silo containing wheat (50 kg) for one gas exchange was also investigated. A flow rate of 6 litres min-1 gave a relatively even distribution of fumigant throughout the grain column and similar mortality levels among cultures of S. oryzae and T. castaneum placed at three positions, the top, middle and bottom of the column. Mortality of 99.8% of mixed stage cultures of T. castaneum and 95.1% of S. oryzae was achieved in 3 h exposures to 111 and 185 mg ethyl formate h litre-1 respectively applied by the dynamic method. It is concluded that the combination of carbon dioxide with ethyl formate and dynamic application enhances distribution and efficacy of the fumigant against stored grain insects. 相似文献
4.
BACKGROUND: Ethyl formate formulations are being considered to replace methyl bromide for fast grain disinfestation. Grain adsorbs ethyl formate rapidly, which can result in inadequate fumigation concentrations and unacceptable grain residues. A model of ethyl formate sorption kinetics will enable fumigation approaches to be determined that meet disinfestation and food safety requirements. RESULTS: This paper identifies all mass transport processes involved in ethyl formate sorption by wheat from published and experimental evidence. The model accounts for reaction losses of ethyl formate in air and grain using first‐order kinetics, transport in the gas and solid phases with linear mass transfer coefficients and uses a linear partition relationship representation of sorption equilibrium. Batch experimental data were measured to determine model coefficients. Novel gaseous breakdown data for ethyl formate in air were measured, and first‐order kinetics was demonstrated, although the specific reactions involved were not identified. CONCLUSION: The model predicts air and grain fumigant concentrations relevant for grain disinfestation and food residue contamination successfully. The form of the model should be applicable to all fumigant–grain systems, as it accounts for the diffusion and reaction influences known to occur with all modern fumigants under concentration and exposure conditions relevant to industry. Copyright © 2009 CSIRO, Australia. Published by John Wiley & Sons, Ltd. 相似文献
5.
甲酸乙酯对三种主要仓储害虫的熏蒸作用 总被引:1,自引:0,他引:1
为明确甲酸乙酯对仓储害虫的实际控制效果,避免二氧化碳对熏蒸作用的影响,该研究利用循环熏蒸系统(FTFS),测定甲酸乙酯对米象、赤拟谷盗、谷蠹三种主要仓储害虫混合虫态的熏蒸作用.结果表明:在25℃、70%RH条件下,甲酸乙酯43.34、80.72、99.08、117.74、146.49mg/L 熏蒸处理6 h,对赤拟谷盗和谷蠹混合虫态有很好的控制作用,死亡率大于95.96%;甲酸乙酯80.72、99.08、117.74、146.49mg/L处理对米象混合虫态的杀虫效果较好.甲酸乙酯对米象蛹的杀虫效果较差. 相似文献
6.
7.
Hard red winter wheat was treated with pirimiphos-methyl at 4, 6 and 8 mg kg(-1), synergized pyrethrins at 0.38, 0.75, 1.13 and 1.5 mg kg(-1), and combinations of the two insecticides, to conduct laboratory bioassays against four beetle pests of stored grain, red flour beetle Tribolium castaneum (Herbst), rusty grain beetle Cryptolestes ferrugineus (Stephens), lesser grain borer Rhyzopertha dominica (F), and rice weevil Sitophilus oryzae (L), and one moth pest, Indianmeal moth Plodia interpunctella (Hubner). Beetle adults and P interpunctella larvae survived well on control wheat, producing a large number of progeny (65-1037 insects per container). Kernel damage in control wheat among the insect species ranged from 9 to 99%. On pirimiphos-methyl-treated wheat, mortality of R dominica adults was > or =72%, but that of the other beetle species and P interpunctella larvae was 100%. Progeny were not produced on pirimiphos-methyl-treated wheat, and the kernel damage was negligible (< or =1%). Synergized pyrethrins were ineffective against the five insect pests. Pirimiphos-methyl combined with synergized pyrethrins was not superior to pirimiphos-methyl alone against the five insect pests. Pirimiphos-methyl is not registered in the USA for use on wheat, but our results suggest that it could be a viable grain protectant at rates of 4-8 mg kg(-1). 相似文献
8.
