首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Organic acids released into the rhizosphere may perform many beneficial functions to the plant including metal detoxification and enhancement of nutrient acquisition. Typically, these organic acids are studied in isolation; however, roots simultaneously exude a cocktail of organic acids and other substances, and their combined impact on rhizosphere processes may be quite different. It has been hypothesized that some exudates may play secondary roles (e.g. inhibitors of microbial activity, blockage of sorption sites), which might enhance the longevity and nutrient-mobilization capacity of others. Here we investigated how the decomposition, sorption and P-solubilizing effects of citrate, malate and oxalate are affected by the presence of malonate and shikimate. We found that in a range of agricultural soils the decomposition of citrate, malate and oxalate was rapid, but not influenced by the presence of large quantities of shikimate or malonate. This suggests that the individual organic acids are taken up by different transport mechanisms or components of the microbial community. At large concentrations, malonate decreased sorption of citrate, malate and oxalate on the soil, whilst shikimate had little effect. The capacity of citrate, malate and oxalate to desorb P was significantly greater in cocktails containing malonate compared with the single organic acid; no effect was seen with shikimate. We conclude that neither malonate nor shikimate at realistic concentrations will significantly affect the biodegradation of citrate, malate or oxalate in the rhizosphere, and while malonate did enhance P desorption, this effect is additive rather than synergistic. Overall, we found little evidence that malonate and shikimate act as secondary regulators of citrate, malate and oxalate behavior in soil.  相似文献   

2.
Root exudation of organic acids could be an important strategy for plant acquisition of phosphorus (P) from P-deficient soils in tropical rain forests. However, the efficacy of organic acids on P mobilization in the rhizosphere could be reduced due to their rapid biodegradation by rhizosphere microorganisms. To assess the dynamics and function of organic acids in the rhizosphere soils in tropical rain forests, we examined the concentrations of oxalate, citrate, and malate in soil solution and the mineralization kinetics of 14C-radiolabelled oxalate and citrate in the rhizosphere and bulk soil fractions. We compared two tropical montane rain forests from Mt. Kinabalu, Borneo that share similar parent material (i.e., sedimentary rocks) and climate but differ in terms of soil age. The older soil (Tertiary age materials) was affected by podzolization and had less inorganic labile P compared to the younger soil (Quaternary colluvial deposits). In the P-deficient older soil, the rhizosphere soil solution contained markedly higher concentrations of oxalate, citrate, and malate than did the bulk soil, whereas in the P-rich younger soil, the levels of organic acids in the rhizosphere were lower. The higher levels of organic acids in the rhizosphere of P-deficient soils are caused by greater root exudation and the lower sorption capacity for organic acids. The results of mineralization kinetics showed that oxalate and citrate in soil solution were rapidly mineralized in both rhizosphere and bulk fractions of both P-rich and P-deficient soils, having short mean residence times (2.3–13.1 h for oxalate and 0.8–1.6 h for citrate). The mineralization rates of oxalate and citrate were highest in the rhizosphere fraction of the P-deficient soil, where the pool of organic acids was largest and rapidly replenished by root exudation. Our data indicate that consumption as well as production of organic acids in the rhizosphere could be enhanced in P-deficient soil. The efficacy of organic acids on P mobilization in the rhizosphere in tropical montane rain forests appears to vary depending on the level of soil P availability and the anion sorption capacity, attributable to soil aging with podzolization.  相似文献   

