共查询到16条相似文献,搜索用时 78 毫秒
1.
针对深层神经网络模型部署到番茄串采摘机器人,存在运行速度慢,对目标识别率低,定位不准确等问题,本文提出并验证了一种高效的番茄串检测模型。模型由目标检测与语义分割两部分组成。目标检测负责提取番茄串所在的矩形区域,利用语义分割算法在感兴趣区域内获取番茄茎位置。在番茄检测模块,设计了一种基于深度卷积结构的主干网络,在实现模型参数稀疏性的同时提高目标的识别精度,采用K-means++聚类算法获得先验框,并改进了DIoU距离计算公式,进而获得更为紧凑的轻量级检测模型(DC-YOLO v4)。在番茄茎语义分割模块(ICNet)中以MobileNetv2为主干网络,减少参数计算量,提高模型运算速度。将采摘模型部署在番茄串采摘机器人上进行验证。采用自制番茄数据集进行测试,结果表明,DC-YOLO v4对番茄及番茄串的平均检测精度为99.31%,比YOLO v4提高2.04个百分点。语义分割模块的mIoU为81.63%,mPA为91.87%,比传统ICNet的mIoU提高2.19个百分点,mPA提高1.47个百分点。对番茄串的准确采摘率为84.8%,完成一次采摘作业耗时约6s。 相似文献
2.
基于改进YOLO v5的夜间温室番茄果实快速识别 总被引:2,自引:0,他引:2
为实现日光温室夜间环境下采摘机器人正常工作以及番茄快速识别,提出一种基于改进YOLO v5的夜间番茄果实的识别方法。采集夜间环境下番茄图像2 000幅作为训练样本,通过建立一种基于交并比的CIOU目标位置损失函数,对原损失函数进行改进,根据计算函数anchor生成自适应锚定框,确定最佳锚定框尺寸,构建改进型YOLO v5网络模型。试验结果表明,改进YOLO v5网络模型对夜间环境下番茄绿色果实识别精度、红色果实识别精度、综合平均识别精度分别为96.2%、97.6%和96.8%,对比CNN卷积网络模型及YOLO v5模型,提高了被遮挡特征物与暗光下特征物的识别精度,改善了模型鲁棒性。将改进YOLO v5网络模型通过编译将训练结果写入安卓系统制作快速检测应用软件,验证了模型对夜间环境下番茄果实识别的可靠性与准确性,可为番茄实时检测系统的相关研究提供参考。 相似文献
3.
花椒树产果量大,枝干纵横交错,树叶茂密,给花椒的自动化采摘带来了困难。因此,本文设计一种基于改进YOLO v5的复杂环境下花椒簇的快速识别与定位方法。通过在主干提取网络CSPDarknet的CSPLayer层和Neck的上采样之后增加高效通道注意力ECA(Efficient channel attention)来简化CSPLayer层的计算量,提升了特征提取能力。同时在下采样层增加协同注意力机制CA(Coordinate attention),减少下采样过程中信息的损失,强化特征空间信息,配合热力图(Grad-CAM)和点云深度图,来完成花椒簇的空间定位。测试结果表明,与原YOLO v5相比较,改进的网络将残差计算减少至1次,保证了模型轻量化,提升了效率。同帧数区间下,改进后的网络精度为96.27%,对比3个同类特征提取网络YOLO v5、YOLO v5-tiny、Faster R-CNN,改进后网络精确度P分别提升5.37、3.35、15.37个百分点,连株花椒簇的分离识别能力也有较大提升。实验结果表明,自然环境下系统平均识别率为81.60%、漏检率为18.39%,能够满足花椒簇识别... 相似文献
4.
