首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The spread of rice black-streaked dwarf disease, which has emerged as a major problem on winter wheat and the two summer rice crops (early indica and late japonica ) grown in central and southern Zhejiang province, China, is documented from 1995 to 2007. The late japonica crop suffered the most: up to 64 640 ha were affected with estimated losses of c . 120 000 t grain per year. Peak adult numbers of the small brown planthopper vector, Laodelphax striatellus , coincided with the seedling stages of both rice crops and the proportion of the insect population carrying virus increased during 1998–2005. Seedlings with three to four leaves were the most susceptible, whereas plants inoculated after the end of tillering developed few or no symptoms. Disease levels were strongly correlated with numbers of viruliferous vectors. In sowing-date experiments with both rice crops, the earliest sowings had the most disease and suffered the greatest yield losses. With the last sowing date (25 days after the first), there were almost no losses. There were yield losses of 0·80% for every 1% increase in disease incidence in early indica rice and rather more (0·92%) in the late japonica crop. There were large differences in susceptibility between cultivars, indicating the possibility, within currently available germplasm, of using more resistant cultivars to help contain the disease. Changes in cropping practice and in recent winter weather conditions have probably contributed to the emergence of the virus as a major pathogen in eastern China.  相似文献   

2.
The effects were investigated, under controlled conditions, of single and joint inoculation of olive planting stocks cvs Arbequina and Picual with the arbuscular mycorrhizal fungi (AMF) Glomus intraradices , Glomus mosseae or Glomus viscosum , and the root-knot nematodes Meloidogyne incognita and Meloidogyne javanica , on plant performance and nematode infection. Establishment of the fungal symbiosis significantly increased growth of olive plants by 88·9% within a range of 11·9–214·0%, irrespective of olive cultivar, plant age and infection by M. incognita or M. javanica . In plants free from AMF, infection by Meloidogyne spp. significantly reduced the plant main stem diameter by 22·8–38·6%, irrespective of cultivar and plant age. Establishment of AMF in olive plants significantly reduced severity of root galling by 6·3–36·8% as well as reproduction of both Meloidogyne spp. by 11·8–35·7%, indicating a protective effect against parasitism by root-knot nematodes. Infection by the nematodes influenced root colonization by AMF, but the net effect depended on the AMF isolate–olive cultivar combination. It is concluded that prior inoculation of olive plants with AMF may contribute to improving the health status and vigour of cvs Arbequina and Picual planting stocks during nursery propagation.  相似文献   

3.
A sequence of 47 potato late-blight ( Phytophthora infestans ) epidemics in the Netherlands, from 1950 to 1996, was analysed using agronomic and meteorological variables. The intensity of annual epidemics was characterized by an index of disease intensity (DI, 0 = absence of late blight; 4 = severe epidemic). Three periods were identified, with average DIs of 2·9, 0 and 2, respectively. Period I (1950–68) had relatively regular epidemics; period II (1969–78) was virtually blight free; and period III (1979–96) showed large variations in disease intensity. Disease-enhancing factors were number of days with precipitation, and number of hours with temperatures between 10 and 27°C and relative humidity >90% during the growing season. Limiting factors were number of hours with temperatures >27°C, and amount of global radiation. Linear discriminant analysis of DI using the blight status of the previous year and meteorological variables correctly classified up to 40 years out of 47 (87·0%), with five out of the six incorrectly classified years falling in period III. Blight status of the previous year and number of days with precipitation were important discriminating variables.  相似文献   

4.
The effect of soil temperature on melon collapse induced by Monosporascus cannonballus was studied in the laboratory and in the field. In the laboratory, ascospore germination and hyphal penetration into melon roots were enhanced by increasing the temperature from 20 to 32°C. The optimum temperature for mycelial growth of five isolates of M. cannonballus was 30°C. In the field, the effect of temperature was studied in experiments conducted during the winter and autumn cropping seasons from 1995 to 1998. Disease progress was much faster in the autumn than in the winter crop seasons. Disease incidence reached 100% in the three consecutive autumn seasons studied. In the winter seasons, however, planting date influenced disease incidence. Early planting, at the beginning of January, resulted in a low disease incidence (6–26%, 125 days after planting), whereas planting at the end of January resulted in higher disease incidence (72–88%, 95–119 days after planting). In plots in which the soil was artificially heated to 35°C during the winter season, disease incidence reached 85%, as in the autumn season. Plants grown during the winter in unheated soil, or in artificially heated soil disinfected with methyl bromide, did not collapse. Root colonization by the pathogen was higher in the autumn and in heated soil than in the winter season in nonheated soil. Fifty per cent of root segments were colonized 35, 42 and 67 days after planting in the winter-heated, autumn and winter-unheated plots, respectively. A high correlation was found between soil temperatures above 20°C during the first 30 days after planting and disease severity. It is suggested that soil temperature during the early stages of plant development is an important factor in disease development and the expression of melon collapse caused by M. cannonballus.  相似文献   

