首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了揭示棉花生长发育对咸水灌溉的响应特征,采用小区对比试验,研究了不同矿化度咸水灌溉对棉花出苗、株高、叶面积、果枝数、地上部干质量等形态指标以及产量构成、耗水量和水分利用率的影响.结果表明,棉花出苗率和成苗率随着灌溉水矿化度的增大而减小,但3 g/L灌水处理与对照间的差异不具有统计学意义,而5,7 g/L处理与对照间差异极具统计学意义.在移栽补全苗情况下,咸水灌溉对棉花形态生长指标产生了一定的抑制效应,灌溉水矿化度愈大,抑制作用愈大;对株高、叶面积和地上部干质量的影响在蕾期最明显,花铃期之后开始逐渐减弱;对果枝数和棉铃生长的影响程度随着棉花生育进程的推进而降低.处理间棉花的耗水量差异不具有统计学意义,籽棉产量和水分利用率的大小顺序,按灌水处理依次为3,1,5,7 g/L,其中7 g/L处理与对照间的差异具有统计学意义.与灌水前初始值相比,试验结束后1,3 g/L灌水处理的0~40 cm土层盐分未增加,5,7 g/L灌水处理则形成了积盐.研究结果可为咸水安全利用提供重要参考.  相似文献   

2.
Long term use of saline water for irrigation   总被引:1,自引:0,他引:1  
Use of saline drainage water in irrigated agriculture, as a means of its disposal, was evaluated on a 60 ha site on the west side of the San Joaquin Valley. In the drip irrigation treatments, 50 to 59% of the irrigation water applied during the six-year rotation was saline with an ECw ranging from 7 to 8 dS/m, and containing 5 to 7 mg/L boron and 220 to 310 g/L total selenium. Low salinity water with an ECw of 0.4 to 0.5 dS/m and B 0.4 mg/1 was used to irrigate the furrow plots from 1982 to 1985 after which a blend of good quality water and saline drainage water was used. A six-year rotation of cotton, cotton, cotton, wheat, sugar beet and cotton was used. While the cotton and sugar beet yields were not affected during the initial six years, the levels of boron (B) in the soil became quite high and were accumulated in plant tissue to near toxic levels. During the six year period, for treatments surface irrigated with saline drainage water or a blend of saline and low salinity water, the B concentration in the soil increased throughout the 1.5 m soil profile while the electrical conductivity (ECe) increased primarily in the upper l m of the profile. Increaszs in soil ECe during the entire rotation occurred on plots where minimal leaching was practiced. Potential problems with germination and seedling establishment associated with increased surface soil salinity were avoided by leaching with rainfall and low-salinity pre-plant irrigations of 150 mm or more. Accumulation of boron and selenium poses a major threat to the sustainability of agriculture if drainage volumes are to be reduced by using drainage water for irrigation. This is particularly true in areas where toxic materials (salt, boron, other toxic minor elements) cannot be removed from the irrigated area. Continual storage within the root zone of the cropped soil is not sustainable.  相似文献   

3.
Pressure chamber measurements of leaf water potential (ψ1) provide a useful means to quantify plant responses in both research and managerial circumstances. However, day-to-day variation in climatic parameters affect transpiration rate and cause proportionate variability in ψ1 values that can lead to significant errors in forcasting a needed irrigation. A procedure was developed from field studies in the San Joaquin Valley, California, U.S.A. that allows cotton (Gossypium hirsutum L.) ψl's to be adjusted to common climatic evaporative demand conditions. The derived adjustment factors are sensitive to increased soil-plant flow resistances encountered during drying cycles between irrigations. Validation of the procedure was very successful for all climatic conditions and contrasting plant ages of an entire growing season.  相似文献   