基于改进YOLO v3网络的夜间环境柑橘识别方法 总被引:9,自引:0,他引:9
为研究夜间环境下采摘机器人的视觉检测技术,实现采摘机器人的夜间作业,提出了一种多尺度卷积神经网络Des-YOLO v3算法,可实现夜间复杂环境下成熟柑橘的识别与检测。借鉴残差网络和密集连接网络,设计了Des-YOLO v3网络结构,实现了网络多层特征的复用和融合,加强了小目标和重叠遮挡果实识别的鲁棒性,显著提高了果实检测精度。柑橘识别试验结果表明, Des-YOLO v3网络的精确率达97.67%、召回率为97.46%、F1值为0.976,分别比YOLO v3网络高6.26个百分点、6.36个百分点和0.063。同时,经过训练的模型在测试集下的平均精度(mAP)为90.75%、检测速度达53f/s,高于YOLO v3_DarkNet53网络的平均精度88.48%,mAP比YOLO v3_DarkNet53网络提高了2.27个百分点,检测速度比YOLO v3_DarkNet53网络提高了11f/s。研究结果表明,本文提出的Des-YOLO v3网络对野外夜间复杂环境下成熟柑橘的识别具有更强的鲁棒性和更高的检测精度,为柑橘采摘机器人的视觉识别提供了技术支持。 相似文献
5.
6.
为使巡检机器人能够对体积小且密集、形态多变、数量多且分布不均的害虫进行高效精准识别,提出了一种基于改进YOLO v7的害虫识别方法。该方法将CSP Bottleneck与基于移位窗口Transformer(Swin Transformer)自注意力机制相结合,提高了模型获取密集害虫目标位置信息的能力;在路径聚合部分增加第4检测支路,提高模型对小目标的检测性能;将卷积注意力模块(CBAM)集成到YOLO v7模型中,使模型更加关注害虫区域,抑制背景等一般特征信息,提高被遮挡害虫的识别精确率;使用Focal EIoU Loss损失函数减少正负样本不平衡对检测结果的影响,提高识别精度。采用基于实际农田环境建立的数据集的实验结果表明,改进后算法的精确率、召回率及平均精度均值分别为91.6%、82.9%和88.2%,较原模型提升2.5、1.2、3个百分点。与其它主流模型的对比实验结果表明,本文方法对害虫的实际检测效果更优,对解决农田复杂环境下害虫的精准识别问题具有参考价值。 相似文献
7.
为实现复杂自然环境下对桑树嫩叶处枝干的识别检测,改变当前桑叶采摘设备作业过程中依赖人工辅助定位的现状,解决识别目标姿态多样和环境复杂导致的低识别率问题,提出一种基于改进YOLO v5模型的桑树枝干识别模型(YOLO v5-mulberry),并结合深度相机构建定位系统。首先,在YOLO v5的骨干网络中加入CBAM(Convolutional block attention module)注意力机制,提高神经网络对桑树枝干的关注度;并增加小目标层使模型可检测4像素×4像素的目标,提高了模型检测小目标的性能;同时使用GIoU损失函数替换原始网络中的IoU损失函数,有效防止了预测框和真实框尺寸较小时无法正确反映预测框及真实框之间位置关系的情况;随后,完成深度图和彩色图的像素对齐,通过坐标系转换获取桑树枝干三维坐标。试验结果表明:YOLO v5-mulberry检测模型的平均精度均值为94.2%,较原模型提高16.9个百分点,置信度也提高12.1%;模型室外检测时应检测目标数53,实际检测目标数为48,检测率为90.57%;桑树嫩叶处枝干三维坐标识别定位系统的定位误差为(9.498 5 mm... 相似文献
8.
苹果采摘机器人目标果实快速跟踪识别方法 总被引:10,自引:0,他引:10
为了减少苹果采摘机器人采摘过程处理时间,对苹果采摘机器人目标果实的快速跟踪识别方法进行了研究。对基于R-G颜色特征的OTSU动态阈值分割方法进行首帧采集图像分割,采用图像中心原则确定要采摘的目标果实;利用所采集图像之间的信息关联性,在不断缩小图像处理区域的同时,采用经过加速优化改进的去均值归一化积相关模板匹配算法来跟踪识别后帧图像的目标果实,并进行不同阈值分割方法实现效果,不同灰度、亮度和对比度的匹配识别以及新旧方法识别时间对比试验,从而验证了所采用和设计方法的有效性;其中所设计跟踪识别方法的识别时间相比于原方法,减少36%。 相似文献
9.
10.