5.
Greenhouse trials conducted in 2003 and 2004 investigated the impact of trichothecenes on the severity of seedling blight and root rot in common wheat ( Triticum aestivum ), durum wheat ( Triticum turgidum var. durum ), barley ( Hordeum vulgare ) and triticale (× Triticosecale 6x ) using two trichothecene-producing and two trichothecene-nonproducing Fusarium graminearum strains. In 2003 seedling emergence and survival following soil infestation of the trichothecene-producing strain (Gz3639) were significantly reduced compared with the trichothecene-nonproducing strain (GzT40), while root-rot incidence and severity were increased significantly. In 2004, two trichothecene-producing strains (Gz3639 and GzT106) reduced seedling emergence and survival ( P  ≤ 0·01) in eight of 10 crops/cultivars based on single-degree-of-freedom contrasts. However, when results from all strains were combined no significant differences were observed between two trichothecene-producing and two trichothecene-nonproducing F. graminearum strains. Inoculation with GzT106, a trichothecene-producing 'add-back' strain, resulted in more severe root rot symptoms in eight of 10 cultivars ( P  ≤ 0·01–0·05) and lower seedling emergence and survival in seven of 10 cultivars ( P  ≤ 0·01–0·10), compared with the wild-type parental strain Gz3639. The presence of trichothecenes may play an important role in the aggressiveness of F. graminearum .  相似文献   

6.
A 2-year field experiment (1997–98, 1998–99) was conducted to study mummification and subsequent sporulation in spring of apple (cvs James Grieve, Golden Delicious) and pear (cv . Conference) fruits infected by Monilinia fructigena . Most mummified fruits were found in James Grieve and Conference, whereas in late-infected Golden Delicious, fruits were still soft when examined in April. In the first year, these late-infected fruits had a significantly higher sporulation intensity per sporulating fruit ( P  = 0·05) compared with Golden Delicious fruits infected 9 and 5 weeks before harvest maturity, which were partly mummified. It was concluded that early- and late-infected fruits contributed to primary inoculum in the next season. In a postinfection regime of 25°C and 65–75% relative humidity under controlled conditions, the number of Conference fruits sporulating decreased rapidly, and after 12 weeks' incubation sporulation had completely ceased. After 8 weeks' incubation, sporulation intensity in the postinfection regime at 10°C was significantly higher than that at 20 and 25°C in a first experiment with inoculated unripe fruit ( P  = 0·05). Results of a second experiment with ripe fruit were less clear. These results are discussed in relation to orchard disease management.  相似文献   

7.
Six Salix clones were inoculated with urediniospores of four isolates of Melampsora larici-epitea at five inoculum levels using a leaf-disc method. Disease reactions were recorded using a digital camera; the number and size of uredinia were examined using image analysis software; and spore yield per leaf disc was measured. In three Salix / Melampsora combinations, S.  ×  mollissima 'Q83'/Q1 (LET4); S. viminalis '78183'/V1 (LET1); and S.  ×  stipularis /V1, pustule numbers increased as inoculum density became higher. In the remainder, S. viminalis 'Mullatin'/V1; S.  ×  calodendron /DB (LET3); and S. burjatica 'Korso'/K (LR1), pustule numbers initially increased, then decreased as inoculum densities exceeded 140–360 spores per disc. Calculated infection efficiency ranged from 0·11 to 0·20 on the three willows inoculated with V1: 0·16–0·68 for S.  ×  calodendron /DB; 0·20–0·55 for 'Q83'/Q1; and 0·07–0·48 for Korso/K. In single-spore inoculations, up to 10% of spores produced single uredinia. Infection efficiency increased sharply between inoculum densities of 1–40 spores per leaf disc. Spore yield was more closely correlated to pustule area (accounting for 61·2% variance for the combined data) than to the number of pustules (42·7% variance). For spore yields in relation to pustule numbers, clone-specific individual lines having different intercepts and slopes fitted significantly better than either a single line for all the tested willows, or parallel lines fitted to each clone ( P  < 0·001). For spore yields in relation to pustule area, clone-specific individual parallel lines were significantly better than a single line ( P  < 0·001).  相似文献   