4.
A field experiment was conducted for 3 years to evaluate the effect of deficit irrigation under different soil management practices on biomass production, grain yield, yield components and water productivity of spring wheat (Triticum estivum L.). Soil management practices consisted of tillage (conventional and deep tillage) and Farmyard manure (0 and 10 t ha?1 FYM). Line source sprinkler laterals were used to generate one full- (ETm) and four deficit irrigation treatments that were 88, 75, 62 and 46 % of ETm, and designated as ETd1, ETd2, ETd3, and ETd4. Deep tillage significantly enhanced grain yield (14–18 %) and water productivity (1.27–1.34 kg m?3) over conventional tillage. Similarly, application of FYM at 10 t ha?1 significantly improved grain yield (10–13 %) and water productivity (1.25–1.31 kg m?3) in comparison with no FYM. Grain yield response to irrigation varied significantly (5,281–2,704 kg ha?1) due to differences in soil water contents. Water productivity varied from 1.05 to 1.34 kg m?3, among the treatments in 3 years. The interactive effect of irrigation × tillage practices and irrigation × FYM on grain yield was significant. Yield performance proved that deficit irrigation (ETd2) subjected to 75 % soil water deficit had the smallest yield decline with significant water saving would be the most appropriate irrigation level for wheat production in arid regions.  相似文献   

5.
The hydraulics of pitcher irrigation in saline water condition was studied in laboratory conditions in terms of flow behaviour of pitcher, soil moisture distribution, wetting front advance and distribution of salt concentration in the soil using different pitcher making materials. The Pitcher Type 1 (PT1) made up of local soil and sand yielded the lowest mean hourly depletion ranging from 0.42 to 0.62% depending on salinity of the water used. It was followed by PT2 made up of local soil, sand and resinous material with a mean hourly depletion of 0.51-0.69% and PT3 with local soil, saw dust and sand with a mean hourly depletion of 0.91-1.02%. In all cases, with the increase in salinity level of the water used (ranging from 5 to 20 dS/m), the depletion rate and moisture content in the soil profile were found to decrease.Similarly, it was found that PT1 yielded the lowest wetting front advance and salt movement followed by PT2 and PT3. It was observed that the wetting front advance in the soil decreased with increasing salinity level of the water. The salt concentration in the soil was minimum near the pitcher and maximum at the soil surface and periphery of the wetted zone. In case of PT1, the maximum salt concentration in the soil profile ranged between 1.09 and 3.88 dS/m using water with a salinity ranging from 5 to 20 dS/m, respectively. Similarly, for PT2 the maximum salt concentration in the soil profile also ranged from 1.09 to 3.88 dS/m and for PT3 from 2.30 to 6.07 dS/m. A paired t-test revealed that the moisture as well as the salt distribution of PT3 differed significantly from PT1 and PT2 at α = 0.05. Even, if the salt concentration remained the same and the moisture content remained within field capacity for PT1 and PT2, PT1 is preferred in comparison to PT2 and PT3 as the pitcher material of PT1 is locally economically available.  相似文献   

6.
Salt-tolerant crops can be grown with saline water from tile drains and shallow wells as a practical strategy to manage salts and sustain agricultural production in the San Joaquin Valley (SJV) of California. Safflower (Carthamus tinctorius L.) was grown in previously salinized plots that varied in average electrical conductivity (ECe) from 1.8 to 7.2 dS m−1 (0–2.7 m depth) and irrigated with either high quality (ECi<1 dS m−1) or saline (ECi=6.7 dS m−1) water. One response of safflower to increasing root zone salinity was decreased water use and root growth. Plants in less saline plots recovered more water on average (515 mm) and at a greater depth than in more salinized plots (435 mm). With greater effective salinity, drainage increased with equivalent water application rates. Seed yield was not correlated with consumptive water use over the range of 400–580 mm. Total biomass and plant height at harvest were proportional to water use over the same range. Safflower tolerated greater levels of salinity than previously reported. Low temperatures and higher than average relative humidity in spring likely moderated the water use of safflower grown under saline conditions.  相似文献   

