首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Many plant essential oils show a broad spectrum of activity against pests. This study investigated the effects of two essential oils on Tetranychus urticae, one of the most serious pests in the world. RESULTS: The chemical composition of the two oils was characterised by GC‐MS. The most abundant component in the Santolina africana (Jord. & Fourr) oil was terpinen‐4‐ol (54.96%), while thymol (61%) was prevalent in the Hertia cheirifolia (L.) oil. Mortality and fecundity were measured upon treatment with oil concentrations ranging from 0.07 to 6.75 mg L?1 with a Potter spray tower. Mite mortality increased with oil concentration, with LC50 values of 2.35 mg L?1 for S. africana and 3.43 mg L?1 for H. cheirifolia respectively. For both oils, a reduction in fecundity was observed at concentrations of 0.07, 0.09 and 0.29 mg L?1. Artificial blends of constituents of oils were also prepared and tested with individual constituents missing from the mixture. The results showed that the presence of all constituents was necessary to equal the toxicity of the two natural oils. CONCLUSION: S. africana and H. cheirifolia oils can provide valuable acaricide activity with significantly lower LC50 values. Thus, these oils cause important mortality and reduce the number of eggs laid by females. Copyright © 2012 Society of Chemical Industry  相似文献   

2.
The effects of the photosystem II inhibitors metamitron and terbuthylazine on the shape of the Kautsky (chlorophyll fluorescence induction) curve were investigated in sugar beet grown in hydroponic culture. The objective of the study was to trace recovery processes following herbicide injury using Kautsky curve parameters. Metamitron is used for selective weed control in sugar beet because it is metabolized in this crop. In contrast, terbuthylazine is toxic to sugar beet. Two hours after treatment, various fluorescence induction curve parameters, such as maximum quantum efficiency (FV/Fm), the relative changes at the J step (Fvj) and area (the area between the Kautsky curve and maximum fluorescence, Fm), were affected by metamitron at concentration ranges of 70–280 mg active ingredient (a.i.) L?1 in plants treated at the four‐true‐leaf stage. Shortly after herbicide application, Fv/Fm was more affected by the hydrophilic metamitron [log(Kow) = 0.83] than by the lipophilic terbuthylazine [log(Kow) = 3.21], but these differences between compounds were alleviated as metamitron was metabolized and terbuthylazine was not. Terbuthylazine at 1 mg a.i. L?1 affected sugar beet at the four‐ and six‐true‐leaf stages to the same extent, whereas metamitron at a dose of 140 mg a.i. L?1 affected much more at four‐ than at the six‐true‐leaf stage. Sugar beet recovered from metamitron injury even at high doses (140 and 280 mg a.i. L?1). Fluorescence induction curve parameters were similarly affected by terbuthylazine and, although sugar beet recovered from terbuthylazine injury at low doses (<0.2 mg a.i. L?1), the Kautsky curve was irreversibly affected at higher doses (1–10 mg a.i. L?1), leading finally to plant death. Older plants were affected later, and recovered sooner, from both herbicides.  相似文献   

3.
BACKGROUND: The granary weevil, Sitophilus granarius (L.), is one of the most damaging pests of stored grains, causing severe quantitative and qualitative losses. Sustainable control means, alternative to the commonly used fumigants and broad‐spectrum contact insecticides, are urgently needed owing to legislative limits, the development of resistant insect strains and increasing consumer demand for safe food. Short‐chain aliphatic ketones, known to be emitted by cereal grains and previously identified as repellents to adult granary weevils, were evaluated for their ability to disrupt insect orientation towards wheat grains and as possible natural fumigants. RESULTS: In behavioural bioassays, 2‐pentanone, 2‐hexanone, 2‐heptanone and 2,3‐butanedione significantly reduced insect orientation towards odours of wheat grains, with 2‐hexanone and 2‐heptanone being the most active. In fumigation tests, all compounds were effective in killing weevil adults, but they performed differently according to chemical structure, speed of action and presence of wheat grains. In the presence of grains, the highest fumigant toxicity was shown by 2‐pentanone (LC50 = 8.4 ± 1.0 mg L?1) after 24 h exposure, and by 2‐pentanone (LC50 = 4.5 ± 0.3 mg L?1), 2‐heptanone (LC50 = 7.1 ± 0.3 mg L?1) and 2‐hexanone (LC50 = 8.1 ± 0.6 mg L?1) 1 week after the treatment end. CONCLUSION: Short‐chain aliphatic ketones have potential for applications in IPM programmes for the granary weevil because of their behaviour‐altering activity and fumigant toxicity. Copyright © 2011 Society of Chemical Industry  相似文献   