8.
ROUCHAUD  NEUS  CALLENS  & BULCKE 《Weed Research》1998,38(5):361-371
Sulcotrione soil persistence in spring maize ( Zea mays L.) crops grown on a sandy loam soil was greater at pH 5·5 and 6·0 (soil half-life T 1/2≈58 days) than at pH 7·1 ( T 1/2 = 44 days). Sulcotrione was also applied as recommended on a summer maize crop at the five- to six-leaf growth stage, grown on a sandy loam soil. Sulcotrione soil half-life was 44 days, and the herbicide remained mainly in the 0- to 5-cm surface soil layer during the cropping period, in spite of the high water solubility and the heavy rains at the end of August; lower sulcotrione concentrations (10–18% of the total during the 2-month period after sulcotrione application) were detected in the 5- to 10-cm surface soil layer. The herbicide was applied pre-emergence to winter wheat ( Triticum aestivum L.) at four sites that differed in their soil texture and composition: loamy sand, sandy loam, loam and clay loam. Persistence was greater in the soils containing more organic matter. In soils having similar organic matter contents, persistence was lower in the soil containing more sand relative to loam and clay. During the winter crops, sulcotrione moved down to the 10- to 15-cm soil layer, in spite of the fact that the rains were lower in winter than in summer. Sulcotrione most generally was not detected in the 15–20 cm soil layer of the maize and winter wheat crops.  相似文献   

9.
The relative importance of primary and secondary infections (auto- and alloinfections) in the development of a carrot cavity spot (CCS) epidemic caused by Pythium spp. were investigated. Three cropping factors: fungicide application, soil moisture and planting density, were selected as the key variables affecting the disease tetrahedron. Their effects on: (i) disease measurements at a specific time, (ii) the areas under the disease progress curves (AUDPCs) and (iii) a time-dependent parameter in a pathometric incidence-severity relationship, were studied. Mefenoxam applications 5 and 9 weeks after sowing reduced the intensity of a field CCS epidemic that involved both primary and secondary infections. In microcosm experiments, mefenoxam reduced secondary infections by Pythium violae obtained by transplanting infected carrot roots and slowed disease progress (1·6 lesions per root in treated versus 5·8 lesions in non-treated microcosms). A deficit of soil moisture limited the movement of Pythium propagules to host tissue, and thus reduced primary infections in the field; it also promoted the healing of lesions, limiting lesion expansion and the potential for alloinfections (6·8–7·5 lesions per root in irrigated plots compared with 2·4 lesions in non-irrigated plots). A negative relationship between the mean root-to-root distance and the rate of alloinfections was established in microcosms; a reduction in mean planting density was also effective in limiting CCS development (0·5, 1·6 and 2·0 lesions per root in microcosms containing 8, 16 and 31 roots, respectively). An integrated disease management system based on a combination of cultural methods, such as optimized fungicide application, date of harvest versus soil moisture content, and host density versus planting pattern, may make a useful contribute to the control of CCS.  相似文献   

