首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 242 毫秒
1.
通过对油簕竹化学成分和纤维形态的分析结果表明:油簕竹含灰分2.02%、木质素22.38%、综纤维素73.99%、多戊糖17.80%、冷水抽出物6.55%、热水抽出物9.82%、1%NaOH抽出物22.49%、乙醚抽出物0.37%、苯醇抽出物3.44%;油簕竹纤维长度为3.47 mm、宽度为24.50μm、长宽比为142、细胞腔径为9.24μm、双壁厚为15.26μm、壁腔比为1.65。从化学成分和纤维形态来看,油簕竹属优良的纸浆生产原料。  相似文献   

2.
为有效利用四川的乡土竹种慈竹和绵竹,测定分析了2个竹种的理化性质和纤维形态,并与毛竹及常见的阔叶材和针叶材做了对比。结果表明:1)在化学成分上,2个竹种的抽提物含量均小于毛竹,而介于针叶材和阔叶材之间,2个竹种的综纤维素含量和纤维素含量均高于毛竹,木质素含量与毛竹接近,但灰分含量远高于毛竹、阔叶材和针叶材;2)在物理力学特性上,2个竹种竹材密度略低于毛竹,顺纹抗压强度均明显高于毛竹,且优于强度较高的阔叶材马占相思木,2个竹种的抗弯弹性模量和抗弯强度均明显高于毛竹,抗剪强度与毛竹接近,表明2个竹种力学强度均较大,可以用作结构用竹或建筑用竹;3)在纤维形态上,慈竹和绵竹的平均纤维长度分别为0.63和0.67 mm,均小于毛竹,且纤维长度多为500~1 000和1 000~1 500 μm,2个竹种的纤维长宽比均在45以下,表明慈竹和绵竹均不适于作为造纸原料。  相似文献   

3.
测定了3种速生黑杨枝桠材(ZY)的纤维形态和化学组分,并对其碱性过氧化氢机械浆(APMP)制浆性能进行了初步探讨。纤维形态分析结果表明,纤维平均长度0.6 mm,宽度20μm,长宽比值30,壁腔比值0.4~0.6,含细小组分10%~20%,纤维粗度8~10 mg(以100 m计)。化学组分分析结果显示(均以质量分数计):1%NaOH抽出物22%,苯-乙醇抽出物2.0%,硝酸-乙醇纤维素44%~47%,聚戊糖24%~25%,酸不溶木质素18%~21%。速生黑杨枝桠材的壁腔比和纤维粗度较小,细小组分含量少,抽出物、木质素和聚戊糖含量相对较低,这些特点有利于制浆造纸生产及成纸性能;但其纤维粗短,长宽比值小,对成纸的物理强度显著不利。采用APMP工艺对速生黑杨枝桠材制浆,结果表明枝桠材(去皮)APMP浆的成纸强度性能明显好于枝桠材(带皮)APMP浆,但与主干材相比还有一定差距。  相似文献   

4.
广东省广宁县拥有丰富的青皮竹资源,但因其径小壁薄而缺乏合理的开发利用。以青皮竹为研究对象,探究竹龄(1~5年生)和竹秆纵向部位(1~8 m)对竹材密度、纤维形态、化学成分、结晶度和纤维束拉伸性能的影响规律,以期为青皮竹的合理采伐利用和高性能竹纤维基复合材料开发提供依据。结果显示:随竹龄增大,青皮竹的密度逐渐增大,4年生密度达到最大值0.83 g/cm~3,纤维素含量由46%降低至40%,抽提物含量由9.1%提高至17.6%,相对结晶度(CrI)略有降低,但纤维形态无明显差异,纤维束拉伸性能提高,4年生拉伸强度达到最大值683.4 MPa, 5年生拉伸模量达到最大值36.5 GPa。随竹秆部位升高,青皮竹密度、化学成分和相对结晶度变化较小,但随着竹秆部位升高,纤维趋于细短,纤维束拉伸性能变差,拉伸强度从离地1~2 m处的683.4 MPa降低至7~8 m处的549.1 MPa。因生长发育期受寒潮雨雪冰冻天气影响,3年生青皮竹的密度、纤维形态、纤维素和抽提物含量变异较大。  相似文献   