7.
The worldwide need to improve water use efficiency within irrigated agriculture has been recognised in response to environmental concerns and conflicts in resource use. Within the Australian cotton industry, the imperative to reduce water use and optimise irrigation management through the understanding of risk, using information generated by computerised decision aids was identified and subsequently developed into the HydroLOGIC irrigation management software. This paper summarises the attributes of the HydroLOGIC irrigation management software, with particular emphasis on functionality and its application to irrigation decisions within the Australian cotton industry. The software development process is documented to provide direction for future software application initiatives, with particular emphasis on a process of user feedback, evaluation and support requirements providing direction to software development. On-farm experiments throughout the development period allowed the validation of internal software logic, irrigator decision processes, and the OZCOT cotton growth model. The software demonstrated the ability to improve yield and water use efficiency by optimising strategic and tactical irrigation decisions in the Australian furrow irrigation cotton production system. In 7 of the 11 on-farm experiments conducted, the use of HydroLOGIC helped improve overall field water use efficiency by optimising the timing of irrigation events or by indicating further irrigations would not provide yield or maturity benefits. The paper also presents useful insights into the development of software targeted for irrigation utilising in-field measurements of soil water, crop growth and a crop growth simulation model.  相似文献   

8.
Summary Corn production on the organic soils of the Sacramento-San Joaquin Delta of California was affected by the salinity of the irrigation water and the adequacy of salt leaching. Full production was achieved on soils that were saline the previous year, provided the electrical conductivity of the irrigation water (ECi) applied by sprinkling was less than about 2 dS/m and leaching was adequate from either winter rainfall or irrigation to reduce soil salinity (ECMSW) below the salt tolerance threshold for corn (3.7 dS/m). For subirrigation, an ECi up to 1.5 dS/m did not decrease yield if leaching had reduced ECMSW below the threshold. If leaching was not adequate, even nonsaline water did not permit full production. In agreement with previous results obtained in a greenhouse, surface irrigation with water of an electrical conductivity of up to 6 dS/m after mid-season (end of July) did not reduce yield below that of treatments where the salinity of the irrigation water was not increased at mid-season. Results also reconfirm the salt tolerance relationship established in the previous three years of the field trial. The earlier conclusion that the irrigation method (sprinkler or subirrigation) does not influence the salt tolerance relationship was also confirmed.This project was sponsored jointly by the California State Water Resource Control Board, the California Department of Water Resources, the University of California, and the Salinity Laboratory of the US Department of Agriculture  相似文献   

9.
A 3-year experiment was conducted in an extremely dry and saline wasteland to investigate the effects of the drip irrigation on salt distributions and the growth of cotton under different irrigation regimes in Xinjiang, Northwest China. The experiment included five treatments in which the soil matric potential (SMP) at 20 cm depth was controlled at −5, −10, −15, −20, and −25 kPa after cotton was established. The results indicated that a favorable low salinity zone existed in the root zone throughout the growing season when the SMP threshold was controlled below −25 kPa. When the SMP value decreased, the electrical conductivity of the saturation paste extract (ECe) in the root zone after the growing season decreased as well. After the 3-year experiment, the seed-cotton yield had reached 84% of the average yield level for non-saline soil in the study region and the emergence rate was 78.1% when the SMP target value was controlled below −5 kPa. The average pH of the soil decreased slightly after 3 years of cultivation. The highest irrigation water use efficiency (IWUE) values were recorded when the SMP was around −20 kPa. After years of reclamation and utilization, the saline soil gradually changed to a moderately saline soil. The SMP of −5 kPa at a depth of 20 cm immediately under a drip emitter can be used as an indicator for cotton drip irrigation scheduling in saline areas in Xinjiang, Northwest China.  相似文献   

10.
本文以辽宁海滨灌区为例,以现状灌溉制度为基础,将《辽宁省行业用水定额》与《辽宁省各种作物灌溉制度分析》有机结合,确定灌溉定额.水量平衡分析过程中,将灌溉面积和可供水量分别分区,充分利用区间径流来减少水库供水,实现优化水资源配置,为灌区水资源科学合理利用提供决策性依据,也可供类似工程设计参考.  相似文献   