基于改进Mask RCNN的复杂环境下苹果检测研究 总被引:2,自引:0,他引:2
苹果检测是苹果采摘系统中的关键环节,为实现复杂环境下苹果采摘机器人视觉系统对苹果的识别和定位,提出一种基于深度学习的方法,通过改进的Mask RCNN网络对苹果进行检测研究。该方法在原始Mask RCNN网络的基础上,增加边界加权损失函数,能够使边界检测结果更为精确。训练后的模型在验证集下的AP值为92.62%。通过比较Mask RCNN与Faster RCNN、YOLO v3和传统分割算法K-means算法在不同数目,不同光照和绿色苹果情况下的检测效果,试验结果表明:Mask-RCNN的F1值和分割效果均高于其他算法,证明本文方法对复杂环境下的苹果有很好的检测效果,可为苹果产业中采摘机器人的视觉系统提供技术支持。 相似文献
11.
针对苹果采摘机器人识别算法包含复杂的网络结构和庞大的参数体量,严重限制检测模型的响应速度问题,本文基于嵌入式平台,以YOLO v4作为基础框架提出一种轻量化苹果实时检测方法(YOLO v4-CA)。该方法使用MobileNet v3作为特征提取网络,并在特征融合网络中引入深度可分离卷积,降低网络计算复杂度;同时,为弥补模型简化带来的精度损失,在网络关键位置引入坐标注意力机制,强化目标关注以提高密集目标检测以及抗背景干扰能力。在此基础上,针对苹果数据集样本量小的问题,提出一种跨域迁移与域内迁移相结合的学习策略,提高模型泛化能力。试验结果表明,改进后模型的平均检测精度为92.23%,在嵌入式平台上的检测速度为15.11f/s,约为改进前模型的3倍。相较于SSD300与Faster R-CNN,平均检测精度分别提高0.91、2.02个百分点,在嵌入式平台上的检测速度分别约为SSD300和Faster R-CNN的1.75倍和12倍;相较于两种轻量级目标检测算法DY3TNet与YOLO v5s,平均检测精度分别提高7.33、7.73个百分点。因此,改进后的模型能够高效实时地对复杂果园环境中的苹果进行检测,适宜在嵌入式系统上部署,可以为苹果采摘机器人的识别系统提供解决思路。 相似文献
12.
为解决限位栏场景下经产母猪查情难度大、过于依赖公猪试情和人工查情的问题,提出了一种基于改进YOLO v5s算法的经产母猪发情快速检测方法。首先,利用马赛克增强方式(Mosaic data augmentation, MDA)扩充数据集,以丰富数据表征;然后,利用稀疏训练(Sparse training, ST)、迭代通道剪枝(Network pruning, NP)、模型微调(Fine tune, FT)等方式重构模型,实现模型压缩与加速;最后,使用DIOU_NMS代替GIOU_NMS,以提高目标框的识别精度,确保模型轻量化后,仍保持较高的检测精度。试验表明,优化后的算法识别平均精确率可达97.8%,单幅图像平均检测时间仅1.7 ms,单帧视频平均检测时间仅6 ms。分析空怀期母猪发情期与非发情期的交互行为特征,发现母猪发情期较非发情期交互时长与频率均显著提高(P<0.001)。以20 s作为发情检测阈值时,发情检测特异性为89.1%、准确率为89.6%、灵敏度为90.0%,该方法能够实现发情母猪快速检测。 相似文献
13.
为了实现复杂环境下农业机器人对番茄果实的快速准确识别,提出了一种基于注意力机制与改进YOLO v5s的温室番茄目标快速检测方法。根据YOLO v5s模型小、速度快等特点,在骨干网络中加入卷积注意力模块(CBAM),通过串联空间注意力模块和通道注意力模块,对绿色番茄目标特征给予更多的关注,提高识别精度,解决绿色番茄在相似颜色背景中难识别问题;通过将CIoU Loss替换GIoU Loss作为算法的损失函数,在提高边界框回归速率的同时提高果实目标定位精度。试验结果表明,CB-YOLO网络模型对温室环境下红色番茄检测精度、绿色番茄检测精度、平均精度均值分别为99.88%、99.18%和99.53%,果实检测精度和平均精度均值高于Faster R-CNN模型、YOLO v4-tiny模型和YOLO v5模型。将CB-YOLO模型部署到安卓手机端,通过不同型号手机测试,验证了模型在移动终端设备上运行的稳定性,可为设施环境下基于移动边缘计算的机器人目标识别及采收作业提供技术支持。 相似文献
14.
