首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In a long-term experiment on a vertisol in southern Queensland, depression of vegetative growth of barley (Hordeum vulgare L.) by stubble retention was far greater with zero tillage than with mechanical tillage of the fallow. The possible phytotoxic effects of stubble on barley and wheat (Triticum aestivum L.) were investigated in seedling bioassays. Stubble collected from field plots just prior to planting did not reduce germination of wheat or barley seed but markedly reduced coleoptile length at 4 days. This effect of stubble became less apparent after 6 and 8 days, and was overcome by increasing water volume in the bioassay dish. Stubble absorbed 4.5–6 times its own weight of water and thereby competed with the germinating seed. Filtrates of stubble macerates in water, collected either before or after incubation of the saturated stubble, had no effect on coleoptile length indicating the absence of a water-soluble phytotoxin.

Brown lesions on wheat coleoptiles (most apparent at 8 days) and roots were decreased by stubble but increased by more water in the bioassay dish. Alternaria sp. and two types of bacteria were associated with the coleoptile lesions, and Fusarium sp. and several types of bacteria were associated with root lesions. Surface sterilisation of seed reduced root lesions but not coleoptile lesions. Filtrates of both incubated and unincubated stubble macerates reduced coleoptile lesions.

Poor early growth of barley in the field on zero-till, stubble-retained plots was not associated with incorporation of stubble into the drill slit in contact with the seed. Poor early growth was not overcome by nitrogen fertilizer drilled into the soil 2 months before planting. The quantities of air-dried stubble on the soil surface were capable of absorbing of the order of 4 mm rainfall. It is concluded that neither phytotoxins nor water absorption by the stubble were likely causes of the problem of poor early growth.  相似文献   


2.
The population abundance of free-living and plant-parasitic nematodes was investigated in a long-term rotation/tillage/stubble management experiment at Wagga Wagga Agricultural Institute, New South Wales (NSW), Australia. The treatments were a combination of two crop rotations: wheat (Triticum aestivum)–wheat and wheat–lupin (Lupinus angustifolius); two tillage systems: conventional cultivation (CC) and direct drill (DD); and two stubble management practices: stubble retention (SR) and stubble burnt (SB). Plots of one of the wheat–wheat treatments received urea at 100 kg N ha−1 during the cropping season. Soil samples from 0–5 and 5–10 cm depths were collected in September (maximum tillering), October (flowering) and December (after harvest), 2001, to analyse nematode abundance. Soil collected in September was also analysed for concentrations of total and labile C, and pH levels.Three nematode trophic groups, namely bacteria-feeders (primarily Rhabditidae), omnivores (primarily Dorylaimidae excluding plant-parasites and predators) and plant-parasites (Pratylenchus spp. and Paratylenchus spp.) were recorded in each soil sample. Of them, bacteria-feeders (53–99%, population range 933–2750 kg−1 soil) dominated in all soil samples. There was no difference in nematode abundance and community composition between the 0–5 cm and 5–10 cm layers of soil. The mean population of free-living and plant-parasitic nematodes varied significantly between the treatments in all sampling months. In most cases, total free-living nematode densities (Rhabditidae and Dorylaimidae) were significantly (P < 0.001) greater in wheat–lupin rotation than the wheat–wheat rotation irrespective of tillage and stubble management practices. In contrast, a greater population of plant-parasitic nematodes was recorded from plots with wheat–wheat than the wheat–lupin rotation. For treatments with wheat–wheat, total plant-parasitic nematode (Pratylenchus spp. and Paratylenchus spp.) densities were greater in plots without N-fertiliser (295–741 kg−1 soil) than the plots with N-fertiliser (14–158 kg−1 soil).Tillage practices had significant (P < 0.05) effects mostly on the population densities of plant-parasitic nematodes while stubble management had significant effects (P < 0.05) on free-living nematodes. However, interaction effects of tillage and stubble were significant (P < 0.01) for the population densities of free-living nematodes only. Population of Rhabditidae was significantly higher in conventional cultivated plots (7244 kg−1 soil) than the direct drilled (3981 kg−1 soil) plots under stubble retention. In contrast, plots with direct drill and stubble burnt had significantly higher populations of Dorylaimidae than the conventional cultivation with similar stubble management practice. No correlations between abundance of free-living nematodes, and concentration of total C and labile C in soil were observed in this study. These results showed that stubble retention contributed for enormous population density of free-living (beneficial) nematodes while conventional cultivation, irrespective of stubble management, contributed for suppressing plant-parasitic nematodes.  相似文献   