11.
A field experiment was conducted for 2 years to investigate the effects of deficit irrigation, nitrogen and plant growth minerals on seed cotton yield, water productivity and yield response factor. The treatment comprises six levels of deficit irrigation (Etc 1.0, 0.9, 0.8, 0.7, 0.6 and 0.5) and four levels of nitrogen (80, 120, 160 and 200 kg N ha−1). These were treatments superimposed with and without plant growth mineral spray. Furrow irrigation treatments were also kept. Cotton variety Ankur-651 Bt was grown during 2006 and 2007 cotton season. Drip irrigation at 1.0 Etc saved 26.9% water and produced 43.1% higher seed cotton yield over conventional furrow irrigation (1.0 Etc). Imposing irrigation deficit of 0.8 Etc caused significant reduction in seed cotton yield to the tune of 9.3% of the maximum yield. Further increase in deficit irrigation from 0.7 Etc to 0.5 Etc significantly decreased seed cotton yield over its subsequent higher irrigation level. Decline in the yield under deficit irrigation was associated with reduction in number of bolls plant−1 and boll weight. Nitrogen at 200 kg ha−1 significantly increased mean seed cotton yield by 36.3% over 80 kg N ha−1. Seed cotton yield tended to increase linearly up to 200 kg N ha−1 with drip Etc 0.8 to drip Etc 1.0. With drip Etc 0.6-0.5, N up to 160 kg ha−1 provided the highest yield, thereafter it had declined. Foliar spray of plant growth mineral (PGM) brought about significant improvement in seed cotton yield by 14.1% over control. The water productivity ranged from 0.331 to 0.491 kg m−3 at different irrigation and N levels. On pooled basis, crop yield response factor of 0.87 was calculated at 20% irrigation deficit.  相似文献   

12.
The drained and irrigated marshes in south-west Spain are formed on soils of alluvial origin from the ancient Guadalquivir river estuary. The most important characteristics of these soils are the high clay content (about 70%), high salinity, and a shallow, extremely saline, water table. The reclaimed area near Lebrija, called Sector B-XII (about 15,000 ha), has been under cultivation since 1978. Some years, however, water supply for irrigation is limited due to drought periods. The objective of this work was to evaluate the effects of irrigation with high and moderately saline waters on soil properties and growth and yield of cotton and sugar beet crops. The experiments were carried out during 1997 and 1998 in a farm plot of 12.5 ha (250 m×500 m) in which a drainage system had been installed, consisting of cylindrical ceramic sections (0.3 m long) forming pipes 250 m long, buried at a depth of 1 m and spaced at intervals of 10 m. These drains discharge into a collecting channel perpendicular to the drains. Two subplots of 0.5 ha (20 m×250 m) each were selected. In 1997 cotton was growing in both subplots, and irrigation was applied by furrows. One subplot (A) was irrigated with fresh water (0.9 dS m−1) during the whole season, while in the other subplot (B) one of the irrigations (at flowering stage) was with water of high salinity (22.7 dS m−1). During 1998 both subplots were cropped with sugar beet. Subplot A was irrigated with fresh water (1.7 dS m−1) during the whole season, while in subplot B two of the irrigations were with moderately saline water (5.9–7.0 dS m−1). Several measurement sites were established in each subplot. Water content profile, tensiometric profile, water table level, drainage water flow, soil salinity, and crop development and yield were monitored. The results showed that after the irrigation with high saline water (subplot B) in 1997 (cotton), the soil salinity increased. This increase was more noticeable in the top layer (0–0.3 m depth). In contrast, for the same dates, the soil of subplot A showed no changes. After five irrigations with fresh water, the salinity of the soil in the subplot B reached values similar to those before the application of saline water. In 1998 (sugar beet) the application of moderately saline water in subplot B also increased soil salinity, but this increase was lower than in 1997. The irrigation with high saline water affected crop development. Cotton growth was reduced in comparison with that in the subplot irrigated only with fresh water. Despite this negative effect on crop development, the crop yield was the same as in the subplot A. Sugar beet development did not show differences between subplots, but yield was higher in subplot B than in subplot A.  相似文献   