3.
重金属和有机污染物在修饰土中的吸附   总被引:13,自引:0,他引:13  
Sorption characteristics of both an organic pollutant (phenol) and a heavy metal (cadmium ion) on the clay layer of a Lou soil (Eum-orthic Anthrosol in Chinese Soil Taxonomy) along with the sorption mechanism were investigated using three soil treatments: modification with a cationic surfactant cetyltrimethylammonium bromide added at an amount equivalent to 50% and 100% of the soil CEC (50? and 100?), modification with an amphoteric surface-modifying agent dodecyldimethylbetaine (commercially known as BS-12) added at an amount equivalent to 50% and 100% of the soil CEC (50% BS and 100%BS), and an unmodified control (CK). Results showed that the BS soil treatments increased sorption of both the heavy metal Cd^2+ and the organic pollutant phenol. The equilibrium sorption amount of Cd^2+ decreased in the order: 50%BS 〉 100%BS 〉 CK 〉 50? 〉 100?, with the BS soil treatments being about 1.3 to 1.8 times higher and the CB soil treatments about 23% to 41% lower than CK. Both the single-site and two-site Langmuir models could be applied to describe the sorption of Cd^2+ in each soil treatment. The equilibrium sorption amount of phenol on the soil samples decreased in the order: 100? 〉 50? 〉 100%BS 〉 50%BS 〉 CK, with the CB soil treatments being 41.0 to 79.6 times higher and the BS soil treatments 4.0 to 8.3 times higher than CK. The Freundlich equation could also be used to describe the sorption characteristics of phenol. In the BS soil treatments, both an organophobic long carbon chain and hydrophilic charged groups resulted in a relatively strong sorption ability for both heavy metals and organic pollutants. In addition, the sorption ratio K, the ratio of phenol sorption amount of the modified soil to that of CK, increased initially and decreased later with the amount of phenol added, and the critical sorption ratio Kc, the peak value of the sorption ratio curve plotted against the added phenol concentration, was a good index for evaluating the sorption ability of phenol in the soil.  相似文献   

4.
The fate of allelochemicals in the soil environment largely determines the expression of allelopathy in the natural environment. In allelopathy research, the sorption of allelochemicals onto soil particles has been less well studied than their degradation. A study was carried out to evaluate the growth of cucumber (Cucumis sativus var Marketmore 76) and radish (Raphanus sativus var Crimson giant) in soil amended with 1, 5, 10 and 20 mg l–1 benzoic acid as model allelopathic substance. Growth of both cucumber and radish was not inhibited in soil amended with benzoic acid. A labeled study indicates that sorption of benzoic acid onto soil particles increases with concentration. Benzoic acid isotherms of both soils were non-linear, with an N value of 0.875 for a garden soil and 0.891 for a garden soil + sand, and they may explain the reason for the limited allelopathic effect of benzoic acid at concentrations often recorded in natural soil.  相似文献   

5.
Abstract In Galicia (northwest Spain) the application of organic wastes to agricultural land is a common practice, which may increase total and bioavailable metal contents in the soil. In this study, total metal concentrations were determined in acid soils under different use (pasture, cropland, woodland) in an agricultural area where agro-industrial sludges are frequently recycled as manure. The aim was to establish baseline metal levels which could be used to determine the capacity of soils to absorb organic wastes. The estimation of baseline metal concentrations was carried out by two methods, one based on the analysis of means and geometric deviations, and another based on a modal analysis. Results suggested that the modal analysis procedure might be preferable when analysing data sets with a heterogeneous frequency distribution. In general, there was no significant difference in total metal concentrations when comparing soils from different land uses. Baseline levels for each metal indicated that all soils were suitable for organic waste application under current European Union (EU) legislation. From 2015, more restrictive metal limit values have been proposed by the EU, potentially preventing the addition of metal-containing wastes to pasture, cropland and woodland soils. The dissolved metal values in each soil were also estimated by empirical equations relating total metal concentrations, pH and organic matter content. Results showed that only the pasture soils would be suitable for organic waste disposal under the proposed EU metal limits for 2015, due to liming and substantial organic matter content. Total metal concentrations were insufficient to discriminate environmental risk in acid soils of different land use. The determination of baseline levels in reference areas and the estimation of soil metal bioavailability are suggested to define permissible values in the developing legislation.  相似文献   

6.
Sorption of volatile organic contaminants by soils (a review)   总被引:1,自引:0,他引:1  
The sorption of volatile organic compounds (VOCs)—the most common, mobile, but relatively poorly studied contaminants—by soils is considered. Typical VOCs of different classes, the major processes determining their retention by soils, the main rules and mechanisms of VOC sorption, and the experimental methods of its measurement are characterized. The common approximation models and geometrical shapes of VOC sorption isotherms are discussed. Provisional analytical ranges of experimental VOC sorption values in the aqueous and the vapor phases at low and high relative concentrations are reported.  相似文献   