4.
BACKGROUND: This project assessed the potential hazards of different classical and novel acaricides against an important non‐target and beneficial insect for the pollination of wild flowers and cultivated crops, the bumblebee Bombus terrestris (L). Twenty‐three acaricides used commercially in the control of phytophagous mites (Acari) were tested in greenhouses and/or the open field. Side effects included acute mortality and also sublethal effects on nest reproduction. The different compounds were administered in the laboratory via three different worst‐case field scenario routes of exposure: dermal contact and orally via the drinking of treated sugar water and via treated pollen. The compounds were tested at their respective maximum field recommended concentration (MFRC), and, when strong lethal effects were observed, a dose–response assay with a dilution series of the MFRC was undertaken to calculate LC50 values. RESULTS: From the different acaricide classes, several chemistries caused high levels of acute toxicity in bumblebee workers, especially bifenthrin and abamectin which resulted in 100% mortality by contact. In addition, several acaricides tested were found to have a detrimental effect on drone production. For oral exposures via treated sugar water, the dose–response assay showed the LC50 values for abamectin, bifenazate, bifenthrin and etoxazole to be 1/15 MFRC (1.17 mg AI L?1), 1/10 MFRC (9.6 mg AI L?1), 1/83 MFRC (0.36 mg AI L?1) and 1/13 MFRC (4.4 mg AI L?1) respectively, indicating that their use should be carefully evaluated. CONCLUSION: Overall, the results suggest that most of the acaricides tested are compatible with bumblebees, with the exceptions of abamectin, bifenazate, bifenthrin and etoxazole. However, the risks also depended on the type of treatment. As a result, the sugar water treatment seems to present the worst‐case situation of exposure, indicating that this approach is suitable for determining the hazards of pesticides against bumblebees. Finally, it is suggested that future tier testing under more field‐related conditions is required for a final decision of their risks. Copyright © 2010 Society of Chemical Industry  相似文献   

5.
BACKGROUND: Tuta absoluta(Meyrick) is one of the most serious pests of tomato recently introduced in the Mediterranean region. A novel bioassay method designed for the accurate determination of insecticide toxicity on T. absoluta (IRAC method No. 022) was validated by three different laboratories [Greece (NAGREF), Italy (UC) and Spain (UPCT)] on European populations. RESULTS: The insecticides indoxacarb and chlorantraniliprole were used as reference products. The IRAC leaf dip method is easy to perform, producing repeatable, homogeneous responses. LC50 values for indoxacarb ranged between 1.8 and 17.9 mg L?1 (NAGREF), 0.93 and 10.8 mg L?1 (UC) and 0.20 and 0.70 mg L?1 (UPCT), resulting in a tenfold, 12‐fold and fourfold difference between the least and most susceptible populations at each laboratory respectively. For chlorantraniliprole, LC50 values ranged between 0.10 and 0.56 mg L?1 (NAGREF), 0.23 and 1.34 mg L?1 (UC) and 0.04 and 0.24 mg L?1 (UPCT), resulting in a sixfold difference in all three cases. Overall, UPCT reported lower mean LC50 to indoxacarb, while UC reported higher LC50 to chlorantraniliprole. CONCLUSIONS: The new bioassay is reliable, providing a useful tool in the design of IRM strategies. Within each country/lab, the variability observed in the results for both indoxacarb and chlorantraniliprole can be attributed to natural variation. Future research is necessary to determine the extent to which it is possible to compare results among laboratories. Copyright © 2012 Society of Chemical Industry  相似文献   