5.
越南甜竹纤维形态特征的研究   总被引:1,自引:0,他引:1  
对甜竹原料、甜竹浆的纤维形态进行了研究。结果表明:甜竹原料纤维平均长度为2.37 mm、平均宽度17.91μm、长宽比值132.40;纤维平均壁厚为8.13μm、平均腔径为2.57μm、壁腔比值6.33。研究了在蒸煮过程中纤维形态的变化。结果表明,在蒸煮过程中甜竹纤维长度不断变小,从2.37 mm(原料)到1.79 mm(全浆),减少24%;蒸煮过程中纤维长宽比值也不断缩小,从132.40(原料)到98.89(全浆)。与青皮竹浆、桉木浆(阔叶木)、马尾松浆(针叶木)和麦草浆(草类)的纤维形态相比,甜竹浆纤维长度大于麦草浆纤维,小于马尾松浆纤维,与青皮竹浆和桉木浆纤维长度基本相近,因此甜竹浆纤维属于长纤维范围,是一种优良的造纸原料。  相似文献   

6.
制竹Lyocell纤维的竹浆纯化与溶解工艺研究   总被引:1,自引:0,他引:1  
该研究选择用溶剂纺丝法制备竹Lyocell纤维的合适竹浆原料,并摸索其纯化和溶解的工艺条件,为利用竹子开发纺织纤维积累有关的基础数据。分别用氢氧化钠溶液和乙二胺四乙酸钠溶液处理竹浆原料,以去除其中的木质素、半纤维素和钙、镁、铁等离子类杂质;研究了用氧化甲基吗啉作溶剂溶解竹纤维素的工艺条件。阐述了如何选择纺制竹Lyocell纤维的竹浆原料,提出以纤维素的"平均聚合度"和"α-纤维素含量"这两个指标作为判断的依据。试验表明:适宜的竹纤维素平均聚合度为800~900左右,其α-纤维素含量应在94%以上。可用含水13%的氧化甲基吗啉单水化合物NMMO.H2O,在100~110℃下溶解竹纤维素;也可用含水50%左右的NMMO溶液,用减压工艺溶解竹纤维素。  相似文献   

7.
通过对两种不同起源(人工林和天然林)酸枣木材纤维形态和化学成分的测定和比较分析,结果表明:酸枣人工林木材纤维长度和长宽比小于天然林,宽度大于天然林;纤维素、戊聚糖和木素的含量均稍高于天然林,灰分和抽出物含量均低于天然林。  相似文献   

8.
对不同生长时期的互花米草的化学性质和纤维形态进行测定与分析,结果表明:随生长期的增长,互花米草综纤维素与木质素含量逐渐增加,而各种抽出物含量呈减少趋势,成熟的互花米草综纤维素含量与马尾松木材相近.秆部位的综纤维素和木质素含量最高;互花米草原料pH值呈中性或弱碱性,秆部位酸碱缓冲容量最低,梢部位则较高;互花米草秆部位的表皮和叶部位二氧化硅含量较高.互花米草纤维属于中等长度纤维,纤维大小等级为细.  相似文献   

9.
不同种源毛竹材纤维形态和化学成分的变异   总被引:3,自引:0,他引:3  
对不同种源毛竹材纤维形态和化学成分进行测定和分析,揭示了不同种源毛竹材纤维形态和化学成分的变异规律。结果表明:浙江衢县种源毛竹材纤维长度、长宽比和纤维素含量均大于其它5个毛竹种源。不同种源毛竹材纤维长度、纤维宽度和长宽比差异均极显著。培育毛竹纸浆材应优先选择浙江衢县种源。  相似文献   

