首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Under conditions close to those of wine, that is, low pH, aqueous medium, and low temperatures, this work examines the role of carbonyl (acetoin and acetol) and dicarbonyl (glyoxal, methylglyoxal, diacetyl, and pentane-2,3-dione) compounds associated with cysteine in the formation of odorous products. In particular, thiazole, 4-methylthiazole, 2-acetylthiazole, and trimethyloxazole and two sulfur and oxygenated heterocyclic compounds, 2-furanmethanethiol and thiophene-2-thiol, are examined. For thiophene-2-thiol, the reactional mechanism is proposed. Attempts were made to detect these compounds in wines from various origins. Certain molecules were identified for the first time in wine.  相似文献   

2.
The headspace volatiles produced from a phosphate-buffered solution (pH 5) of cysteine and a 1 + 1 mixture of ribose and [(13)C(5)]ribose, heated at 95 degrees C for 4 h, were examined by headspace SPME in combination with GC-MS. MS data indicated that fragmentation of ribose did not play a significant role in the formation of the sulfur aroma compounds 2-methyl-3-furanthiol, 2-furfurylthiol, and 3-mercapto-2-pentanone in which the carbon skeleton of ribose remained intact. The methylfuran moiety of 2-methyl-3-(methylthio)furan originated from ribose, whereas the methylthio carbon atoms came partly from ribose and partly from cysteine. In 3-mercapto-2-butanone one carbon unit was split from the ribose chain. On the other hand, all carbon atoms in 3-thiophenethiol stemmed from cysteine. In another trial cysteine, 4-hydroxy-5-methyl-3(2H)-furanone and [(13)C(5)]ribose were reacted under the same conditions. The resulting 2-methyl-3-furanthiol was mainly (13)C(5)-labeled, suggesting that it stems from ribose and that 4-hydroxy-5-methyl-3(2H)-furanone is unimportant as an intermediate. Whereas 2-mercapto-3-pentanone was found unlabeled and hence originated from 4-hydroxy-5-methyl-3(2H)-furanone, its isomer 3-mercapto-2-pentanone was formed from both 4-hydroxy-5-methyl-3(2H)-furanone and ribose. A new reaction pathway from ribose via its 1,4-dideoxyosone is proposed, which explains both the formation of 2-methyl-3-furanthiol without 4-hydroxy-5-methyl-3(2H)-furanone as an intermediate and a new way to form 3-mercapto-2-pentanone.  相似文献   

3.
This work describe products of reactions between four alpha-dicarbonyl compounds (diacetyl, pentan-2,3-dione, glyoxal, and methylglyoxal) or two alpha-hydroxy ketones, (acetoine and acetol) and amino acids present in wines. The results shows the formation of odorous products or strong-smelling additives resulting from the Maillard and Strecker reaction in a primarily aqueous medium, at low temperature and low pH ( approximately pH 3.5) of the wine. GC/FID, GC/FPD, GC/NPD and GC/MS techniques were used. The olfactive characteristics of the products are described. In the presence of sulfur amino acids and in particular cysteine, many products were formed with a heterocycle production such as pyrazines and methylpyrazines, methylthiazoles, acetylthiazoles, acetylthiazolines, acetylthiazolidines, trimethyloxazole, and dimethylethyloxazoles. These various compounds present odors of sulfur, cornlike, pungent, nut, popcorn, roasted hazelnut, toasted, roasted, and ripe fruits. The chemical conditions of the model reactions are specified. The influence of temperature and pH on the reactions in the presence of cysteine were also studied.  相似文献   

4.
4(5)-Methylimidazole has received the attention of federal and state regulatory agencies because of its carcinogenicity and common presence in foods and beverages. In the present study, the formation of 4(5)-methylimidazole in Maillard reaction model systems consisting of D-glucose/NH(3), L-rhamnose/NH(3), methylglyoxal/NH(3), and methylglyoxal/formaldehyde/NH(3) was investigated. 4(5)-Methylimidazole was formed at levels ranging from 0.49 to 0.71 mg/mL in the d-glucose/NH(3) model system. The formation of 4(5)-methylimidazole was slightly higher in the L-rhamnose/NH(3) system (0.91 mg/mL) than in the d-glucose/NH(3) system (0.71 mg/mL) under the conditions used in the present study. A methylglyoxal/NH(3) system produced significantly higher levels of 4(5)-methylimidazole (5.70 mg/mL), suggesting that methylglyoxal is an important precursor of 4(5)-methylimidazole. Ammonolysis of methylglyoxal, which is one of the glucose degradation products, was proposed to form formamide, which subsequently reacted with 2-aminopropanal (α-aminocarbonyl intermediate) formed from methylglyoxal to give 4- or 5-methylimidazole. The levels of 4(5)-methylimidazole found in commercial cola soft drinks range from 0.30 μg/mL (brand 3) to 0.36 μg/mL (brands 1 and 5).  相似文献   