6.
Sprangletop (Leptochloa chinensis L. Nees) is a serious grass weed in direct‐seeded rice cropping systems in Thailand. One population of sprangletop, BLC1, was found to be resistant to fenoxaprop‐p‐ethyl at 62‐fold the concentration of a susceptible biotype, SLC1. This study elucidated the inheritance of resistance to fenoxaprop‐p‐ethyl in this sprangletop BLC1 genotype. The reaction to the herbicide at 0.12–2.4 mg ai L?1 was determined in the seedlings of self‐pollinated resistant BLC1, susceptible SLC1 and SLC1 that had been allowed to cross‐pollinate with BLC1. At 0.24 mg ai L?1, all the seedlings of SLC1 were killed, while 99% of BLC1 survived, along with 5% of the cross‐pollinated SLC1 seedlings, which were considered to be putative F1 hybrids. The root and shoot lengths of the F1 hybrids in 0.24 mg ai L?1 of fenoxaprop‐p‐ethyl, relative to those in the absence of the herbicide, were close to or the same as the resistant parent, indicating that the resistance is a nearly complete to complete dominant trait. One‐hundred‐and‐forty‐one of the F2‐derived F3 families were classified by their response to the herbicide at 0.24 and 0.48 mg ai L?1 into 39 homozygous susceptible : 72 segregating : 30 homozygous resistant, fitted with a 1:2:1 ratio at χ2 = 1.21 and P = 0.56, indicating that the resistance to fenoxaprop‐p‐ethyl in the sprangletop BLC1 genotype is controlled by a single gene.  相似文献   

7.
BACKGROUND: Citrus red mite, Panonychus citri (McGregor), is one of the most important pesticide‐resistant pests in China. In order better to understand its resistance status, six populations of the mite were collected from Chinese citrus orchards for monitoring of resistance to spirodiclofen and another five acaricides. RESULTS: All the samples collected in the field in 2006 were susceptible to spirodiclofen. However, the LC50 values in populations sampled in 2009 ranged from 3.29 to 418.24 mg L?1 spirodiclofen, a 127‐fold difference between the least and most sensitive populations. Compared with a susceptible strain, 50‐fold and 90.8‐fold resistance to spirodiclofen was detected in populations sampled from Pinghe and Fuzhou in 2009, as well as cross‐resistance to spirotetramat. The LC50 values for abamectin, fenpropathrin, hexythiazox and pyridaben in the collected samples ranged from 0.041 to 3.52 mg L?1, from 23.91 to 696.16 mg L?1, from 13.94 to 334.19 mg L?1 and from 48.90 to 609.91 mg L?1 respectively. CONCLUSION: Great variations in resistance to the tested acaricides were observed among the sampled populations. The Pinghe population developed resistance to all the acaricides tested. The Jianning population was susceptible to most acaricides tested, except pyridaben. Resistance management strategies were conducted on the basis of these observations. Copyright © 2010 Society of Chemical Industry  相似文献   

8.
BACKGROUND: The parasitoid Trichogramma ostriniae (Pang and Chen) is a major natural enemy of many lepidopterans, but only a few studies have been conducted on the compatibility of biological and chemical controls. In this study, the selectivity of 30 insecticides to T. ostriniae adults was evaluated. RESULTS: Among the seven classes of chemicals tested, organophosphates and carbamates had the highest intrinsic toxicity to the wasp, with LC50 values ranging from 0.032 (0.029–0.038) to 2.38 (1.91–3.15) mg AI L?1. They are followed by phenylpyrazoles, avermectins, neonicotinoids and pyrethroids, which induce variable toxicity responses, with LC50 values ranging from 0.14 (0.11–0.21) to 56.67 (48.94–67.24) mg AI L?1, from 2.57 (1.85–4.28) to 4.48 (3.34–6.83) mg AI L?1, from 2.48 (1.80–4.03) to 503.6 (457.6–557.5) mg AI L?1 and from 5.44 (3.95–8.84) to 104.2 (92.48–119.7) mg AI L?1 respectively. The insect growth regulators (IGRs) exhibited least toxicity to the parasitoid. CONCLUSION: Risk quotient analysis classifies neonicotinoids, avermectins, pyrethroids, IGRs and phenylpyrazoles (with the exception of butane‐fipronil and fipronil) as safe agents to the parasitoid, but categorises organophosphates and carbamates as slightly to moderately toxic or dangerous to T. ostriniae. Copyright © 2012 Society of Chemical Industry  相似文献   