3.
Abstract. The decline in topsoil (0–0.1 m) pH (CaCl2) over 11 years (1979–90) was measured in a rotation, tillage, stubble and nitrogen fertilizer experiment on a Chromic Luvisol at Wagga Wagga in S.E. Australia. The rotations consisted of annual wheat cropping (WW) with and without nitrogen fertilizer (100 kg N/ha/year), alternating lupin-wheat (LW) and subterranean clover-wheat (CW). The initial mean pH at the site was 4.9 and the experiment was preceded by subterranean clover-based pasture for most of the previous 19 years. An initial rapid decline in soil pH under all treatments over the first 8–9 years was followed by a 2–3 year period when no further decline was detected. The annual rate of pH decline over the first 8–9 years varied from 0.06 for WW to 0.09 units for WW with added N fertilizer. Apparent steady-state for WW after 11 years was approximately 0.5 pH units higher than for WW with added N fertilizer. There was no difference between CW and LW in the rate of decline or in the apparent steady-state reached. Six years' stubble burning in a LW rotation promoted a slightly higher pH than where stubble was retained. However, there was no significant effect of tillage in either LW or CW rotations. By 1990 the addition of N fertilizer to WW had increased the concentration of exchangeable aluminium by 100% and of manganese by 24%. The inclusion of a legume in the rotation increased the concentration of aluminium but did not affect manganese. However, burning stubble in the LW rotation slightly decreased manganese concentrations.  相似文献   

4.
《Applied soil ecology》2011,48(3):221-225
The impact of tillage practices on microbial N transformations in Vertisols is poorly understood and data from long-term field experiments are scarce, particularly in semiarid regions. We evaluated the effects of traditional tillage (TT) vs no-tillage (NT) on denitrification in a long-term field experiment under a rainfed crop rotation system (cereal-sunflower-legumes) on a Vertisol (SW Spain). In general, the abundance of denitrifiers and the respective potential denitrification rates was higher under NT compared to TT during the vegetation period, but not after harvesting. However differences in denitrifier numbers were within the same order of magnitude (0.5–3 × 107 copies g soil dw). The abundance of nitrite reducers and N2O reducers was relatively similar. In addition, N2O/N2 ratios between 1 and 2 were found for both treatments. These results emphasize that NT has a limited impact on denitrification in Vertisols under fertilizer regime and legume-crop rotation and thus losses of N2O are expected to be comparable to those of traditional tillage systems.  相似文献   

5.
6.
7.
This research attempted to investigate a part of the United Nations sustainable development goal 15, dealing with preventing land degradation and halting the loss of microorganisms’ diversity. Since soil deterioration and biodiversity loss in the Mediterranean area are occurring because of intensive management, we evaluated some biochemical and microbiological parameters and bacterial biodiversity under long-term conventional tillage (CT) and no-tillage (NT) practices, in Basilicata, a typical Region of Southern Italy, characterized by a semiarid ecosystem. The highest biological fertility index (BFI) (composed of soil organic matter, microbial biomass C, cumulative microbial respiration during 25 days of incubation, basal respiration, metabolic quotient and mineralization quotient) was determined for the 0–20 cm of NT soil (class V, high biological fertility level). The analysis of the taxonomic composition at the phylum level revealed the higher relative abundance of copiotrophic bacteria such as Proteobacteria, Actinobacteria and Bacteroidetes in the NT soil samples as compared to the CT soil. These copiotrophic phyla, more important decomposers of soil organic matter (SOM) than oligotrophic phyla, are responsible of a higher microbial C use efficiency (CUE) in tilled soil, being microbial community composition, C substrates content and CUE closely linked. The higher Chao1 and Shannon indices, under the NT management, also supported the hypothesis that the bacterial diversity and richness increased in the no-till soils. In conclusion, we can assume that the long-term no-tillage can preserve an agricultural soil in a semiarid ecosystem, enhancing soil biological fertility level and bacterial diversity.  相似文献   