5.
The caramel-like aroma compound, 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF) was quantified and verified by HPLC and GC-MS in the Maillard reaction based on methylglyoxal (MG). The reaction was performed in the 0.5 M phosphate buffer by heating MG with or without either glycine or cysteine at 120 degrees C for 1 h. MG alone or MG with cysteine could produce increased level of DMHF with pH increased, whereas MG with glycine had contrary trend. Experiments using a 1:1 mixture of [(13)C6]glucose and [(12)C6]glucose indicate that in the presence of glycine or cysteine, glucose skeleton kept intact during DMHF formation since a 1:1 mixture of [(13)C6]DMHF and [(12)C6]DMHF was formed. Acetylformoin was detected in the glucose with amino acid reaction system as a precursor of DMHF, while in the MG reaction systems, acetylformoin could not be identified. It is suggested different pathways of DMHF formation via MG and glucose.  相似文献   

6.
3-Mercapto-2-methylpentan-1-ol was first detected in a complex thermally processed flavor and finally isolated from raw onions. The chemical structure of this new compound was identified by MS and (1)H NMR measurement and synthesis of the proposed structure. Sensory evaluation at different concentrations indicated that the flavor quality is strongly dependent on concentration. At low concentration (0.5 ppb) a pleasant meat broth, sweaty, onion, and leek-like odor can be perceived. On the basis of some isolation experiments and volatiles occurring in raw onions, a formation pathway is proposed. As one intermediate 3-mercapto-2-methylpentanal, another new strong flavor compound, was suggested. The presence of this compound in raw onions was confirmed by synthesis and comparison of MS and chromatographic data.  相似文献   

7.
The volatiles formed from [1-(13)C]-ribose and cysteine during 4 h at 95 degrees C in aqueous phosphate buffer (pH 5) were analyzed by headspace SPME in combination with GC-MS. The extent and position of the labeling were determined using MS data. The identified volatiles comprised sulfur compounds such as 2-[(13)C]methyl-3-furanthiol, 2-[(13)CH(2)]furfurylthiol, [1-(13)C]-3-mercaptopentan-2-one, [1-(13)C]-3-mercaptobutan-2-one, [4-(13)C]-3-mercaptobutan-2-one, and 3-mercaptobutan-2-one. The results confirm furan-2-carbaldehyde as an intermediate of 2-furfurylthiol, as well as 1,4-dideoxypento-2,3-diulose as an intermediate of 2-methyl-3-furanthiol and 3-mercaptopentan-2-one. Loss of the C-1 and C-5 carbon moieties during the formation of 3-mercaptobutan-2-one suggests two different mechanisms leading to the key intermediate butane-2,3-dione.  相似文献   

8.
The present study deals with the mechanistic reaction pathway of the α-dicarbonyl compound methylglyoxal with the guanidino group of arginine. Eight products were formed from the reaction of methylglyoxal with N(α)-tert-butoxycarbonyl (Boc)-arginine under physiological conditions (pH 7.4 and 37 °C). Isolation and purification of substances were achieved using cation-exchange chromatography and preparative high-performance liquid chromatography (HPLC). Structures were verified by nuclear magnetic resonance (NMR) and high-resolution mass spectrometry. 2-Amino-5-(2-amino-4-hydro-4-methyl-5-imidazolinone-1-yl)pentanoic acid (3) was determined as the key intermediate precursor within the total reaction scheme. Kinetic studies identified N(δ)-(5-methyl-4-oxo-5-hydroimidazolinone-2-yl)-L-ornithine and N(7)-carboxyethylarginine as thermodynamically more stable products from compound 3. Further mechanistic investigations revealed an acidic hydrogen at C-8 of compound 3 to trigger aldol condensations. This reactivity of compound 3 allowed for the addition of another molecule of methylglyoxal to form products, such as N(δ)-(4-carboxy-4,6-dimethyl-5,6-dihydroxy-1,4,5,6-tetrahydropyrimidine-2-yl)-l-ornithine and argpyrimidine.  相似文献   