10.
Bud colonization and perennation of powdery mildew ( Erysiphe necator ) was studied by inoculating shoots of grapevine ( Vitis vinifera cv. Carignane) at different phenological stages. Disease incidence and severity assessments indicated that buds were most susceptible at the three- to six-unfolded-leaf stage. Incidence of powdery mildew colonies on the surface of buds collected from these shoots 7 weeks postinoculation was highest at these stages (68 and 62%, respectively), which indicates that colonization of the bud interior via the infected bud surface is likely to occur within this period. Histological analyses of buds revealed hyphae with haustoria, conidiophores and conidia on all parts of the bud interior except for the meristems. In particular, trichomes were frequently parasitized by haustoria. In total, 13·2% of all buds analysed, and 32·3% of all buds originating from shoots inoculated at the three-unfolded-leaf stage, were infected by E. necator . In the spring of the following year, buds from inoculated shoots yielded 18 flag shoots (1·6% of all emerging shoots). These primary infections caused an epidemic 28 days after the appearance of the first flag shoot. A linear regression analysis on the frequency of infections of the bud exterior, bud interior and flag shoots revealed that incidence of external bud infection in the first season is strongly correlated with flag shoot incidence in the following season ( R 2 = 0·94). Hence predictions of flag shoot incidence may be reliably based on the incidence of infection on the outer bud scales in the preceding season.  相似文献   

11.
In order to study the potential of interseeded hairy vetch as a living mulch to control weeds in corn, a field study was conducted at the Agricultural Research Farm, Razi University, Kermanshah, Iran. The experiment was carried out in a split-split plot arrangement with four replications. The main plots were two weed treatments (weedy and weed-free for all of the growing season), the subplots were two hairy vetch planting dates (simultaneous with corn planting and 10 days after corn emergence), and the sub-subplots were three hairy vetch planting rates (0, 25, and 50 kg ha−1). The results indicated that the weedy condition for all of the growing season reduced corn plant traits, including the seed yield, number of ears per plant, number of seeds per ear, 100-seed weight, height, Leaf Area Index, and leaf chlorophyll content, as compared to the weed-free condition for the entire growing season. The hairy vetch dry weight also was reduced by the full-season weedy condition. The traits under study were not significantly influenced by the hairy vetch planting times, but increasing the hairy vetch planting rate from 0 to 50 kg ha−1 improved the corn yield, number of seeds per ear, 100-seed weight, height, Leaf Area Index, and leaf chlorophyll content. However, the number of ears per plant was not significantly influenced and the weed dry weight was reduced by half. Overall, from the standpoint of corn seed production, an interseeding amount of 25 kg ha−1 of hairy vetch is recommended; taking into consideration the legume forage yield, an interseeding amount of 50 kg ha−1 of hairy vetch is more beneficial.  相似文献   

12.
Chemical and biological agents were evaluated for their ability to suppress root rot, caused by Phytophthora cactorum , in field-grown radiata pine seedlings in New Zealand. Trials were conducted over two seasons in an area of a forest nursery with a natural infestation of P. cactorum , and a history of root rot. In each season, symptoms of root rot developed during April, one month after root pruning, when seedlings were approximately six months old. In trial one, root rot incidence by mid July 2007 was 9·1% in untreated plots and 8·4% in plots that had been treated with metalaxyl-M/mancozeb (14 kg ha−1) at seedling emergence. Disease incidence was lowest (2·1%) in plots that received seven monthly applications of phosphorous acid (6·5 L ha−1). Other treatments, including seed coating with thiram or Trichoderma spp., and foliar applications of methyl jasmonate, did not control disease. In trial two, effects of treatment timing relative to root pruning were investigated. By late June 2008, three months after root pruning, root rot incidence was 22·2% in the untreated plots. Phosphorous acid was the most effective treatment and almost completely suppressed disease (0·1% incidence) when applied fortnightly from February until May (seven applications). Metalaxyl-M/mancozeb (15 kg ha−1) was not effective (21·4% incidence) when applied five months before root pruning. However, disease incidence was reduced when the chemical was applied one week after root pruning (14·9% incidence) and greater control was achieved (8·2% incidence) when the application rate was increased to 50 kg ha−1.  相似文献   