10.
佯黄竹特性及利用价值研究   总被引:3,自引:0,他引:3  
以佯黄竹[Bambusa changningensis Yi et B.X.Li]为研究对象,准确掌握该竹种特性,了解其纤维素含量、纤维形态和制浆性能,开拓佯黄竹在制浆造纸、板材加工工业等方面的应用,同时为四川省竹产业发展提供更多、更好地竹类品种选择。研究表明:佯黄竹有较高的纤维素含量(52.54%),纤维平均长度2.52 mm,宽度22.52μm,有较大的纤维长宽比(131.5),有较高的制浆得率(52.6%),佯黄竹用于造纸具有较好的经济效益。佯黄竹也是竹编、竹板材加工、竹纤维纺织等的优良原料。佯黄竹竹笋味甜、细嫩,可鲜食或加工竹笋制品。  相似文献   

11.
The chemical composition, fiber characteristics, crystalline structure, mechanical properties and thermal behavior of the five species of bamboo (Phyllostachys edulis cv.Pachyloe, Bambusa tootisk, Arundinaia amabilis, B.vulgaris cv. Vittata, and Dendrocalamus affinis) were studied with IR, X-ray, DSC and chemical analyses. The results indicated that the benzene-ethanol extractive content of bamboo was higher than that of wood, the content of lignin and the content of pentosan were 19.1% - 25.3% and 14.9% - ...  相似文献   

12.
超声辅助提取对竹纤维结构和机械性能的影响   总被引:1,自引:1,他引:0  
文章以超声波辅助提取竹纤维,研究超声波处理以及超声波处理方式(前超声和后超声)对低试剂量条件下提取竹纤维结构和热性能的影响。结果表明:超声波处理应用于低试剂量竹纤维提取,可降低竹纤维胶质含量,改善竹纤维细度和细度均匀性。用后超声辅助提取竹纤维,竹纤维胶质含量可降低13.2%,纤维直径由489±247 μm降至224±52 μm,平均直径降低率达54.2%。超声辅助提取对竹纤维机械性能有一定程度的影响,对竹纤维拉伸强度略有降低,拉伸模量下降明显,断裂伸长率略有提高,机械强度均匀性增加;后超声辅助提取较前超声辅助提取对竹纤维的机械性能降低程度小。经提取工艺,竹纤维结晶度增加,但超声辅助提取竹纤维结晶度又略有下降,未超声竹纤维结晶度为56.50%,后超声竹纤维结晶度为55.89%,前超声竹纤维结晶度为56.25%;傅里叶红外光谱分析表明,竹纤维化学结构变化主要由纤维提取工艺引起,超声处理对纤维结构影响不明显;通过电镜观察,经纤维提取工艺,原竹材结构中被胶质包覆的单纤维形态暴露,单丝状明显,超声辅助提取增加了纤维表面粗糙度,后超声辅助提取单丝分散性增强;总体上,超声辅助提取可促进低试剂量条件下的长竹纤维提取,对纤维细度有明显改善效果,但对纤维结构和机械性能影响不大。  相似文献   

13.
中国竹材制浆造纸及高值化加工利用现状及展望   总被引:3,自引:2,他引:1  
竹材是一种优良的纤维原料,可用于制浆造纸和提取竹原纤维。竹材的纤维形态、化学成分基本介于针叶木和阔叶木之间,漂白竹浆的品质与木浆相当。虽然竹子存在半纤维素和灰分含量较高等不足,但其α-纤维素含量较高,可制取高得率级溶解浆。竹浆是中国造纸工业鼓励发展的浆种,目前产能在200万t/a以上,且今后几年将出现快速增长势头。竹浆厂每年产生大量的纤维类废弃物。以竹浆生产为主线,提供多种高附加值产品,将是未来竹浆企业获得可持续健康发展的盈利模式。生产溶解浆、生活用纸等新型差异化终端产品,并对制浆过程产生的纤维类废弃物进行高附加值综合利用,制备阻燃型保温材料、乙醇和丁醇等生物质燃料,以及纳米纤维素微晶产品,是现在竹浆企业可供选择的发展路径。竹原纤维具有天然抗菌抑菌性、吸湿除臭、抗紫外光、隔音隔热性等功能特性,是生产高档服装、吸附材料和隔热隔音材料的良好纤维原料。竹原纤维的生产目前已实现工业化,但产业规模有待提高,产品标准亟待制定和完善。  相似文献   