9.
Precursors to varietal wine thiols are a key area of grape and wine research. Several such precursors, in the form of odorless conjugates, have been closely studied in recent years. A new conjugate has now been identified as 3-S-cysteinylglycinehexan-1-ol (Cysgly-3-MH), being the dipeptide intermediate between cysteine and glutathione precursors of tropical thiol 3-mercaptohexan-1-ol (3-MH). Authentic Cysgly-3-MH was produced via enzymatic transformation of the glutathione conjugate and used to verify the presence of both diastereomers of Cysgly-3-MH in Sauvignon blanc juice extracts. Cysgly-3-MH was added into our HPLC-MS/MS precursor method, and the validated method was used to quantify this new analyte in a selection of Sauvignon blanc juice extracts. Cysgly-3-MH was found in the highest concentrations (10-28.5 μg/L combined diastereomer total) in extracts from berries that had been machine-harvested and transported for 800 km in 12 h. This dipeptide conjugate was much less abundant than the glutathione and cysteine conjugates in the samples studied. On the basis of the results, the new cysteinylglycine conjugate of 3-MH seemingly has a short existence as an intermediate precursor, which may explain why it has not been identified as a natural juice component until now.  相似文献   

10.
Cysteine conjugates, resulting from the addition of cysteine to alpha,beta-unsaturated carbonyl compounds, are important precursors of odorant sulfur compounds in food flavors. The aim of this work was to better understand this chemistry in the light of the unexpected double addition of cysteine to two unsaturated aldehydes. These reactions were studied as a function of pH. When (E)-2-methyl-2-butenal (tiglic aldehyde, 4) was treated with cysteine in water at pH 8, the major product formed was the new compound (4R)-2-(2-[[(2R)-2-amino-2-carboxyethyl]thio]methylpropyl)-1,3-thiazolidine-4-carboxylic acid (6). Under acidic conditions (pH 1), we also observed a double addition, but the second cysteine was linked by a vinylic sulfide bond to form the previously unreported major product, (2R,2'R,E)-S,S'-(2,3-dimethyl-1-propene-1,3-diyl)bis-cysteine (7). When (E)-2-hexenal (12) was treated with cysteine under acidic conditions, the major product was the novel (4R,2' 'R)-2-[2'-(2' '-amino-2' '-carboxyethylthio)pentyl]-1,3-thiazolidine-4-carboxylic acid (13), and the formation of an vinylic sulfide compound analogous to 7 was not observed. Reduction of the acidic crude reaction mixture with NaBH(4) afforded 13 and the cysteine derivative (R)-S-[1-(2-hydroxyethyl)butyl]cysteine (14) in 14% yield. Treating (E)-2-hexenal with cysteine at pH 8 followed by NaBH(4) reduction yielded the new product (3R)-7-propylhexahydro-1,4-thiazepine-3-carboxylic acid (15). Addition of cysteine to mesityl oxide (16), at pH 8, followed by reduction with NaBH(4) furnished (R)-S-(3-hydroxy-1,1-dimethylbutyl)cysteine (3) and the new compound (3R)-hexahydro-5,7,7-trimethyl-1,4-thiazepine-3-carboxylic acid (18).  相似文献   

11.
The reaction of beta,beta-disubstituted acroleins [3-methyl-2-butenal (1), 3-methyl-2-hexenal (2), and citral (3)] with cysteine gave 1:2 adducts of a novel structural type, namely hexahydro-1,4-thiazepines. To the best of our knowledge, the spontaneous formation of a seven-membered heterocycle from the addition of cysteine to alpha,beta-unsaturated aldehydes is unprecedented. The adduct 6 obtained from citral, under acidic conditions, reacted further to give the new bicyclic compound 8.  相似文献   