7.
8.
Soil management practices, including the use of cover crops, affect soil and plant health through varied mechanisms. Impacts on microbial communities are known to be important, but are not well understood. Various techniques are used to measure the effect of treatments on microbial communities, but rarely are the results of more than one technique compared. This field study examined the impacts of a single-season application of cover crops on detection of pathogen species in the tomato crop rhizosphere. The study took place in Maryland, New York and Ohio (MD, NY and OH) in the summers of 2010 and 2011, with a total of 260 plots tested using both macroarray and T-RFLP analyses. The macroarray used in this study was specifically designed to detect thirty-one pathogens of solanaceous crops and had not previously been used for such a field study. The results of T-RFLP analysis, which is a common tool for examining microbial communities, were compared to the macroarray results and the limitations and benefits of each are presented. While not a quantitative measure, the macroarray was able to detect certain fungi with much greater sensitivity than T-RFLP. Our findings suggest that the results of PCR-based techniques used for microbial community studies should be compared to other methods to verify sensitivity.  相似文献   

9.
有机酸对污染土壤中镉释放的影响   总被引:15,自引:0,他引:15  
LIAO Min  XIE Xiao-Mei 《土壤圈》2004,14(2):223-228
There is limited information on the release behavior of heavy metals from natural soils by organic acids. Thus, cadmium release, due to two organic acids (tartrate and citrate) that are common in the rhizosphere, from soils polluted by metal smelters or tailings and soils artificially contaminated by adding Cd were analyzed. The presence of tartrate or citrate at a low concentration (≤ 6 mmol L-1 for tartrate and ≤ 0.5 mmol L-1 for citrate) inhibited Cd release, whereas the presence of organic acids in high concentrations (≥ 2 mmol L-1 for citrate and ≥ 15 mmol L-1 for tartrate) apparently promoted Cd release. Under the same conditions, the Cd release in naturally polluted soils was less than that of artificially contaminated soils. Additionally, as the initial pH rose from 2 to 8 in the presence of citrate, a sequential valley and then peak appeared in the Cd release curve, while in the presence of tartrate the Cd release steadily decreased. In addition, Cd release was clearly enhanced as the electrolyte concentration of KNO3 or KCl increased in the presence of 2 mmol L-1 tartrate. Moreover, a higher desorption of Cd was shown with the KCl electrolyte compared to KNO3 for the same concentration levels. This implied that the bioavailability of heavy metals could be promoted with the addition of suitable types and concentrations of organic acids as well as reasonable field conditions.  相似文献   

10.
Summary Recent developments in biotechnology industries produce increasing amounts of byproducts with potential uses in agriculture. The present research focused on the nitrification of NH inf4 sup+ -N in biotechnology byproducts added to soils, and on the effects of 29 naturally occurring organic acids (19 aliphatic and 10 aromatic) on nitrification in soils. A 10-g soil sample was incubated for 10 days at 30°C with 2.0 mg NH inf4 sup+ -N in a byproduct or with 10 or 50 mol organic acid and 2.0 mg reagent-grade NH inf4 sup+ -N. In condensed molasses-fermentation solubles, produced during the microbial fermentation of sugar derived from corn (Zea mays L.) and molasses derived from beets (Beta sp.), in the production of lysine as a supplement in animal food, the nitrification of NH inf4 sup+ -N was similar to that of byproduct or reagent-grade (NH4)2SO4. Nitrite accumulated when either of these materials was added to a calcareous Canisteo soil. The NH inf4 sup+ -N in slops (produced during microbial fermentation processes occurring in the production of citric acid) was not nitrified in soils. Some organic acids inhibited, whereas others activated, nitrification in soils. Formic, acetic, and fumaric acids enhanced the production of NO inf2 sup- -N in a calcareous Canisteo soil, whereas all other aliphatic and aromatic acids studied decreased the accumulation of NO inf2 sup- -N. It is concluded that the addition or production of organic acids in soils affects the microbial dynamics, leading to significant changes in rates of nitrification and possibly in other N-transformation processes in soils.  相似文献   