14.
采用机械球磨对竹纤维进行预处理,再经纤维素酶水解制备纳米竹纤维。通过光学显微镜(OM)、透射电子显微镜(TEM)、傅立叶红外光谱仪(FTIR)和X射线衍射仪(XRD)对竹纤维的形貌、组成、光谱学性能以及晶体特性进行了表征。实验结果表明:球磨法和酶解法在一定程度上都可以细化竹纤维;球磨预处理有助于竹纤维的酶解过程,且球磨-酶解法制备的纳米竹纤维粒径在100 nm左右;所制备的纳米竹纤维仍然保持竹纤维的基本化学结构,但球磨处理破坏了纤维素的结晶结构,其结晶度由64.15%降低到了38.55%。  相似文献   

15.
蒸煮处理对竹纤维化学组成的影响及机理   总被引:1,自引:0,他引:1  
采用热机械-蒸煮方法制备慈竹纤维,并运用FTIR、x-射线衍射分析技术对蒸煮处理前后慈竹纤维的化学组成、结晶结构进行了研究,此外,还研究了处理前后慈竹化学成分的变化,结果表明:不同蒸煮工艺处理后竹纤维的纤维素较未处理竹材有所上升,而木质素含量有所下降,其中,第2组蒸煮工艺所得纤维素含量提高了19.27%,木质素含量下降了38.85%,运用x-射线衍射测得的纤维素结晶度均有所上升。  相似文献   

16.
为实现毛竹更有效的化学加工和利用,文章以3~4年生毛竹为对象,研究了脱木素处理对毛竹材径向不同部位的纤维形态和化学成分的影响。结果表明:脱木素处理对竹材径向各部位纤维宽度和壁厚影响较为显著,对纤维长度的影响则不显著;随着处理时间增加,纤维长宽比呈减小趋势、纤维壁腔比呈增大趋势;竹材径向各部位纤维素相对结晶度随着脱木素处理时间的延长呈现增加趋势;与近竹青部位和竹中部位相比,脱木素处理对近竹黄部位的纤维形态和化学成分的影响更为显著。  相似文献   

17.
孙柏玲  刘君良 《林业科学》2012,48(7):114-119
以慈竹竹原纤维和黄麻纤维为对象,采用红外光谱法和二维相关红外光谱分析技术,对2种纤维及其化学处理后的单根纤维进行研究。结果表明:慈竹竹原纤维和黄麻纤维的一维红外光谱主要区别于1736cm-1处的CO伸缩振动和木质素苯环特征吸收峰;二者经双氧水-冰醋酸处理后,黄麻单根纤维在1736cm-1附近仍存在明显的吸收峰。在高分辨的二维同步相关谱中,慈竹竹原纤维和黄麻纤维特征差异更为明显,慈竹竹原纤维在1000~1250cm-1范围内有8个自动峰,1008cm-1处强度最大;黄麻纤维有7个自动峰,1217cm-1处强度最大;同时在1435~1750cm-1范围内,黄麻纤维在1726cm-1(C=O伸缩振动)处出现较强的自动峰,而慈竹竹原纤维光谱中没有。各区域内自动峰均为正相关。与化学处理前纤维谱图相比,二者单根纤维的二维相关红外光谱发生了改变,表明纤维成分对其热微扰过程中的变化有一定影响。初步研究表明:二维相关红外光谱为竹原纤维的识别提供了更为丰富的信息,可作为竹原纤维识别的一种新方法。  相似文献   

18.
为了给生产可纺性竹原纤维提供优良菌株,对筛选的具有选择性降解竹材木质素的18号菌株进行了驯化,结果获得了一株高效降解竹材木质素的优良菌株,其降解木质素的效率比驯化前提高了21.16%,对纤维的降解则有所降低,最低降解率仅有1.2%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号