9.
植物依赖昆虫传授花粉,昆虫从植物获得花粉和花蜜作为食物,两者在漫长的进化过程中形成了密切的互惠共生关系。大量研究表明,CO2浓度升高对植物花蜜的产量和组成有显著的影响。CO2浓度增加后,有花植物花蜜的产量和组分在不同物种之间的变化差异很大,即使是种内不同基因型植株的花蜜对CO2浓度增加的反应也有所不同。大部分种类花蜜的产量会增加,也有些种类会减少。花蜜中糖类、氨基酸、次生代谢物质等的含量会有不同的改变,但花蜜的主要组分基本不发生变化。CO2浓度升高对访花昆虫的影响主要通过植物间接作用于昆虫。CO2浓度增加引起物候的改变以及花蜜总量、质量、次生代谢物的改变对传粉昆虫的能量分配、繁殖、寿命和访花行为产生了重要的影响。本文综述了国内外相关研究进展,并分析了未来研究趋势及其存在的问题。 相似文献
10.
Spinosad, a reduced-risk commercial insecticide derived from a bacterial fermentation product, possesses both contact and oral toxicities against insects. Contact toxicity of spinosad to adults of Rhyzopertha dominica (F), Sitophilus oryzae (L), and Tribolium castaneum (Herbst) was evaluated by exposure for 24 or 48 h to treated glass Petri dishes. Adults were exposed to different deposits (0.001-0.79 mg cm(-2)) of spinosad in 24-h tests and to deposits of 0, 0.0016 and 0.016mg cm(-2) in 48-h tests. Rhyzopertha dominica was most susceptible to spinosad in 24- and 48-h tests, followed by S. oryzae, and T. castaneum. The 24-h LD50 values were 0.0004, 0.077 and 0.189mg cm(-2) for R. dominica, S. oryzae, and T. castaneum, respectively. All R. dominica adults were dead following 48 h exposure to both spinosad deposits, whereas mortality of S. oryzae and T. castaneum ranged from 10 to 85% and 12 to 48%, respectively. Rhyzopertha dominica, T. castaneum, and O. surinamensis adults were exposed for 14 days to whole wheat, cracked wheat and wheat flour treated with 0, 0.1 and 1.0 mg kg(-1) of spinosad. Rhyzopertha dominica adults were highly susceptible to spinosad, followed by O. surinamensis and T. castaneum. Immatures (eggs and larvae) of T. castaneum and O. surinamensis exposed for 14 days were more susceptible on spinosad-treated whole wheat than on treated cracked wheat and wheat flour. This is the first report documenting contact activity of spinosad, and the effect of grain condition on spinosad toxicity, to stored-product insects. 相似文献
11.
BACKGROUND: Insect growth regulators are promising alternatives to traditional pesticides in stored grain. The efficacy of the juvenile hormone analogue methoprene was evaluated as a layer treatment in a laboratory experiment for control of Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae) in wheat, rice and maize. RESULTS: Adults of R. dominica were placed in vials containing 33, 26 and 29 g (to a depth of 6.5 cm) of wheat, rice and maize, respectively, that was entirely or partially treated with 1, 5 or 10 mg kg?1 methoprene. In wheat and rice, the layer treatments were not as effective as the whole‐grain treatment, but there was decreased progeny production as the application rate increased. However, on maize the partial treatments were as effective as the whole‐grain treatment at 5 and 10 mg kg?1. CONCLUSIONS: The results suggest that partial layer treatments with methoprene can be used to control R. dominica on maize but may not be effective for control of this species on wheat and rice. Copyright © 2011 Society of Chemical Industry 相似文献
12.