8.
9.
A fertilizer experiment laid out 1971 in a pine (Pinus sylvestris) in N. Sweden is described. The aim was to study the behaviour of a forest ecosystem under controlled nutrient regimes. A primary objective was to study tree production and vitality at different internal nitrogen levels, checked by annual foliar analysis. Tree growth was nitrogen-limited on the site, and the nitrogen regimes ranged from no nitrogen added over near-optimum to excess nitrogen. Interaction with PK addition was studied in a factorial design. Since the question of ecological effects of increasing atmospheric deposition of nitrogen and sulphur was raised by Odén in 1968, this problem became one of the main objectives of this experiment and other experiments in the project The Swedish Optimum Nutrition Experiments in Forest Stands. The experiment started in a young stand which has now been under treatment for more than 20 years. In the beginning nitrogen addition increased tree biomass at all nitrogen levels, but with time the growth increase was reduced at the highest nitrogen regime, partly also at the middle level. Retention of added nitrogen in stand and soil has been high at the lowest level of nitrogen addition, while considerable losses from the sites have occurred at higher levels, indicating nitrogen saturation. Some of the treatment effects on ecosystem properties are described, such as distribution of bioelements between stand and soil and apparent efficiency of needles in stem formation.  相似文献   

10.
The effects of agricultural management practices on bacterial community structure and function are not well defined, yet are of concern for long-term soil resilience. In this study, soil microbial biomass, bacterial community structure (determined by TRFLP), and function, (determined by enzyme assays and Biolog assays), and soil physicochemical properties were investigated in a wheat cropping system subjected to long-term tillage (20 years) and short-term nutrient addition treatments. Samples were taken over a full cropping cycle. Tillage, nutrient addition, and time all significantly affected bacterial community structure (rDNA and rRNA), which showed considerable shifts across the sampling period. Microbial biomass and Biolog profiles changed significantly with time, but were not affected by treatment. With regard to specific enzyme assays, there were significant main effects of treatment and time on glucosidase, phosphatase and phenol oxidase enzyme activity, while for cellobioside and peroxidase, treatment and time had significant interactive effects. For the hydrolases significant effects were observed between nutrient treatments, while for the oxidases they were observed between tillage treatments. Overall, however, we found little evidence of major detrimental long-term effects of tillage on the soil bacterial communities or their important functions in the dryland wheat system studied. The bacterial communities showed both long and short-term trajectories that could be disentangled with appropriate experimental design. Concerns over significant long-term detrimental impacts of tillage on the soil bacterial communities appear unfounded, at least under systems similar to those studied here.  相似文献   

11.
Distillery effluent, a foul smelling, dark coloured by-product of distillery industries, is usually applied as irrigation water or as an amendment to arable land in some areas which are in the vicinity of the distillery industries. A field experiment on soybean–wheat system was conducted for 3 consecutive years in a Vertisol of central India to evaluate the effect of distillery effluent (DE) as an amendment on soil properties and crop productivity. The treatments were control (no fertilizer or manure or DE, T1), 100% NPK + FYM @ 4 Mg ha−1 to soybean (T2) and four graded levels of DE, viz.: 2.5 cm DE to soybean and wheat on residual nutrition (T3), 2.5 cm DE to soybean and 1.25 cm to wheat (T4), 5 cm DE to soybean and wheat on residual nutrition (T5), 5 cm DE to soybean and 2.5 cm to wheat (T6). The organic carbon, microbial biomass carbon and electrical conductivity (EC) of the surface (0–10 cm) soil increased significantly with application of DE compared to T1 and T2, but the soil pH was not affected. The EC increased from 0.47 dS m−1 and 0.58 dS m−1, respectively, in T1 and T2 to 1.52 dS m−1 in T6, where highest dose of DE was applied. This indicated a slight build-up of salinity with DE application. The application of DE showed a significant improvement in the physical properties of the soil. The mean weight diameter (MWD), saturated hydraulic conductivity, water retention at field capacity and available water content were significantly (P < 0.05) higher, while bulk density (BD) and penetration resistance of the surface soil were significantly lower (P < 0.05) in all DE treated plots except in T3 than those in T1 and T2. The fractions of WSA of more than 1 mm diameter in T6, T5 and T4 were, respectively, 141%, 107% and 116% more than the control. The MWD showed a positive linear relationship with the organic carbon (r = 0.84**) and microbial biomass carbon (r = 0.90**) of the soil. A significant (P < 0.01) negative linear relationship (r = 0.70**) was found between soil organic carbon and BD. Except T3, all the DE treated plots recorded significantly higher total and microporosity of the soil than control. Water retention at permanent wilting point and macroporosity of the soil were not affected by treatment. The seed yield of soybean in all the DE treatments was similar with T2 (1.86 Mg ha−1) but significantly more than control (1.28 Mg ha−1). The DE application levels have not affected the seed yield of soybean. In wheat highest grain yield was recorded in T2 (3.47 Mg ha−1), which was similar with T4 (3.16 Mg ha−1), T5 (3.22 Mg ha−1) and T6 (3.46 Mg ha−1). DE application up to T4 level was found suitable from productivity, salinity and sustainability point of view. The study showed that judicious application of DE as an amendment to the agricultural field could be considered as a viable option for safe disposal of this industrial waste.  相似文献   