13.
为探究不同灌溉时段及水温对膜下滴灌棉花生理特性及产量的影响,设置4个灌溉水温梯度分别为15.00(正常灌溉水温),20.00,25.00,30.00℃,2个灌溉时段分别为日间、夜间(分别记为DW,NW)进行完全组合设计,共计8个处理.结果表明,增温灌溉提前了棉花生育进程,促进了棉花株高、茎粗、叶面积增长,有利于棉花光合作用的进行,且在夜间进行增温灌溉效果更显著.增温灌溉使棉花产量显著提高2.95%~14.13%,夜间灌溉较日间灌溉棉花产量平均提高3.34%.基于回归分析确定提高棉花产量的最佳灌溉时段为夜间,最佳灌溉水温为26.38℃,对应的产量为7 482.96 kg/hm2.该研究可为北疆膜下滴灌棉花实施增温灌溉技术提供理论依据和技术参考.  相似文献   

14.
咸水灌溉对土壤水盐分布和小麦产量的影响   总被引:1,自引:0,他引:1  
在石羊河流域中游开展田间灌溉试验,试验设置3种灌水量,灌溉定额分别为355,280,205 mm(W1,W2和W3);4种灌水矿化度0.7,3.0,5.0和7.0 g/L(S1,S2,S3和S4),共12个处理,每个处理3组重复.研究结果表明:淡水灌溉条件下,土壤积盐率不超过15%,当灌水矿化度在3.0 g/L以上时,土壤剖面盐分积累峰值在20~40 cm层,灌溉水带入的盐分有40%~80%积累在60 cm深度.当灌水矿化度为3.0 g/L时,盐分胁迫造成春小麦减产在10%以下;灌水矿化度为5.0 g/L和7.0 g/L时,春小麦减产严重,最高可达28%.相同灌水矿化度条件下,与充分灌溉(W1)相比,W2和W3分别减产10%和15%左右.拔节期-灌浆期是春小麦需水关键期,灌水要及时,3种灌水量均可以保证春小麦根区含水量维持在田间持水量的60%~80%.因此,3.0 g/L的微咸水灌溉不会造成春小麦大幅减产,合理调控灌水时间,灌水量为205~355mm可以保证春小麦土壤含水量维持在适宜的水平.  相似文献   

15.
为了探究石羊河流域适宜春玉米生长的咸水非充分灌溉模式,应用SWAP模型模拟不同灌溉模式下的土壤水盐平衡、春玉米相对产量和相对水分利用效率,并预测了较长时期土壤水盐动态变化规律.研究结果表明:灌溉水矿化度为0.71 g/L和3.00 g/L的春玉米最优灌溉模式为生育期内灌4次水,灌溉定额均为408 mm,2种灌溉模式均能达到节约灌溉用水、提高作物产量和水分利用效率以及减少土体盐分累积量的目的.较长时期土壤水盐动态变化规律模拟结果表明:在冬灌条件下,春玉米最优灌溉模式下的土壤水分和盐分能够在模拟期内保持相对平稳的状态;在不同年份,相同土层土壤含水率随着土层深度的增加而增大,0.71 g/L的淡水灌溉土壤盐分主要累积在40~80 cm土层,3.00 g/L的微咸水灌溉土壤盐分主要累积在10~40 cm土层;5 a的模拟结果表明0.71 g/L和3.00 g/L的水持续灌溉5 a,不会引起土壤次生盐渍化.  相似文献   