Ethyl formate and ethanol in air, eg in fumigant studies, were readily detected by gas chromatography (GC) (flame ionisation). Residues in wheat, barley and sultanas were analysed by GC, after extraction in polar solvents (eg methanol, aqueous propanol). Both natural levels and levels resulting from fumigation with ethyl formate were measured. Formic acid was extracted from commodities with polar solvents (eg methanol, water) and analysed by GC after esterification. Solvent extracts of commodities were concentrated after addition of disodium hydrogen orthophosphate, and an aliquot added to acidified alcohols (several combinations of acids and alcohols were tested) in a sealed container. Formic acid esters were determined by GC, from headspace sampling over the esterification solvent. Esterification was faster with strong acids than with boric acid. However, esterification with boric acid/butanol gave the least interference of all tested methods. Product identity was confirmed by GC/mass spectrometry. High natural levels of formic acid, and low natural levels of ethyl formate and ethanol, presented problems in identifying residues arising from fumigation. These natural levels are relevant to food regulations for ethyl formate, especially those based on ‘total formic acid, free and combined’. Polar columns (eg FFAP, carbowax) were useful for measurement of formic acid esters, which eluted before the alcohols used for esterification or extraction, whereas elution followed the molecular mass on non-polar columns, such as GS-Q or DB-624. © 1999 Society of Chemical Industry 相似文献
13.
为明确二甲基二硫(dimethyl disulfide, DMDS)与氯化苦(chloropicrin, CP)联合熏蒸对江西黏重土壤条件下山药土传病害的防控效果及生物安全性,选择土质黏重的连作红壤旱地进行熏蒸试验。结果表明,DMDS和CP联合熏蒸对枯萎病和立枯病的防效为90.56%,对根系生长旺盛期吸收根根结线虫病的防效为99.61%,对收获期块茎根结线虫、根腐线虫病的防效为88.70%。解除胁迫后20~120 d,熏蒸处理山药根际土壤微生物总量与空白对照(CK)差异不显著,但真菌/细菌、真菌/放线菌比值显著低于CK(P<0.05),芽胞杆菌数量显著高于CK(P<0.05)。熏蒸处理山药出苗率与CK没有显著差异;山药齐苗期蔓基直径和藤蔓鲜重分别为3.40 mm和76.08 g,甩蔓盛期叶片叶绿素相对含量(SPAD)为52.56,均显著高于CK(P<0.05);收获期商品薯产量为21 292.86 kg/hm2,显著高于CK。综上,DMDS和CP联合熏蒸对江西黏重土壤条件下山药土传病害均具有良好的防病效果,对山药和土壤微生物安全,增产效果显著。 相似文献
14.
The combined efficacy of spinosad and chlorpyrifos-methyl was determined against four storage psocid pests belonging to genus Liposcelis. This research was undertaken because of the increasing importance of these psocids in stored grain and the problem of finding grain protectants to control resistant strains. Firstly, mortality and reproduction were determined for adults exposed to wheat freshly treated with either spinosad (0.5 and 1 mg kg(-1)) or chlorpyrifos-methyl (2.5, 5 and 10 mg kg(-1)) or combinations of spinosad and chlorpyrifos-methyl at 30 degrees C and 70% RH. There were significant effects of application rate of spinosad and chlorpyrifos-methyl, both individually and in combination, on adult mortality and progeny reduction of all four psocids. Liposcelis bostrychophila Badonnel and L. decolor (Pearman) responded similarly, with incomplete control of adults and progeny at both doses of spinosad but complete control in all chlorpyrifos-methyl and combined treatments. In L. entomophila (Enderlein) and L. paeta Pearman, however, complete control of adults and progeny was only achieved in the combined treatments, with the exception of spinosad 0.5 mg kg(-1) plus chlorpyrifos-methyl 2.5 mg kg(-1) against L. entomophila. Next, combinations of spinosad (0.5 and 1 mg kg(-1)) and chlorpyrifos-methyl (2.5, 5 and 10 mg kg(-1)) in bioassays after 0, 1.5 and 3 months storage of treated wheat were evaluated. The best treatment was 1 mg kg(-1) of spinosad plus 10 mg kg(-1) of chlorpyrifos-methyl, providing up to 3 months of protection against infestations of all four Liposcelis spp. on wheat. 相似文献
15.
