首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
长期施用氮磷钾肥和石灰对红壤性水稻土酸性特征的影响   总被引:16,自引:0,他引:16  
利用34年的长期定位施肥试验,研究不施肥(CK)、施氮磷钾肥(NPK)和氮磷钾化肥配施石灰(NPK+Ca O)对红壤性水稻土不同形态酸、土壤盐基离子及水稻植株阳离子吸收量的影响,探讨土壤交换性H+和Al3+占交换性酸的比例、土壤盐基离子、植株带出阳离子数量与土壤酸度的关系。结果表明,长期NPK处理早、晚稻土壤p H较CK处理分别降低0.2和0.3个单位,交换性酸提高2.3倍和4.2倍,水解性酸提高35.4%和40.0%;NPK+Ca O处理早、晚稻土壤p H较NPK处理分别提高0.5和0.7个单位,较CK处理分别提高0.3和0.4个单位,交换性酸、水解性酸均显著低于NPK和CK处理(p0.05)。土壤交换性H+、Al3+含量高低顺序均为NPK+Ca OCKNPK。土壤交换性盐基离子以交换性Ca2+所占比例最大(81.8%~89.3%),NPK+Ca O处理交换性Ca2+较CK和NPK处理分别提高40.1%和62.9%。交换性Ca2+、交换性盐基离子、盐基饱和度与土壤p H正相关,与交换性酸、水解性酸负相关,交换性Mg2+与交换性酸、水解性酸负相关,交换性Na+与水解性酸负相关。植株移出带走的钙、镁、钾、钠离子量及其总量对土壤p H、交换性酸和水解性酸有一定影响,但其相关性均不显著。研究表明长期施用化肥条件下通过配施石灰可有效缓解稻田土壤的酸化,促进酸性稻田土壤的生态修复与改良。  相似文献   

2.
长期施用猪粪对红壤酸度的改良效应   总被引:10,自引:1,他引:9  
龙光强  蒋瑀霁  孙波 《土壤》2012,44(5):727-734
土壤酸化严重限制了我国南方红壤区土壤的农业利用。本研究应用江西鹰潭红壤生态实验站长期猪粪养分淋失试验,分析了不同施肥处理(对照处理:N 0 kg/hm2;低量有机肥:N 150 kg/hm2;高量有机肥:N 600 kg/hm2;高量有机肥+石灰处理:有机肥N 600 kg/hm2 +石灰3 000 kg/(hm2·3a))长期施用对红壤酸度的改良效应。研究结果表明,9年高量有机肥施用中土壤pH值平均每年上升0.085个单位,而低量有机肥施用对土壤pH没有显著影响。有机肥长期施用增加了土壤盐基离子浓度,其中Ca、Mg增加幅度较大,使得长期施肥后土壤盐基以Ca为主,其次是Mg,而K、Na比例较低。长期有机肥施用有效降低了红壤旱地表层土壤交换性酸含量,尤其是对交换性铝含量的降低程度较大,且随施肥量的增加而增大,在施肥4年后可基本消除铝毒。高量施肥基础上的石灰添加进一步提高了土壤pH值,加快了土壤酸度改良。红壤旱地猪粪施用显著提高了玉米产量,达到酸度改良效果的最低猪粪用量为Ca 162 kg/hm2。在施肥初期添加一次石灰,将土壤pH值迅速提高,然后通过有机肥对pH的稳定作用保持和逐步提高土壤pH,可在最短时间、用最少投入消除土壤酸害。  相似文献   

3.
施用石灰对果园酸性土壤镁吸附-解吸特征的影响   总被引:2,自引:2,他引:0       下载免费PDF全文
通过研究施用石灰对蜜柚果园酸性土壤镁吸附-解吸特性的影响,明确施用石灰对酸性土壤镁有效性的改良效果,为酸性土壤改良提供科学依据。以土壤培养试验以及田间石灰改良试验所采集土壤样品开展等温吸附试验,并以0.02 mol·L~(-1) Na NO_3进行解吸试验。结果表明,(1)随着石灰用量的增加,土壤p H及交换性盐基离子含量增加,且对果园不同土层土壤影响程度大小依次为0~10 cm(L1)10~20 cm(L2)20~40 cm(L3);(2)用Langmuir方程可以对吸附等温线进行较好拟合,描述土壤对镁的吸附作用(R~2=0.957~0.999),随着平衡液镁浓度的增加,土壤对镁的吸附量增加,吸附分配系数(K_d)下降。随着石灰施用量增加K_d上升,土壤固定镁的能力越强;(3)随着石灰用量的增加,土壤镁的解吸量先增加后下降,其大小依次为C2(1.8 mg·kg~(-1))C3(3.6 mg·kg~(-1))C1(0.9 mg·kg~(-1))C0(0),而解吸率呈现逐步下降的趋势;(4)土壤镁的吸附能力与pH、有机质、交换性Ca~(2+)、交换性Mg~(2+)、盐基饱和度存在显著正相关性(P0.05),与交换性酸、交换性Al~(3+)呈显著负相关(P0.05),解吸能力则反之。综上所述,合理施用石灰可以有效地改善土壤酸度,增加土壤镁的吸附量和解吸量,提高土壤镁的有效性。  相似文献   