16.
Summary Irrigation is essential for economic production of some crops in semiarid climates. Benefits from irrigation may be partially offset by detrimental effects of rising water tables and salinization. Drainage systems are usually installed when the water table rises to the root zone, but installation of a drainage system and safe disposal of drainage water are expensive. The long-term consequences of a high saline water table on crop production, particularly as related to irrigation scheduling, has not been firmly established. A multiseasonal transient state model, known as the modified van Genuchten-Hanks model, was used to simulate cotton (Gossypium hirsutum L.) production using a three or four in-season irrigation schedule (3irr or 4irr) under both free drainage and water table conditions. Under drainage conditions, irrigation scheduling to avoid applying more water than the soil water-holding capacity during any irrigation event is important, whereas this factor is less important under water table conditions. Excess water during an irrigation causes a rise in the water table, but this water remains available for later crop use which lowers the water table. In the presence of a water table the simulations indicate, (1) higher yields are achieved by applying less irrigation during the crop season and more during the preirrigation for salt leaching purposes, (2) annual applied water must equal evapotranspiration to avoid long-term water table rise or depletion, and (3) high cotton yields can be achieved for several years even if the water table is saline and no drainage occurs if the irrigation water is low in salinity.  相似文献   

17.
Summary The utility of a saline water source for irrigation might, in many cases, be greatly increased if it could be diluted by mixing it with a higher quality source of water prior to field application. This paper discusses a number of options for achieving such a dilution subject to imposed constraints. Firstly, we derive and discuss the principles of achieving control of irrigation salinity level when waters of two different qualities and flow rates are used. Secondly, we formulate and discuss the dynamic performance of a prototype on a controlled dilution junction with and without water storage. Finally, we discuss the general problem of achieving simultaneous salinity and flow rate control, using dual feedback control sensors to compensate for variations both in salinity and in flow rate of the saline supply source in order to produce a desired salt concentration in the irrigation water.  相似文献   

18.
华北平原农业灌溉用水非常紧缺,水资源日益缺乏与粮食需求日益增多之间的矛盾尖锐。充分利用微咸水资源是缓解这一矛盾的重要途径之一。该文以中国农业大学曲周试验站1997-2005年冬小麦和夏玉米微咸水灌溉田间长期定位试验为基础,研究了充分淡水、充分淡咸水、关键期淡水、关键期淡咸水和不灌溉等5个处理下土壤饱和电导率和含盐量的动态变化,探讨了微咸水灌溉对冬小麦和夏玉米产量的影响。结果表明:土壤水盐动态呈受灌溉和降雨影响的短期波动和受季节更替影响的长期波动;在正常降雨年份,使用微咸水进行灌溉是可行的,不会导致土壤的次生盐渍化;微咸水灌溉虽然导致冬小麦和夏玉米产量降低10%~15%,但节约淡水资源60%~75%。如果降雨量达到多年平均水平以及微咸水灌溉制度制订合理,微咸水用于冬小麦/玉米田间灌溉前景广阔。  相似文献   

19.
The response of mature ‘Andross’ cling peach (Prunus persica L. Batch) trees to regulated deficit irrigation in deep soils was studied for 3 years. Trees were either fully irrigated or subjected to deficit irrigation during Stage II of fruit development and/or during post-harvest. Single regulated deficit irrigation regimes reduced irrigation by 13–24%, while combined regime reduced it by 23–35%. Deficit irrigation during Stage II and/or post-harvest significantly reduced vegetative growth of the trees. Fruit production was not affected by any irrigation regime until the fourth year when fruit set decreased slightly with combined deficit irrigation. Overall, the results indicate that regulated deficit irrigation can be used successfully on peach trees grown in deep soils.  相似文献   

20.
To improve water saving and conservation in irrigated agriculture, a range of field evaluation experiments was carried out with various furrow irrigation treatments in cotton fields to estimate the possibilities of improving furrow irrigation performances under conditions of Central Fergana Valley, Uzbekistan. The research consisted in comparing surge and continuous-flow in long furrows and adopting alternate-furrow irrigation. The best results were achieved with surge-flow irrigation applied to alternate furrows. Field data allowed the calibration of a surface irrigation model that was used to identify alternative management issues. Results identified the need to better adjust inflow rates to soil infiltration conditions, cut-off times to the soil water deficits and improving irrigation scheduling. The best irrigation water productivity (0.61 kg m−3) was achieved with surge-flow on alternate furrows, which reduced irrigation water use by 44% (390 mm) and led to high application efficiency, near 85%. Results demonstrated the possibility for applying deficit irrigation in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号