12.
This paper takes a new approach to determining which sulfhydryl groups are exposed during the heat denaturation of bovine beta-lactoglobulin A. The sulfhydryl groups exposed after heating were blocked with 5-((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid (IAEDANS). The results show that IAEDANS is a suitable blocking agent, and its absorbance at 336 nm enabled the quantification of exposed sulfhydryl groups in a mixture of protein species by gel permeation chromatography. Combined with the specific fragmentation of bound IAEDANS by matrix-assisted laser desorption ionization (MALDI) MS/MS in negative ionization mode, this facilitated the identification of peptides that contained blocked cysteines after enzymatic digestion of the protein. During MALDI MS/MS of the peptides, in positive ionization mode, the IAEDANS molecule remained bound to the cysteines, making it possible to identify exactly which cysteine had been exposed after heating. In beta-lactoglobulin A it was found that cysteine 66 and cysteine 160 were predominantly exposed regardless of the length of exposure to heat.  相似文献   

13.
The reaction between Amadori compounds and cysteine was investigated. When 1-deoxymaltulosyl-glycine (glycyl-fructosyl-glucose) was heated at 100 degrees C with cysteine in a neutral aqueous solution, a novel intermediate composed of 1-deoxyosone and cysteine was detected. NMR and mass spectrometry studies revealed the structure of the isolated intermediate to be 7,8a-dihydroxy-4a-methyl-8-(alpha-d-glucopyranosyloxy)hexahydro-5-oxa-4-thia-1-azanaphthalene-2-carboxylic acid. This intermediate easily generated isomaltol and acetylfuran as volatile compounds in 1 mol/L HCl at 100 degrees C.  相似文献   

14.
The gene (lat) encoding L-lysine epsilon-aminotransferase (LAT) in Streptomyces clavuligerus was cloned and expressed in Escherichia coli. Nucleotide sequence analysis of lat predicted a single open reading frame (ORF) of 1371 bp, encoding a polypeptide of 457 amino acids with calculated molecular mass of 49.89 kDa. S. clavuligerus LAT was grouped into aminotransferase subfamily II of alpha family on the basis of sequence homology. A model system composed of the recombinant LAT in phosphate buffer was set up to study the biosynthesis of 2-acetyltetrahydropyridine. Lysine was found to be transformed to 1-piperideine-6-carboxylic acid. 2-Acetyltetrahydropyridine was characterized from the mixture of 1-piperideine-6-carboxylic acid and methylglyoxal. For the first time, we demonstrated that the L-lysine epsilon-aminotransferase is responsible for the formation of 1-piperideine-6-carboxylic acid, which may react with methylglyoxal to generate the acylated N-heterocyclic odorant 2-acetyltetrahydropyridine.  相似文献   

15.
Isoxaflutole (IXF; Balance) belongs to a new class of isoxazole herbicides. Isoxaflutole has a very short half-life in soil and rapidly degrades to a stable and phytotoxic degradate, diketonitrile (DKN). DKN was previously discovered to rapidly react with hypochlorite (OCl-) in tap water, yielding the benzoic acid (BA) degradate as a major product, but the complete reaction pathway and mechanism have not been elucidated. Thus, the objectives of this work were to (1) determine the stoichiometry of the reaction between DKN and OCl-; (2) identify products in addition to BA; and (3) propose a complete pathway and reaction mechanism for oxidation of DKN by OCl-. Stoichiometry of the reaction showed a molar ratio of OCl-/DKN of 2. In addition, two previously uncharacterized chlorinated intermediates were identified under conditions in which OCl- was the limiting reactant. The proposed chemical structure of a chlorinated benzoyl intermediate was inferred from a series of HPLC/MS and HPLC/MS/MS experiments and the use of mass spectral simulation software. A chlorinated ketone intermediate was also identified using ion trap GC/MS. Two additional end products were also identified: cyclopropanecarboxylic acid (CPCA) and dichloroacetonitrile (DCAN). On the basis of the reaction stoichiometry, the structure of the chlorinated intermediates, and the identification of the products, two reaction pathways are proposed. Both pathways involve a two-step nucleophilic attack and oxidation of the diketone structure of DKN, leading to formation of BA, DCAN, and CPCA.  相似文献   

16.
5-Hydroxy-3-mercapto-2-pentanone is claimed in the scientific literature as a key intermediate in the degradation of thiamine and the related generation of aroma compounds; however, there are no analytical NMR and MS data available. We have identified the compound in a thermally treated mixture of thiamine, cysteine, and xylose and characterized it by MS and NMR.  相似文献   