4.
施石灰石粉后红壤化学性质的变化   总被引:23,自引:0,他引:23       下载免费PDF全文
孟赐福  傅庆林 《土壤学报》1995,32(3):300-307
红壤施用石灰10年的田间试验和盆栽试验的结果表明施用石灰能降低土壤酸度,增加土壤中效换性Ca和Mg含量,从而导致作物产量的提高;底土酸度的降低随时间的推移和石灰用量的增大而增强,每倾施用3.25-15.0吨石灰石粉的降酸和增产效应至少可维持10年以上。  相似文献   

5.
镁肥与添加剂施用后土壤镁迁移与淋洗特征研究   总被引:1,自引:0,他引:1  
通过室内土柱试验,模拟了镁肥及不同用量添加剂包括生物质炭、有机肥、石灰施用土壤后镁素的有效性及迁移淋溶特征.结果表明:施用添加剂后均不同程度提高施肥土层(0~15 cm)土壤pH.施用镁肥、生物质炭、50%需求量石灰与3.3、6.6 g/kg有机肥后,施肥土层交换性镁含量显著增加,而10 g/kg有机肥与100%、20...  相似文献   

6.
长期施肥与地膜覆盖对棕壤交换性钙、镁的影响   总被引:2,自引:0,他引:2  
本文以沈阳农业大学棕壤长期定位试验站(始于1987年)玉米连作试验为研究对象,探讨了施肥与地膜覆盖对棕壤中交换性钙、镁含量的影响,以及交换性钙、镁和pH之间的相关性。研究结果表明:试验地040 cm土壤交换性钙含量在1.34~2.52 g/kg之间,交换性镁含量在0.30~0.66 g/kg之间,目前都比较丰富,作物基本不会出现缺钙缺镁症状。经过24年的不同施肥处理,施有机肥土壤表层(020 cm)交换性钙和交换性镁含量呈明显增加趋势,施用化肥土壤表层交换性钙和交换性镁含量呈明显下降趋势。无论不覆膜还是覆膜,单施化肥底层(2040 cm)土壤交换性钙和交换性镁含量大于表层;施用有机肥土壤交换性钙含量在两个层次差异不明显,交换性镁含量土壤表层大于底层。覆膜与不覆膜相比,单施化肥土壤覆膜后表层土壤交换性钙和交换性镁含量增加,底层含量降低,而有机肥处理表现的不明显。土壤表层交换性钙和交换性镁与pH之间都有极显著的正相关关系。  相似文献   