11.
【目的】土壤理化性质和微生物群落的差异显著影响玉米根际挥发性有机物 (volatile organic compounds,VOCs) 的产生和释放。对根际VOCs的深入研究有望为充分挖掘根际生物学潜力和根际调控做出积极贡献。【方法】采集山东德州、河北涞水、河北保定、江西南昌、河南孟津、河南商丘等6个地区的旱地耕层土壤进行为期两个月的玉米盆栽试验,利用顶空固相微萃取联合气相色谱–质谱联用检测技术对根际土壤挥发性有机物进行了分析鉴定,利用实时荧光定量PCR技术对根际细菌和真菌进行了定量分析,利用高通量测序技术对根际细菌16S和真菌ITS进行了测序。【结果】从6个旱地土壤中共检测出44种VOCs,主要是烷烃、烯烃、酯类、胺类、有机酸和芳香类化合物,其中多种化合物与植物或微生物的生长代谢密切相关。胺类化合物N-Benzyl-N-ethyl-p-isopropylbenzamide和D-2-Bromolysergic acid diethylamide在6个土壤中均被检出,占总量的54.2%;其次检出最多的是烷烃和烯烃,占总量的31.1%和7.6%。江西南昌土壤释放的VOCs在数量和丰富度上均显著高于其他土壤,且大部分为烷烃和烯烃类化合物;从河北保定土壤中检出了6种特有的有机酸和酯类化合物。供试6种土壤中,河南商丘和河北保定的细菌数量显著高于其他四个地方。南昌土壤真菌数量显著较高,但其细菌数量、丰富度和多样性均显著低于其他土壤。6种土壤中的主要细菌依次为Thaumarchaeota(奇古菌门)、Actinobacteria(放线菌门)、Proteobacteria(变形菌门)、Chloroflexi(绿弯菌门)、Acidobacteria(酸杆菌门)、Firmicutes(厚壁菌门) 和 Unclassified(未分类门),占总细菌群落的92.1%;主要真菌依次为Ascomycota(子囊菌门)、Basidiomycota(担子菌门) 和 Chytridiomycota(壶菌门),占总真菌群落的98.3%。绿弯菌门仅在南昌土壤中占绝对优势,而南昌土壤中奇古菌门和变形菌门的相对丰度显著比其他地区少;子囊菌门在6种土壤中均为绝对优势真菌门。玉米根际释放的VOCs数量和丰富度与pH、硝态氮、细菌多样性和真菌多样性呈显著负相关 (P < 0.05),与铵态氮和真菌数量呈极显著正相关 (P < 0.01);与主要细菌门中的奇古菌门、变形菌门和酸杆菌门呈显著负相关 (P < 0.05),与绿弯菌门呈极显著正相关 (P < 0.01),但是与主要真菌门相关性不显著。【结论】理化性质不同的玉米根际土壤中,微生物群落结构与组成存在显著差异。pH是影响微生物生长的重要因素,酸性土壤中的真菌数量显著高于中性土壤,但是其细菌数量、微生物群落丰富度和多样性均显著小于中性土壤。VOCs的产生和释放受土壤、微生物和植物等众多因素的影响,土壤有机质含量越高、透气性越好、微生物数量越多时,释放的VOCs越丰富。  相似文献   

12.
In a greenhouse experiment with continuous labeling of oat plants in a 13CO2 atmosphere, the ratios between different carbon and nitrogen pools in the rhizosphere and nonrhizosphere soil, i.e., the values of the rhizosphere factor R f , were determined. The mean values of the rhizosphere factor varied from 0.9 (the water-soluble nitrogen pool) to 4.6 (the pool of 13C-labeled dissolved organic carbon). We split the carbon and nitrogen pools into three groups depending on the mean R f value. Group I with high R f values (>2) included the most labile labeled organic carbon pools and the active component of the soil microbial biomass. Group II with the rhizosphere factor values 1 < R f < 2 included the more conservative pools of the total dissolved organic carbon and the microbial biomass in the soil. The only representative of group III (R f < 1) was the water-soluble nitrogen pool. The dynamics of the rhizosphere factor had a maximum during the period of the rapid root growth rate (the tillering, booting, and earing stages) for most members of group I; a maximum during the period of the intensive root turnover (the milk ripeness and wax stages) was detected for the pools-representatives of group II. The dynamics of the rhizosphere factor for the soluble nitrogen had no prominent trends.  相似文献   

13.
The formation features of water-soluble low-molecular-weight organic acids (LMWOAs) in a zonal series of automorphic soils on loose silicate rocks from the middle taiga to the southern tundra (typical podzolic, gley-podzolic, and surface-gley tundra soils) were first revealed by gas chromatography mass spectrometry and gas-liquid chromatography. The content of LMWOAs varies within the range of 1–14 mg/dm3, which corresponds to 1–5% of the total carbon of the water-soluble soil organic matter. It has been shown that a subzonal feature of gley-podzolic soils in the northern taiga is the high content of LMWOAs, including primarily the strongest aliphatic hydroxyl acids. Possible mechanisms of their formation and accumulation in soils have been considered.  相似文献   