9.
BACKGROUND: In a screening programme for new agrochemicals from Chinese medicinal herbs, Chenopodium ambrosioides L. was found to possess strong fumigant activity against the maize weevil Sitophilus zeamais (Motsch.). Essential oil of C. ambrosioides was obtained by hydrodistillation, and the constituents were determined by GC‐MS analysis. The active compounds were isolated and identified by bioassay‐directed fractionation. RESULTS: Five active compounds [(Z)‐ascaridole, 2‐carene, ρ‐cymene, isoascaridole and α‐terpinene] were isolated and identified from the essential oil from Chinese C. ambrosioides. The LC50 values (fumigation) of the crude essential oils and the active compound (Z)‐ascaridole against S. zeamais adults were 3.08 and 0.84 mg L?1 air respectively. The LD50 values (contact toxicity) of the crude essential oil and (Z)‐ascaridole against S. zeamais adults were 2.12 and 0.86 µg g?1 body weight respectively. CONCLUSION: The findings suggested that the essential oil of Chenopodium ambrosioides and its main active constituent, (Z)‐ascaridole, may be explored as a natural potential fumigant. Copyright © 2011 Society of Chemical Industry  相似文献   

10.
BACKGROUND: Spiromesifen is a novel insecticidal/acaricidal compound derived from spirocyclic tetronic acids that acts effectively against whiteflies and mites via inhibition of acetyl‐CoA‐carboxylase, a lipid metabolism enzyme. The effects of spiromesifen on the developmental stages of the whitefly Bemisia tabaci (Gennadius) were studied under laboratory conditions to generate baseline action thresholds for field evaluations of the compound. RESULTS: Adult B. tabaci mortality rate after spiromesifen treatment (5 mg L?1) was 40%. Treatment with 0.5 mg L?1 reduced fecundity per female by more than 80%, and fertility was almost nil. LC50 for eggs was 2.6 mg L?1, and for first instar 0.5 mg L?1. Scanning electron microscopy revealed that eggs laid by treated adult females had an abnormally perforated chorion, and females were unable to complete oviposition. Light and fluorescent microscopy showed significantly smaller eggs following treatment, and smaller, abnormally formed and improperly localized bacteriomes in eggs and nymphs. The number of ovarioles counted in females treated with 5 mg L?1 was significantly reduced. Spiromesifen showed no cross‐resistance with other commonly used insecticides from different chemical groups, and resistance monitoring in Israel showed no development of field resistance to this insecticide after 1 year of use. CONCLUSION: The strong effect on juvenile stages of B. tabaci with a unique mode of action and the absence of cross‐resistance with major commonly used insecticides from different chemical groups suggest the use of spiromesifen in pest and resistance management programmes. Copyright © 2008 Society of Chemical Industry  相似文献   

11.
BACKGROUND: The lead coumarin derivative (E)‐methyl 3‐methoxy‐2‐[2‐(4‐methylcoumarin‐7‐yloxymethyl)phenyl]acrylate was discovered by using an intermediate derivatisation method. To discover new coumarin derivatives with improved activity, a series of substituted coumarins were synthesised and bioassayed. RESULTS: The compounds were identified by 1H NMR, IR, MS and elemental analysis. Bioassays demonstrated that some of the title compounds exhibited excellent fungicidal activity against cucumber downy mildew at 25 mg L?1. The relationship between structure and fungicidal activity is reported. CONCLUSION: The present work demonstrates that coumarin derivatives containing methoxyacrylate moieties can be used as possible lead compounds for developing novel fungicides. Copyright © 2011 Society of Chemical Industry  相似文献   