12.
A field study was conducted to assess the long-term effects of no-tillage (NT) and conventional tillage (CT), and the short-term effects following tillage conversion from CT to NT (NTn) and from NT to CT (CTn) on soil quality (SQ) indicators in a semi-humid climate. First, plots of a long-term tillage experiment on a Luvic Phaeozem initiated in 1986 were split into two subplots in 2012, yielding four treatments: NT, CT, NTn and CTn. In 2015, composite soil samples were collected from each treatment and from a natural site (Ref) at depths 0–5, 5–10, 10–20 and 0–20 cm. Several indicators were determined: soil organic carbon (SOC) and nitrogen (SON); particulate organic C (POM-C) and N (POM-N); potential N mineralization (PMN) and soil respiration (Rs). Moreover, bulk density was determined in long-term tillage systems. Different ratios between indicators were calculated, with emphasis on its function in the agroecosystem, that is functional indicators. Significant differences in SOC, SON and PMN were found between CT and NT at most depths. In contrast, 3 years after tillage conversion, only a part of the SQ indicators studied were modified mainly at the 0–10 cm depth. The functional indicators showed differences between tillage systems in the long-term and after short-term tillage conversion depending on the depth; however, the PMN/SON ratio demonstrated differences at all depths. Under these conditions, this ratio-related to easily mineralizable N fraction proved to be a promising indicator for assessing SQ under contrasting tillage systems regardless of the sampling depth.  相似文献   

13.
红壤旱地长期试验肥力演变及玉米效应研究   总被引:2,自引:1,他引:2  
采用长期定位试验研究方法,探讨高原旱地红壤施N、NP、NM、NPM和NPK对红壤肥力演变、养分供给能力及玉米的效应。结果表明,N处理8年玉米绝收;NP处理前期比施N增产,长期施用不稳产,至23年绝收;NPM处理玉米产量由试验前10年的4628 kg/hm2,增加到后10年的6875 kg/hm2,增产2247 kg/hm2;在NP基础上施K2O 112.5 kg/hm2的NP+K处理,比施NP增产2264 kg/hm2。说明配施增产效果明显,但长期只施NP会导致其它元素失衡不能稳产。有机肥和NP配施,显著增加土壤有机质含量,红壤28年不施有机肥,有机质含量不下降,年施有机肥30000 kg/hm2,不施化学钾肥,也能维持钾素平衡。长期不施化学钾或有机肥导致钾素枯竭。红壤磷素自然供给能力极低,仅为3.6~15.7%,施磷显著增加速效磷含量,施磷或有机肥提高磷素自然供给能力。NP处理11年不施钾,钾素自然供给能力由35%~68%降低为11.09%~23.2%。  相似文献   