13.
In an area of Nigeria where downy mildew of maize is present, histological assessment of maize seed revealed the presence of mycelium and oospores of Peronosclerospora sorghi in the kernels. Seed transmission of downy mildew of maize was demonstrated when grain purchased at local markets gave mean seedling infection rates of 12·3% (untreated seeds) and 10·0% (in metalaxyl-treated seeds) within 7 days of emergence, after storage in a desiccator for 30 days. When untreated seeds taken from nubbin ears of systemically infected plants from four states in southern Nigeria were planted at 9 days (17–22% moisture content) and 27 days (9–22% moisture content) after harvest, 20·0% infected seedlings resulted in both trials. Seeds from Borno state in northern Nigeria had 26·6% systemic seedling infection after 9 months of storage at 11% moisture content. When seeds harvested from maize plants inoculated with P. sorghi through silks were examined histologically, hyphae of P. sorghi were observed mostly in the scutellum of the embryo. Transmission of disease to seedlings was observed when the silk-inoculated seeds (9% moisture content) were planted in pots in a greenhouse; however, no disease transmission was observed when such seeds were planted in the field. The epidemiological significance of seed transmission is discussed with particular reference to survival of inoculum and development of epidemics. Also noteworthy is the overall significance of seed transmission in Nigeria, where the major source of seed is that saved by farmers from their grain crop, occasionally supplemented by seed bought from the local market.  相似文献   

14.
Abstract

Data on shoot borer, Chilo infuscatellus Snell., infestation and granulosis virus infection were collected from sugarcane planted during early and late main seasons and special season on 45, 60, 75 and 90 days after planting. The shoot borer infestation varied significantly among seasons of planting and age of the crop. It was low in March‐April planted crop compared to December‐January and special season planted crops owing to higher rainfall. The infestation was more on 45 and 60 days old crop compared to 75 and 90 days. The seasons of planting, age of the crop and stage of the host larva failed to have any significant influence on the virus infection.  相似文献   

15.
The effect of Pochonia chlamydosporia , a facultative fungal parasite of nematode eggs, alone or in combination with oxamyl was evaluated in a double-cropping system of lettuce and tomato in unheated plastic houses infested with Meloidogyne javanica at two sites for two consecutive growing seasons. An additional treatment of methyl bromide fumigation was included to compare crop yield in nematode-free vs. nematode-infested soil. Final population densities, reproductive rate, root gall rating, and egg production were determined after each crop. Pochonia chlamydosporia was isolated from nematode eggs up to nine months after application to soil. The fungus survived in the rhizosphere for the entire growing season at one site, but only at low densities. Final population densities of M. javanica decreased after cultivation of lettuce and increased after tomato, and this pattern of population fluctuation was unaffected by treatment, experiment or site. The reproductive rate on lettuce was equal to or below 1, and it was similar among treatments in both experiments at both sites. Eggs were not found on lettuce roots. On tomato, the reproductive rate in the fungus + oxamyl treatment was significantly lower ( P  < 0·05) than other treatments in experiment 1 at both sites. Fungus + oxamyl consistently reduced root gall ratings on tomato in all cases, but numbers of eggs per g root varied depending on treatment. Methyl bromide-treated plots remained free of M. javanica at the end of the 2-year study.  相似文献   

16.
Ginseng ( Panax quinquefolius ) is an important cash crop in various regions of North America, but yields are often reduced by various root pathogens. A quantitative real-time PCR (qPCR) assay for Cylindrocarpon destructans f. sp. panacis (CDP), the cause of a root rot and replant disease which discourages successive cropping of ginseng on the same site, was developed to quantify the levels of this pathogen in soils previously cropped with ginseng. DNA was extracted from 5-g samples of soil. In pasteurized soils which were re-infested with varying levels of the pathogen, qPCR estimates of pathogen DNA were significantly correlated with disease severity ( r  = 0·494) and with counts of colony-forming units ( r  = 0·620) obtained with an agar medium. In several naturally infested field soils, qPCR estimates of CDP-DNA concentration were significantly correlated with disease severity ( r  = 0·765) and these concentrations were estimated to range from 0 to 1·48 ng g−1 dried soil. A principal components analysis did not show any strong relationships between soil chemistry factors and the concentration of pathogen DNA. The approach outlined here allows the quantification of current populations of CDP in soil many years after ginseng cultivation and the prediction of disease severity in future crops. The method should be generally applicable to root diseases of many crops.  相似文献   