12.
Wang Z  Kim JR  Wang M  Shu S  Ahn YJ 《Pest management science》2012,68(7):1041-1047
BACKGROUND: An assessment was made of the toxicity of imperatorin and osthole identified in Cnidium monnieri fruit, 11 related compounds and five insecticides to larvae from insecticide‐susceptible Culex pipiens pallens (KS‐CP strain) and Aedes aegypti and wild C.p. pallens (YS‐CP colony) using a direct‐contact mortality bioassay. Results were compared with those of the conventional larvicide temephos. RESULTS: Imperatorin (LC50 = 3.14 and 2.88 mg L?1) was 1.9‐, 3.7‐ and 4.2‐fold and 2.4‐, 4.5‐ and 4.6‐fold more toxic than isopimpinellin, isoimperatorin and osthole against susceptible C. p. pallens and A. aegypti larvae respectively. Overall, all of the compounds were less toxic than temephos (0.011 and 0.019 mg L?1). The toxicity of these compounds was virtually identical against larvae from the two Culex strains, even though YS‐CP larvae were resistant to fenthion (resistance ratio RR = 390), deltamethrin (RR = 164), cyfluthrin (RR = 14) and temephos (RR = 14). This finding indicates that the coumarins and the insecticides do not share a common mode of action. The structure–activity relationship indicates that the chemical structure and alkoxy substitution and length of the alkoxyl side chain at the C8 position are essential for imparting toxicity. CONCLUSION: The C. monnieri fruit‐derived coumarins and the related coumarins described merit further study as potential insecticides or lead molecules for the control of insecticide‐resistant mosquito populations. Copyright © 2012 Society of Chemical Industry  相似文献   

13.
Fresh rhizomes of Zingiber officinale (ginger), when subjected to steam distillation, yielded ginger oil in which curcumene was found to be the major constituent. The thermally labile zingiberene‐rich fraction was obtained from its diethyl ether extract. Column chromatography of ginger oleoresin furnished a fraction from which [6]‐gingerol was obtained by preparative TLC. Naturally occurring [6]‐dehydroshogaol was synthesised following condensation of dehydrozingerone with hexanal, whereas zingerone and 3‐hydroxy‐1‐(4‐hydroxy‐3‐methoxyphenyl)butane were obtained by hydrogenation of dehydrozingerone with 10% Pd/C. The structures of the compounds were established by 1H NMR, 13C NMR and mass (EI‐MS and ES‐MS) spectral analysis. The test compounds exhibited moderate insect growth regulatory (IGR) and antifeedant activity against Spilosoma obliqua, and significant antifungal activity against Rhizoctonia solani. Among the various compounds, [6]‐dehydroshogaol exhibited maximum IGR activity (EC50 3.55 mg ml ?1) while dehydrozingerone imparted maximum antifungal activity (EC50 86.49 mg litre?1). © 2001 Society of Chemical Industry  相似文献   

14.
Stratospheric ozone (O3) depletion has led to increased terrestrial ultraviolet‐B (UV‐B) radiation (290–320 nm). Leaves exposed to this radiation produce UV‐absorbing compounds in the epidermal cells, which protect plants from UV‐B damage. To determine the role of UV‐absorbing compounds in the UV‐B sensitivity of weeds (common chickweed (Stellaria media), downy brome (Bromus tectorum), green smartweed (Polygonum scabrum), redroot pigweed (Amaranthus retroflexus), spotted cat’s‐ear (Hypochoeris radicata), and stork’s‐bill (Erodium cicutarium)) seedlings were exposed to 0, 4 (field ambient), 7 (18% O3 depletion) and 11 (37% O3 depletion) kJ m?2 d?1 of biologically effective UV‐B radiation in a greenhouse. Ultraviolet‐absorbing compounds were extracted from the second true‐leaf (0.5 cm2 samples) with methanol : distilled water : HCl (79 : 20 : 1) in an 85°C water bath for 15 min, and the absorbance of the extracts measured at 300 nm. The shoot dry biomass was recorded to determine the susceptibility to UV‐B radiation. Common chickweed was the most sensitive and green smartweed the least sensitive weed to UV‐B radiation. The latter accumulated more UV‐absorbing compounds and this accumulation occurred earlier compared with common chickweed. As UV‐BBE radiation levels increased from 0 to 11 kJ m?2 d?1, the green smartweed shoot biomass did not decline. However, the biomass of all five susceptible species declined despite an increase in the UV‐absorbing compounds in response to increased UV‐B radiation. Therefore, formation of a ‘UV‐screen’ in these species is not sufficient to fully prevent UV‐B damage. When the concentration of UV‐absorbing compounds in the six species was plotted against their susceptibility to UV‐B radiation, no relationship was observed. Thus, while the accumulation of UV‐absorbing compounds may be a major factor in the protection of certain species against UV‐B radiation and may offer some degree of defence in other species, it does not explain UV‐B susceptibility differences in weedy species in general.  相似文献   