14.
Reduction in soil disturbance can stimulate soil microbial biomass and improve its metabolic efficiency, resulting in better soil quality, which in turn, can increase crop productivity. In this study we evaluated microbial biomass of C (MB-C) by the fumigation-extraction (FE) or fumigation-incubation (FI) method; microbial biomass of N (MB-N); basal respiration (BR) induced or not with sucrose; metabolic quotient (obtained by the ratio BR/MB-C) induced (qCO2(S)), or not with sucrose (qCO2); and crop productivity in a 14-year experiment in the state of Paraná, southern Brazil. The experiment consisted of three soil-tillage systems [no-tillage (NT), conventional tillage (CT) and no-tillage using a field cultivator every 3 years (FC)] and two cropping systems [a soybean–wheat-crop sequence (CS), and a soybean–wheat–white lupin–maize–black oat–radish crop rotation (CR)]. There were six samplings in the 14th year, starting at the end of the winter crop (wheat in the CS and lupin in the CR plots) and finishing at full flowering of the summer crop (soybean in the CS and maize in the CR). Differences in microbiological parameters were greater than those detected in the total C (TCS) and total N (TNS) contents of the soil organic matter (SOM). Major differences were attributed to tillage, and on average NT was higher than the CT in the following parameters: TCS (19%), TNS (21%), MB-C evaluated by FE (74%) and FI (107%), and MB-N (142%). The sensibility of the microbial community and processes to soil disturbance in the tropics was highlighted, as even a moderate soil disturbance every 3 years (FC) affected microbial parameters but not SOM. The BR was the parameter that most promptly responded to soil disturbance, and strong differences were perceived by the ratio of qCO2 evaluated with samples induced and non-induced with sucrose. At plowing, the qCO2(S):qCO2 was five times higher under CT, indicating a C-starving low-effective microbial population in the C-usage. In general, crop rotation had no effect on microbial parameters or SOM. Grain yield was affected by tillage and N was identified as a limiting nutrient. Linear regressions between grain yields and microbial parameters showed that soybean was benefited from improvements in the microbial biomass and metabolic efficiency, but with no significant effects observed for the maize crop. The results also indicate that the turnover of C and N in microbial communities in tropical soils is rapid, reinforcing the need to minimize soil disturbance and to balance inputs of N and C.  相似文献   

15.
Phosphorus (P) is an essential element for plant growth, so proper application of P fertilizers to farmland is necessary. High levels of P fertilization often cause P accumulation in soil and thereby increase P loss to the environment. The effect of long-term P fertilization on soil inorganic P (Pi) fractions and available P (Pa) stocks were investigated in order to provide a reference for rational management of P fertilization. A 27-year experiment was initiated in September 1984 in Changwu County on the southern part of the Loess Plateau, northern China. The experiment included five treatments of P fertilization: 0, 20, 40, 60, and 80 kg P ha?1. With zero P application, soil Pi fractions decreased and were even depleted over time. In fertilized plots, soil Pi content in available and unavailable fractions increased over time, regardless of the application rate. P fertilization increased the content and change rate of soil Pi fractions between three sampling times (1991, 2001, and 2011). Soil Pa stocks and plant P uptake increased with increasing application rate of 20–60 kg P ha?1, indicating increased input and output of P in the soil–plant system. Higher application rates (≥60 kg P ha?1) did not change soil Pa stocks or plant P uptake but increased the annual change rate of Pi fractions, maintaining a balance between the supply and demand of P. This study has implications for reducing P fertilization level and decreasing associated environmental risks in agricultural soil on the Loess Plateau.  相似文献   

16.
Soil quality deterioration and consequent reduced productivity characterize the Vertisols in the highlands of Ethiopia. The problem is exacerbated by lack of appropriate land preparation alternatives for the major crops in the area. A field experiment was carried out for 6 years (1998–2003) at Caffee Doonsa in the central highlands of Ethiopia to evaluate alternative land preparation methods on the performance of wheat (Triticum durum Desf.), lentil (Lens culinaries Medik L) and tef (Eragrostis tef L) grown in rotation. Four methods of land preparation (broad bed and furrow, green manure, ridge and furrow and reduced tillage) were arranged in a randomized complete block design with three replications on permanent plots of 22 m by 6 m. Broad bed and furrow significantly increased the grain yield of lentils by 59% (from 1029 to 1632 kg ha−1) as compared to the control. On the other hand, reduced tillage resulted in the highest grain yield of wheat (1862 kg ha−1) and tef (1378 kg ha−1) as compared to 1698 kg ha−1 of wheat and 1274 kg ha−1 of tef for the control although the increase was not statistically significant. A gross margin analysis showed that BBF is the most profitable option for lentil with 65% increase in total gross margin. On the other hand, RT resulted in 11 and 8% increase in gross margin of wheat and tef, respectively as compared to the control. Based on the agronomic and economic performances best combinations of crop and land preparation method were: lentil sown on broad bed and furrow, and wheat and tef sown after reduced tillage.  相似文献   