羊只站立、行走、采食等日常行为与其健康状况密切相关,高效、准确的羊只行为识别有助于疾病检测,对实现羊只健康预警具有重要意义。针对目前羊只多行为识别检测大多基于传感器等接触式设备,羊只活动受限,行为具有局限性,且群体养殖环境下,羊只行为多样、场景复杂、存在遮挡等造成的行为识别精度低等问题,提出了一种基于改进YOLO v8s的羊只行为识别方法。首先,引入SPPCSPC空间金字塔结构增强了模型的特征提取能力,提升了模型的检测精度。其次,新增P2小目标检测层,增强了模型对小目标的识别和定位能力。最后,引入多尺度轻量化模块PConv和EMSConv,在保证模型识别效果的同时,降低了模型参数量和计算量,实现了模型轻量化。实验结果表明,改进YOLO v8s模型对羊只站立、行走、采食、饮水、趴卧行为平均识别精度分别为84.62%、92.58%、87.54%、98.13%和87.18%,整体平均识别精度为90.01%。与Faster R-CNN、YOLO v5s、YOLO v7、YOLO v8s模型相比,平均识别精度分别提高12.03、3.95、1.46、2.19个百分点。研究成果可为羊只健康管理和疾病预警提供技术支撑。 相似文献
15.
为准确高效地实现无接触式奶山羊个体识别,以圈养环境下奶山羊面部图像为研究对象,提出一种基于改进YOLO v5s的奶山羊个体识别方法。首先,从网络上随机采集350幅羊脸图像构成羊脸面部检测数据集,使用迁移学习思想预训练YOLO v5s模型,使其能够检测羊脸位置。其次,构建包含31头奶山羊3 844幅不同生长期的面部图像数据集,基于预训练的YOLO v5s,在特征提取层中引入SimAM注意力模块,增强模型的学习能力,并在特征融合层引入CARAFE上采样模块以更好地恢复面部细节,提升模型对奶山羊个体面部的识别精度。实验结果表明,改进YOLO v5s模型平均精度均值为97.41%,比Faster R-CNN、SSD、YOLO v4模型分别提高6.33、8.22、15.95个百分点,比YOLO v5s模型高2.21个百分点,改进模型检测速度为56.00 f/s,模型内存占用量为14.45 MB。本文方法能够准确识别具有相似面部特征的奶山羊个体,为智慧养殖中的家畜个体识别提供了一种方法支持。 相似文献
16.
芽眼检测是马铃薯种薯智能切块首先要解决的问题,为实现种薯芽眼精准高效检测,提出了一种基于改进YOLO v5s的马铃薯种薯芽眼检测方法。首先通过加入CBAM注意力机制,加强对马铃薯种薯芽眼图像的特征学习和特征提取,同时弱化与芽眼相似的马铃薯种薯表面背景对检测结果的影响。其次引入加权双向特征金字塔BiFPN增加经骨干网络提取的种薯芽眼原始信息,为不同尺度特征图赋予不同权重,使得多尺度特征融合更加合理。最后替换为改进的高效解耦头Decoupled Head区分回归和分类,加快模型收敛速度,进一步提升马铃薯种薯芽眼检测性能。试验结果表明,改进YOLO v5s模型准确率、召回率和平均精度均值分别为93.3%、93.4%和95.2%;相比原始YOLO v5s模型,平均精度均值提高3.2个百分点,准确率、召回率分别提高0.9、1.7个百分点;不同模型对比分析表明,改进YOLO v5s模型与Faster R-CNN、YOLO v3、YOLO v6、YOLOX和YOLO v7等模型相比有着较大优势,平均精度均值分别提高8.4、3.1、9.0、12.9、4.4个百分点。在种薯自动切块芽眼检测试验中,改进Y... 相似文献