17.
Stem canker and black scurf are diseases of potato caused by the fungus Rhizoctonia solani . Spatiotemporal experimentation and empirical modelling were applied for the first time to investigate the effect of antagonistic Trichoderma harzianum on the dynamics of soilborne R. solani on individual potato plants. Trichoderma harzianum reduced the severity of symptoms, expressed as 'rhizoctonia stem lesion index' (RSI), during the first 7 days post-inoculation when the inoculum of R. solani was placed at certain distances (30–60 mm) from the host. For example, with inoculum at 40 mm from the host, RSI was 6 and 40 with and without T. harzianum , respectively. At later observation times, the antagonistic effect was overcome. Trichoderma harzianum reduced the severity of black scurf on progeny tubers. Furthermore, the mean number of progeny tubers per potato plant was reduced by the biocontrol treatment (means of 6·5 ± 1·1 and 9·9 ± 2·7 tubers per plant with and without T. harzianum , respectively), as was the proportion of small (0·1–20·0 g) tubers (48% and 66% with and without T. harzianum , respectively). Additionally, there were fewer malformed and green-coloured tubers in pots treated with T. harzianum than in those without T. harzianum .  相似文献   

18.
The effects of osmotic water potential (Ψs) on mycelial growth and perithecial production of Monosporascus cannonballus , the cause of root rot and vine decline of melons, were examined at 25°C on potato dextrose agar (PDA) amended with KCl, NaCl or sucrose. Patterns of the growth responses of four isolates to decreasing Ψs were similar for each of the osmotica. Compared with growth on nonamended PDA (−0·3 MPa), growth of all isolates increased as Ψs was reduced to −0·8 MPa. Maximum growth occurred at Ψs values of −0·6 to −0·8 MPa. Growth was not reduced below that on nonamended PDA until Ψs was reduced to −1·8 MPa, and a 50% reduction in growth did not occur until Ψs was reduced to < −2·5 MPa. Reproduction was much more sensitive to reduced Ψs than was mycelial growth, and perithecia were produced only at Ψs ≥ −0·7 or −0·8 MPa on PDA amended with KCl or NaCl, respectively. Three isolates produced perithecia on PDA amended with sucrose only at Ψs ≥ −0·6 MPa, but the fourth isolate produced perithecia at ≥ −1·9 MPa. Colonization of the xylem early in disease development may provide an essential source of water for subsequent reproduction in the root cortex during plant senescence. Postharvest cultivation to expose and desiccate roots may prevent reproduction even when temperatures lethal to hyphae are not attained.  相似文献   

19.
The effects of a range of concentrations of four nutrients – nitrogen, phosphorus, potassium and calcium – in fertilizer solutions on the severity of anthracnose on strawberry cv. Nyoho cultivated under a noncirculation hydroponics system were determined after inoculation with Colletotrichum gloeosporioides . Crop growth and tissue nitrogen, phosphorus, potassium and calcium contents of the entire above-ground parts of the plant were also investigated. Elevated nitrogen and potassium concentrations in the fertilizer solution increased disease severity in contrast to phosphorus and calcium. Treatment with either NH4 or NO3 nitrogen was not significantly different. The dry weight of the strawberry plants increased significantly with elevated concentrations of nitrogen ( R 2 = 0·9078) and phosphorus ( R 2 = 0·8842), but was not influenced by the elevated amounts of potassium ( R 2 = 0·8587) and calcium ( R 2 = 0·6526) concentrations.  相似文献   

20.
Thick root is a relatively new disorder of cucumber grown in artificial substrates. Plants of cucumber, tomato, sweet pepper, lupin, anthurium, Cucurbita ficifolia , C. maxima and two lines from crosses between C. maxima and C. moschata were grown in thick root disease (TRD)-infested nutrient solutions containing the TRD agent. Plants from each species or line, except anthurium, developed TRD symptoms. Growth of diseased plants, except those of the line C. maxima  × C. moschata RS841, was significantly reduced compared with the nondiseased controls. Two weeks after infestation, by adding TRD-affected nutrient solution to fresh nutrient solution, the presence of the infective TRD agent was shown in each of the nutrient solutions in which the plants had been grown, including anthurium. No infective TRD agent could be shown in nutrient solution that had not been in contact with roots of living plants. The minimum pH for thick root formation was shown to be between 5·0 and 5·5. Nutrient solutions with pH values ranging from 4·0 to 6·5 and infested with the TRD agent lost their infectivity within 8 days. The infective period decreased with decreasing pH (pH 4·0–6·5) and a pH effect on the infectivity of a nutrient solution was shown within 1 h of infestation. The data show that the risk of TRD can be reduced by decreasing the pH of the nutrient solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号