17.
Several previous field studies in temperate regions have shown decreased soil respiration after conventional tillage compared with reduced or no‐tillage treatments. Whether this decrease is due to differences in plant residue distribution or changes in soil structure following tillage remains an open question. This study investigated (1) the effects of residue management and incorporation depth on soil respiration and (2) biological activity in different post‐tillage aggregates representing the actual size and distribution of aggregates observed in the tilled layer. The study was conducted within a long‐term tillage experiment on a clay soil (Eutric Cambisol) in Uppsala, Sweden. After 38 y, four replicate plots in two long‐term treatments (moldboard plowing (MP) and shallow tillage (ST)) were split into three subplots. These were then used for a short‐term trial in which crop residues were either removed, left on the surface or incorporated to about 6 cm depth (ST) or at 20 cm depth (MP). Soil respiration, soil temperature, and water content were monitored during a 10‐d period after tillage treatment. Respiration from aggregates of different sizes produced by ST and MP was also measured at constant water potential and temperature in the laboratory. The results showed that MP decreased short‐term soil respiration compared with ST or no tillage. Small aggregates (< 16 mm) were biologically most active, irrespective of tillage method, but due to their low proportion of total soil mass they contributed < 1.5% to total respiration from the tilled layer. Differences in respiration between tillage treatments were found to be attributable to indirect effects on soil moisture and temperature profiles and the depth distribution of crop residues, rather than to physical disturbance of the soil.  相似文献   

18.
Soil total organic carbon (TOC) is a composite indicator of soil quality with implications for crop production and the regulation of soil ecosystem services. Research reports on the dynamics of TOC as a consequence of soil management practices in subtropical climatic conditions, where microbial carbon(C) loss is high, are very limited. The objective of our study was to evaluate the impact of seven years of continuous tillage and residue management on soil TOC dynamics (quantitative and qualitati...  相似文献   

19.
Little is known how contrasting tillage (deep ploughing, top- and sub-soil loosening with straight or bent leg cultivator [BLC], direct drilling [DD]) affect important soil physical properties (total porosity [TP], pore size distribution [PSD], water release characteristics [WRC]) and CO2 emissions from a Luvisol. The study was aimed to alleviate compaction on land that had been under reduced tillage for 4 successive years. Undisturbed core samples were collected from 5–10, 15–20 and 25–30 cm depths for soil WRCs, TP and pore-size distribution determination. A closed chamber method was used to quantify the CO2 emissions from the soil. Soil loosening with straight or BLC produced the highest total soil porosity (on average 0.48 m3 m?3) within 5–30 cm soil layer, while conventional tillage (CT) gave 6%, DD up to 25% reduction. Sub-surface loosening with a BLC was the most effective tool to increase the amount of macro- and mesopores in the top- and sub-soil layers. It produced 21% more macro- and mesopores within 25–30 cm soil layer as compared to the soil loosened with a straight leg cultivator. Plant available water content under CT and DD was lower as compared to that under deep loosening with straight or BLC (23% and 18%, respectively). DD produced 12% lower soil surface net carbon dioxide exchange rate than CT and by 25–28% lower than deep soil loosening with straight or BLC. The increase in micropores within 25–30 cm soil layer caused net carbon dioxide exchange rate reduction. The amount of mesopores within the whole 5–30 cm soil layer acted as a direct dominant factor influencing net CO2 exchange rate (NCER) (Pxy = ?3.063; r = 0.86).  相似文献   

20.
Soil organic carbon (SOC) and nitrogen (N) are directly influenced by tillage, residue return and N fertilization management practices. Soil samples for SOC and N analyses, obtained from a 23-year field experiment, provided an assessment of near-equilibrium SOC and N conditions. Crops included corn (Zea mays L.) and soybean [Glycine max L. (Merrill)]. Treatments of conventional and conservation tillage, residue stover (returned or harvested) and two N fertilization rates were imposed on a Waukegan silt loam (fine-silty over skeletal, mixed, superactive, mesic Typic Hapludoll) at Rosemount, MN. The surface (0–20 cm) soils with no-tillage (NT) had greater than 30% more SOC and N than moldboard plow (MB) and chisel plow (CH) tillage treatments. The trend was reversed at 20–25 cm soil depths, where significantly more SOC and N were found in MB treatments (26 and 1.5 Mg SOC and N ha−1, respectively) than with NT (13 and 1.2 Mg SOC and N ha−1, respectively), possibly due to residues buried by inversion. The summation of soil SOC over depth to 50 cm did not vary among tillage treatments; N by summation was higher in NT than MB treatments. Returned residue plots generally stored more SOC and N than in plots where residue was harvested. Nitrogen fertilization generally did not influence SOC or N at most soil depths. These results have significant implications on how specific management practices maximize SOC storage and minimize potential N losses. Our results further suggest different sampling protocols may lead to different and confusing conclusions regarding the impact of tillage systems on C sequestration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号