15.
BACKGROUND: Linuron is a globally used phenylurea herbicide, and a large number of studies have been made on the microbial degradation of the herbicide. However, to date, the few bacteria able individually to mineralise linuron have been isolated only from European agricultural soils. An attempt was made to isolate linuron‐mineralising bacteria from Japanese river sediment using a uniquely designed river ecosystem model (microcosm) treated with 14C‐ring‐labelled linuron (approximately 1 mg L?1). RESULTS: A linuron‐mineralising bacterium that inhabits river sediment was successfully isolated. The isolate belongs to the genera Variovorax and was designated as strain RA8. Strain RA8 gradually used linuron in basal salt medium (5.2 mg L?1) with slight growth. In 15 days, approximately 25% of 14C‐linuron was mineralised to 14CO2, with 3,4‐dichloroaniline as an intermediate. Conversely, in 100‐fold diluted R2A broth, strain RA8 rapidly mineralised 14C‐linuron (5.5 mg L?1) and more than 70% of the applied radioactivity was released as 14CO2 within 3 days, and a trace amount of 3,4‐dichloroaniline was detected. Additionally, the isolate also degraded monolinuron, metobromuron and chlorobromuron, but not diuron, monuron or isoproturon. CONCLUSION: Although strain RA8 can grow on linuron, some elements in the R2A broth seemed significantly to stimulate its growth and ability to degrade. The isolate strictly recognised the structural difference between N‐methoxy‐N‐methyl and N,N‐dimethyl substitution of various phenylurea herbicides. Copyright © 2010 Society of Chemical Industry  相似文献   

16.
BACKGROUND: The small number of available nematicides and restrictions on the use of non‐fumigant nematicides owing to high toxicity to human and non‐target organisms hinder effective nematode control. The nematicidal efficacy of MCW‐2, a new nematicide of the fluoroalkenyl group, was evaluated against the root‐knot nematode Meloidogyne javanica (Treub.) Chitwood. RESULTS: MCW‐2 showed irreversible nematicidal activity against second‐stage juveniles of M. javanica in vitro, following exposure for 48 h at concentrations as low as 0.5 mg L?1, in contrast to fenamiphos or cadusafos. When exposed to MCW‐2 for shorter periods, motile juveniles became immobile with time after rinsing in water. MCW‐2 at 8 mg L?1 inhibited nematode hatching, which, however, recovered after rinsing in water. In pot and plot experiments, 0.5 mg MCW‐2 L?1 soil and 2 kg MCW‐2 ha?1, respectively, controlled M. javanica similarly to or better than fenamiphos or cadusafos at the same concentrations or at their recommended doses. In the soil, the nematicidal activity of MCW‐2 was less persistent than that of fenamiphos. CONCLUSION: MCW‐2 has potential to be used as a new non‐fumigant nematicide that probably has a novel mode of action. Copyright © 2009 Society of Chemical Industry  相似文献   

17.
BACKGROUND: As previously reported, methyl (E)‐2‐[2‐(2‐phenylamino‐6‐trifluoromethylpyrimidin‐4‐yloxymethyl)phenyl]‐3‐methoxyacrylate has proven to be a new lead with highly acaricidal activity. Following on from this, in an effort to discover new strobilurin analogues with improved activity, a series of substituted pyrimidines were synthesised and bioassayed. RESULTS: All compounds were characterised by 1H NMR, IR, MS and elemental analysis. Preliminary bioassays demonstrated that some of the title compounds exhibited notable control of Tetranychus cinnabarinus (Boisd.) at 1.25 mg L?1. The relationship between structure and acaricidal activity is discussed. CONCLUSION: Two compounds of particular interest, 6j (SYP‐10913) and 6k (SYP‐11277), exhibited potent acaricidal activity. The acaricidal potencies of these analogues are higher than that of fluacrypyrim in greenhouse applications, and are comparable with those of commercial acaricides such as spirodiclofen and propargite in field trials. Copyright © 2011 Society of Chemical Industry  相似文献   