14.
Organic matter (OM) is the most critical factor in controlling the sorption-desorption of SMZ in soil, however, few studies have explored the effects of OM removal on these important behaviors among different soils. Batch experiments were conducted to investigate the sorption and desorption characteristics of SMZ in three different soils: fluvo-aquic soil (FS), paddy soil (PS), and red soil (RS). The SMZ sorption in the evaluated soils was dominated by physisorption. The SMZ sorption capacities of FS and PS, which had a relatively higher OM content than RS, were higher than that of RS. The SMZ sorption in FS was dominated by linear partitioning. In contrast, the SMZ sorption in PS and RS was mainly nonlinear surface adsorption. After OM removal, the SMZ sorption capacity was significantly reduced in FS but increased in PS and RS. Furthermore, OM removal restrained the sorption intensity of SMZ in soils. Relatively higher OM and clay contents inhibited the SMZ desorption in FS and PS. The strong negative desorption hysteresis of SMZ in the three soils indicated that SMZ was able to move into the soil solution, thereby posing a risk to humans. Taken together, the findings of this study showed that OM indeed plays an important role during SMZ sorption-desorption in soil.  相似文献   

15.
小麦分泌的有机酸影响钙质土中锌的释放   总被引:1,自引:0,他引:1  
Rhizosphere drives plant uptake of sparingly soluble soil zinc(Zn).An investigation with three experiments was conducted to study organic acid exudation by two contrasting wheat genotypes(Sehar-06 and Vatan),Zn fractions in 10 different calcareous soils from Punjab,Pakistan,and release of different soil Zn fractions by organic acids.The two genotypes differed significantly in biomass production and Zn accumulation under deficient and optimum Zn levels in nutrient solution.At a deficient Zn level,Sehar-06 released more maleic acid in the rhizosphere than Vatan.Ten soils used in the present study had very different physicochemical properties;their total Zn and Zn distribution among different fractions varied significantly.Zinc release behaviour was determined by extracting the soils with 0.005 mol L-1 citric acid or maleic acid.The parabolic diffusion model best described Zn release as a function of time.Parabolic diffusion model fitting indicated more maleic acid-driven than citric acid-driven soil Zn mobility from different fractions.Cumulative Zn release in six consecutive extractions during 24 h ranged from 1.85 to 13.58 mg kg-1 using maleic acid and from 0.37 to 11.84 mg kg-1 using citric acid.In the selected calcareous soils,the results of stepwise linear regression indicated significant release of Fe-Mn oxide-bounded soil Zn by maleic acid and its availability to the Zn-effcient genotype.Hence,release of maleic acid by plants roots played an important role in phytoavailability of Zn from calcareous soils.  相似文献   

16.
Aromatic acids can reach the soil from direct anthropogenic activities or, indirectly, from the degradation of many aromatic compounds, such as pesticides or polycyclic aromatic hydrocarbons. Because of the anionic character of aromatic acids at the pH of most soil and sediment environments, they are expected to move rapidly through the soil profile and to pose a great risk of ground water contamination. We designed batch and column leaching tests to characterize the behaviour of three aromatic acids differing in their chemical structures, picloram (4‐amino‐3,5,6‐trichloropicolinic acid), phthalic acid (2,2‐benzenedicarboxylic acid), and salicylic acid (2‐hydroxybenzoic acid), in four European soils with different physicochemical characteristics. Batch experiments revealed that the persistence of the three acids in soil:water suspensions decreased in the order: picloram ? phthalic acid > salicylic acid, and their dissipation curves were relatively independent of soil type. Sorption by the soils, their clay‐size fractions and model sorbents indicated much greater affinity of soil constituents for salicylic acid than for picloram or phthalic acid, most likely due to the ability of salicylic acid to form bidentate complexes with positively charged soil components. The extent of leaching of the aromatic acids in hand‐packed soil columns decreased in the order: picloram (90–96%) > phthalic acid (25–90%) > salicylic acid (0–37%), which was consistent with the sorption and persistence results of the batch tests. The organic C content, the amount of small‐size pores, and the initial concentration of aromatic acid in soil appeared to be important factors influencing the leaching patterns of phthalic acid and salicylic acid in the soils studied, but did not greatly influence the leaching pattern of picloram. Sorption and leaching of polar aromatic acids in soil can therefore vary considerably depending on the structural characteristics of the aromatic acid or soil type.  相似文献   