17.
Proline dehydrogenase (PRODH) catalyzes the biosynthesis of Delta1-pyrroline-5-carboxylic acid (P5C). The Bacillus subtilis subsp. natto gene for the proline dehydrogenase (BnPRODH) was cloned and expressed in Escherichia coli. Nucleotide sequence analysis of the clone revealed an open-reading frame that encodes 302 amino acid polypeptide with a calculated molecular mass of 34.5 kDa. The deduced amino acid sequence showed sequence similarity to bacterial PRODH and PutA of E. coli. The BnPRODH gene was cloned into pET21b and was expressed at a high level in E. coli BL21(DE3). The expressed protein was purified by using nickel ion affinity column chromatography to homogeneity before characterization. The purified recombinant BnPRODH was used to produce P5C. Model system composed of P5C and methylglyoxal was set up to study the formation of 2-acetyl-1-pyrroline. Our data showed that P5C, derived from the conversion of l-proline by the purified recombinant PRODH, might react directly with methylglyoxal to form 2-AP. P5C/methylglyoxal pathway represents the first report of a biological mechanism by which 2-AP may be synthesized in vitro by PRODH.  相似文献   

18.
Cinnamon bark has been reported to be effective in the alleviation of diabetes through its antioxidant and insulin-potentiating activities. In this study, the inhibitory effect of cinnamon bark on the formation of advanced glycation endproducts (AGEs) was investigated in a bovine serum albumin (BSA)-glucose model. Several phenolic compounds, such as catechin, epicatechin, and procyanidin B2, and phenol polymers were identified from the subfractions of aqueous cinnamon extract. These compounds showed significant inhibitory effects on the formation of AGEs. Their antiglycation activities were not only brought about by their antioxidant activities but also related to their trapping abilities of reactive carbonyl species such as methylglyoxal (MGO), an intermediate reactive carbonyl of AGE formation. Preliminary study on the reaction between MGO and procyanidin B2 revealed that MGO-procyanidin B2 adducts are primary products which are supposed to be stereoisomers. This is the first report that proanthocyanidins can effectively scavenge reactive carbonyl species and thus inhibit the formation of AGEs. As proanthocyanidins behave in a similar fashion as aminoguanidine (AG), the first AGE inhibitor explored in clinical trials, they show great potential to be developed as agents to alleviate diabetic complications.  相似文献   

19.
N(delta)-(5-Hydroxy-4,6-dimethylpyrimidine-2-yl)-L-ornithine, or Argpyrimidine, was identified and quantified in beer by high-performance liquid chromatography (HPLC) and coupled gas chromatography-mass spectrometry (HRGC-MS). This novel fluorescent arginine Maillard modification represents the first amino acid modification reported in beer retaining the full backbone of the original amino acid. Two mechanisms of formation could be verified: the major pathway via methylglyoxal and the minor pathway via 5-deoxypentoses. Argpyrimidine concentrations, determined in 35 lager-type beer varieties, reached up to 27 nmol/L and could be positively correlated to beer color and wort content. Within this context, 5-deoxy-D-ribose was identified as a novel intermediate of the Maillard reaction of maltose by HRGC-MS and independent synthesis.  相似文献   

20.
A method for the simultaneous quantitation of total glutathione and total cysteine in wheat flour by a stable isotope dilution assay using high-performance liquid chromatography/tandem mass spectrometry (HPLC-MS/MS) was developed. As internal standards, L-[(13)C3, (15)N]cysteine and L-gamma-glutamyl-L-[(13)C3, (15)N]cysteinyl-glycine were used. The method consisted of the extraction and reduction of flour with tris(2-carboxyethyl) phosphine after the addition of internal standards, protection of free thiol groups with iodoacetic acid, derivatization of free amino groups with dansyl chloride, and HPLC-MS/MS. The limits of detection and quantitation for glutathione were 0.75 nmol/g and 2.23 nmol/g flour, respectively. For cysteine, the limits of detection and quantitation were 0.72 nmol/g and 2.12 nmol/g flour, respectively. The developed method was found to be sensitive enough for quantitation of total glutathione and cysteine levels in wheat flour. This method was then utilized to investigate the effect of sulfur (S) deficiency on the amount of total glutathione and cysteine in flour. In S-deficient wheat, the concentrations of total glutathione and cysteine were proportional to the amount of S supplied during growth. The calculation of correlations revealed that GSH and Cys concentrations influenced the rheological dough properties and the baking performance at least as much as protein parameters. Thus, the low concentration of GSH and Cys in flour from S-deficient wheat had a similar effect on the technological properties as the altered composition of gluten proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号