18.
BACKGROUND: Imidacloprid is the primary insecticide for controlling the tobacco‐adapted form of the green peach aphid (TGPA), Myzus persicae (Sulzer), a major pest of tobacco worldwide. This study used leaf‐dip bioassays to assess TGPA resistance to imidacloprid in the eastern United States from 2004 through 2007. RESULTS: When combined over the 4 year study, 18, 14 and 3% of the TGPA had imidacloprid resistance ratios (RRs) of 10–20‐fold, 20–30‐fold and 30–90‐fold, respectively, compared with the most susceptible colony tested. This indicates that some colonies have developed moderate levels of resistance to imidacloprid. A colony collected near Clayton, North Carolina, had the highest RR of 91 (LC50 value = 31 mg L?1). This resistance declined for six tests over a 3 year period in the laboratory culture from >130‐fold RR (LC50 = 48 mg L?1) to 40‐fold RR (LC50 = 15 mg L?1). Over the same period, the most susceptible colony and a standard colony not exposed to imidacloprid for over 7 years had consistently low LC50 values. CONCLUSION: Moderate levels of resistance to imidacloprid are noticed among TGPA colonies from the eastern United States. The variation in resistance indicates that the factors responsible are present in the populations at low frequencies and are just not enough to cause field failures yet. Copyright © 2010 Society of Chemical Industry  相似文献   

19.
BACKGROUND: Upon emergence from their pupal cells, bollworm, Helicoverpa zea (Boddie), adults actively seek and feed on plant exudates before they disperse and reproduce on suitable host plants. This nocturnal behavior of the bollworm may be exploited as a pest management strategy for suppression of the insect by using an attractant/stimulant mixed with an insecticide to induce feeding to cause adult mortality or reproductive reduction/inhibition. This study aimed to determine in the laboratory whether or not spinosad when mixed with sucrose solution as a feeding stimulant and ingested by bollworm could influence mortality and reproduction of the insect. RESULTS: Sublethal concentrations of spinosad fed to laboratory‐reared females confined with males significantly reduced percentage hatch of eggs at 0.1 mg L?1, and it was reduced to near zero at 2.5 mg L?1 when compared with females fed 2.5 M sucrose solutions only. The lethal concentration (LC99) for males captured from the field in sex‐pheromone‐baited traps was 73 mg L?1 for 24 h response. Proboscis extension response was not inhibited significantly even at 10 g L?1. In spite of a 137‐fold increase in lethal dose concentration, spinosad did not inhibit feeding. CONCLUSION: A detailed study of laboratory‐reared and field‐collected bollworm adults relative to mortality and reproduction after ingestion of spinosad indicates that spinosad would be useful in an attract‐and‐kill strategy to control the insect when mixed with a feeding attractant/stimulant. Field validation of the data is warranted. Published 2010 by John Wiley & Sons, Ltd.  相似文献   

20.
The physiological and biochemical mechanisms of organogenesis in Equisetum arvense have not been clarified yet. However, high concentrations of nitrogen have been shown to exert an inhibitory effect on in vitro tuber formation in E. arvense. The aim of this study was to clarify the influence of the form of nitrogen in a medium on in vitro organogenesis in E. arvense. Single‐node segments of E. arvense rhizomes were cultured in the test medium. The NH4‐N and NO3‐N concentrations of the test medium, respectively, were adjusted by adding NH4H2PO4 and KNO3 to the basal medium. The basal medium was a nitrogen‐free, modified form of White's medium. Vegetative shoots were newly formed in the test tubes for concentrations of NO3‐N and NH4‐N that exceeded 56 mg L?1. However, no rhizome was formed at NH4‐N concentrations exceeding 28 mg L?1. The number of newly formed tubers decreased at an NH4‐N concentration of 28 mg L?1 and no tuber was formed at NH4‐N concentrations exceeding 56 mg L?1. In summary, although the presence of NO3‐N in the medium did not inhibit in vitro rhizome or tuber formation in E. arvense, the presence of NH4‐N in the medium exerted a strong inhibitory effect on the in vitro formation of both of these organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号