17.
Air-dry and moist soils were shown to possess the capacity to sorb substantial amounts of (75Se)dimethylselenide produced by the yeast Candida humicola in culture, or by soil supplied with (75Se)selenite, depending largely upon the organic matter content and selenium concentration of the soils. The sorption capacities of individual soil constituents followed the order; organic matter > clay minerals > manganese oxides > iron oxides > acid-washed sand.A chemical fractionation procedure applied to soils fumigated with (75Se)dimethylselenide revealed that the majority of the selenium sorbed was converted after 1 month to other forms, extractable mainly with strong acid solutions. Experiments with sterilized (autoclaved and γ-irradiated) soils indicated that soil microorganisms played little, if any, part in the sorption process.The work reported here indicates that soil is an important natural “sink” for atmospheric dimethylselenide.  相似文献   

18.
Adsorption-desorption of triazole fungicides, hexaconazole [2-(2,4-dichlorophenyl)-1-(1H-1,2,4,-triazol-1-yl) hexan-2-ol], triadimefon [1-(4-chlorophenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl) butan-2-one], and penconazole[1-(2,4-dichloro-beta-propyl phenethyl)-1H-1,2,4-triazole] was studied in five Indian soils using batch method. The adsorption isotherms fitted very well to the Freundlich equation. Adsorption of various triazole fungicides increased in this order: triadimefon > hexaconazole > penconazole. The product of the Freundlich adsorption constants, K(f)(1/n), showed good correlation with the soil organic carbon (OC) content, suggesting that soil OC is the main controlling factor for triazoles adsorption. Clay and silt content of the soil also affected the adsorption constants. Adsorption of hexaconazole and triadimefon was nearly reversible in two low OC soils (soil 3, soil 5) where 90-100% of the sorbed fungicides was released in a single washing step. Otherwise, desorption of triazole fungicides showed hysteresis, and 30-60% of the triazole fungicides were retained by the soil after single washing. IR spectra showed that H-bonds and charge-transfer bonds between humic acid and fungicides probably operated as mechanisms of adsorption.  相似文献   

19.
Summary The distribution of phosphatase activity and of phosphate fractions of the soil in the proximity of roots was studied in order to evaluate the significance of phosphatases in P nutrition of various plants (Brassica oleracea, Allium cepa, Triticum aestivum, Trifolium alexandrinum). A considerable increase in both acid and alkaline phosphatase activity in all the four soil-root interfaces was observed. Maximum distances from the root surface at which activity increases were observed ranged from 2.0 mm to 3.1 mm for acid phosphatase and from 1.2 mm to 1.6 mm for alkaline phosphatase. The increase in phosphatase activity depended upon plant age, plant species and soil type. A significant correlation was noticed between the depletion of organic P and phosphatase activity in the rhizosphere soil of wheat (r = 0.99**) and clover (r = 0.97**). The maximum organic P depletion was 65% in clover and 86% in wheat, which was observed within a distance from the root of 0.8 mm in clover and 1.5 mm in wheat. Both the phosphatases in combination appear to be responsible for the depletion of organic P.  相似文献   

20.
The mobility of perchlorate in soils depends on several factors, including soil mineralogy and the presence of other oxyanions that compete with perchlorate for the retention sites. Currently, there are no studies that evaluate the mobility of perchlorate in arid soils. The present study evaluated the mobility of ClO4 in three arid soils, Canchones, Humberstone and Pica, exposed to two ClO4 concentration ranges and different ionic strengths. In Humberstone (non-agricultural) and Pica (agricultural) soils, the sorption processes were not important for both concentration ranges, while Canchones soil (agricultural) showed a decrease in perchlorate concentration associated with microbial degradation processes. The increase of medium ionic strength by addition of Ca(NO3)2 only had an important effect on Humberstone soil, associated with the presence of kaolinite and muscovite (variable charge). A competition effect was observed between perchlorate, nitrate and other anions presents in solution by absorption sites generated from variable charge mineral and calcium. Considering the quite low sorption capacity of the soils and the high solubility, perchlorate can be absorbed by fruit and vegetables of export in concentrations over the healthy levels established by international organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号