16.
不同温度和水分小麦中不同谷蠹发生状态时二氧化碳变化研究 总被引:4,自引:0,他引:4
[目的] 研究不同储藏温度、粮食含水量条件下,粮食、微生物、储粮害虫谷蠹与二氧化碳浓度变化的对应关系,以期为通过检测气体监测害虫发生提供参考依据。 [方法] 在20、25、30 ℃下检测含水量分别为12%、13%和14%的小麦样品感染谷蠹后不同时间的二氧化碳浓度,并与自然带菌无虫和灭菌无虫小麦进行比较。[结果] 在前期30 d中,感染害虫(10头/kg)的小麦中二氧化碳浓度明显大于自然带菌和灭菌无虫样品,其中12%含水量,25 ℃感染害虫小麦中二氧化碳浓度最高达2.676%,自然带菌样品中为0.214%,灭菌样品中为0.148%。二氧化碳浓度随温度升高及粮食水分增大而显著升高。[结论] 二氧化碳浓度与粮食中害虫发生状况显著相关,一定条件下可通过检测二氧化碳浓度了解储粮粮情和害虫发生状态。 相似文献
17.
BACKGROUND: Gaseous ozone (O3) has potential for control of insects in stored grain. Previous studies have focused on freely exposed insects. Immatures of internal pests (e.g. Sitophilus spp. and most stages of Rhyzopertha dominica F.) are protected within kernels and probably require higher doses and/or longer treatment times for full control. A laboratory study determined the doses of ozone necessary for full control of freely exposed and internal stages of eleven stored‐product pest species. Test insects were three species of Sitophilus, R. dominica, Tribolium confusum Jacquelin du Val, T. castaneum Herbst, Plodia interpunctella Hübner, Sitotroga cerealella Olivier, Oryzaephilus surinamensis L., Ephestia kuehniella Zeller and Stegobium paniceum L. Insects were exposed to continuous flows of ozone in doses of 10–135 ppm and exposure times of 5–8 days. Dose‐mortality bioassays were conducted on three species of Sitophilus and P. interpunctella. RESULTS: Freely exposed stages (with a few exceptions) were controlled with 35 ppm of ozone for 6 days. Full mortality of internal stages within kernels required exposure to 135 ppm for 8 days. CONCLUSION: This study confirms that higher doses and/or longer treatment times are necessary for control of internal stages of stored‐product pests. Copyright © 2012 Society of Chemical Industry 相似文献
18.
19.
W. A. H. Rossing 《European journal of plant pathology / European Foundation for Plant Pathology》1991,97(1):25-54
To evaluate the relative importance of various components of damage caused by grain aphid (Sitobion avenae F.) populations in winter wheat, a simulation model of crop growth and development is combined with a model of aphid injury. The model applies to the time interval from flowering to ripeness which constitutes the main period of grain aphid immigration and development in winter wheat in the Netherlands. The crop model describes crop growth and development as a function of the prevailing weather and the available amount of soil nitrogen and consists of sink-source relations and distribution functions for carbohydrates and nitrogen. Injury byS. avenae affects crop growth both directly and indirectly. Direct effects on growth are due to aphid feeding. Indirect effects are caused by the aphid excretion product honeydew which affects leaf net carbon dioxide assimilation. Alternative hypotheses on the nature of the direct effects are formulated. Inputs to the model are average daily temperature, daily global radiation, the amount of nitrogen in the soil and the density of the aphid population. The major output is grain weight.The accuracy of the model is assessed by visual and statistical comparison to field data. The accuracy of both crop and damage model is satisfactory except for the final part of the growing season. Then, insufficient information on processes involved in leaf death and the termination of phloem transport to the grains results in overestimation of the rate of grain filling.The consequences of the lack of detailed information on the relation between environmental factors and the effect of honeydew on leaf carbon dioxide assimilation are assessed in a sensitivity analysis. 相似文献