7.
【目的】北方石灰性土壤碳酸钙含量、p H高等因素制约了小麦对锌的吸收,但由于交换性钙含量高,这一地区作物钙锌营养及其相互作用的研究一直缺乏。本研究通过冬小麦盆栽试验,研究石灰性土壤上不同氯化钙用量对冬小麦生长及钙锌吸收利用的影响,初步探索冬小麦钙锌的相互作用。【方法】选取西北农林科技大学农作一站麦田耕层0—20 cm的土壤进行冬小麦盆栽试验。设5个处理,在施N 0.3 g/kg、P2O50.2 g/kg、K2O 0.3 g/kg土基础上,以氯化钙为钙肥,设施Ca 0、0.3、0.6、0.9和1.2 g/kg土5个水平,每个处理4次重复,完全随机区组设计。供试品种为小偃22,2010年10月15日播种。在收获期采集小麦地上部,分别测定茎叶、颖壳和籽粒烘干重及其钙、锌的含量,收获后土壤p H、交换性钙及有效锌的含量,并计算冬小麦钙、锌累积量及钙、锌收获指数。试验数据采用Excel软件进行计算处理,DPS软件进行方差分析。【结果】小麦籽粒产量和地上部生物量随氯化钙用量升高而增加,施Ca 0.6、0.9和1.2 g/kg时小麦地上部生物量显著提高9.8%17.5%,籽粒产量在施Ca 0.9和1.2g/kg时分别显著增加10.7%和22.7%。施用氯化钙显著提高了小麦茎叶和颖壳中的钙含量,茎叶钙含量在施Ca0.9和1.2 g/kg时分别较对照显著提高53%和68%,颖壳钙含量在施Ca 0.6、0.9和1.2 g/kg时分别显著增加34%、36%和51%,籽粒钙含量无显著变化。整株钙累积量随施钙量的提高显著增加38.6%91.4%。施Ca 0.9和1.2 g/kg,籽粒锌含量显著增加,分别由对照的33.7 mg/kg提高到42.0和41.6 mg/kg。整株锌累积量随施钙量提高而显著增加,施Ca 1.2 g/kg时最高,比对照提高47.0%。收获后土壤交换性钙、有效锌含量无显著差异,但施Ca 0.9和1.2 g/kg时土壤p H分别由对照的8.16降低至7.93和7.97。【结论】发现盆栽试验条件下,石灰性土壤适量施用氯化钙可促进小麦干物质形成,增加籽粒产量;整株吸钙量随施钙量的提高显著增加,但不影响籽粒钙含量;施用氯化钙显著降低了土壤p H,同时促进了小麦对锌的吸收以及向籽粒的转移。该结果可为理解石灰性土壤中锌的活化机制,促进作物对锌的吸收利用提供参考。  相似文献   

8.
随着外源酸输入,酸性土壤改良剂的石灰效应逐渐消退,土壤再次酸化形成铝毒害。作为一种新型酸性土壤改良剂,生物质炭施用后土壤的复酸化过程尚不清楚。本研究通过循环酸浸洗耦合根伸长试验,对比研究了施用生物质炭和熟石灰(Ca(OH)2)后土壤的复酸化过程及其对植物的铝毒性。结果表明,循环酸浸洗有效模拟了土壤的复酸化过程。随着模拟酸化年限增加,生物质炭和Ca(OH)2处理土壤中玉米根系伸长均逐渐受到了抑制。生物质炭相较于Ca(OH)2有效缓解了酸化过程对植物根系的抑制作用。在模拟12年酸输入时,生物质炭处理中玉米根相对伸长率较Ca(OH)2处理高18.6%,生物质炭相较于Ca(OH)2处理展现出更为长效的酸性土壤改良潜力。这一方面是由于生物质炭通过表面阴离子官能团质子化作用减缓了酸化过程中土壤pH的降低,抑制了土壤铝的活化。在模拟12年酸输入时,生物质炭处理土壤溶液Al3+浓度较Ca(OH)2处理低33%。另一方面,酸化过程中生物质炭持续释放Mg2+,在模拟12年酸输入时,生物质炭处理土壤溶液Mg2+浓度和植物Mg2+吸收量均较Ca(OH)2处理高2倍以上。较高的Mg2+浓度可通过调控植物对Al3+的生理响应,缓解植物铝毒害症状。该研究结果可为土壤酸化长效阻控提供理论依据和技术支撑。  相似文献   

9.
中性水稻土中的铁解及其影响   总被引:1,自引:0,他引:1  
何群  陈家坊 《土壤学报》1986,23(2):184-188
我们曾发现,苏州地区的某些水稻土的耕层土壤,pH值可低至5.0-5.5,有些土壤的交换性Ca/Mg比值亦明显下降[2,3]。黄棕壤在添加有机物质并淹水培育后,使其交换性镁含量增加和交换性钙含量下降[1],而试样的pH值与交换性钙镁总量之间,出现显著的正相关(r=0.837,n=10)。  相似文献   

10.
休耕轮作对黑土酸化的影响   总被引:7,自引:1,他引:6  
通过长期定位试验,在吉林省德惠市采集休耕轮作的土壤样品,研究休耕轮作对土壤pH值及土壤交换性H+、Al3+的影响;休耕轮作对土壤阳离子交换性能的影响;休耕轮作的土壤pH值与各相关理化性状的相关性;休耕轮作对土壤缓冲性能的影响以及对酸化速率的影响.结果表明:(1)土壤经过休耕轮作后,土壤酸化得到缓解,土壤交换性酸(交换性H+和交换性Al3+)呈下降的趋势,土壤pH随着交换性酸的降低而升高;交换性H+和交换性Al3+含量随土壤有机质含量的增加而减小.(2)休耕轮作措施能够增加土壤中阳离子交换量及盐基饱和度;(3)土壤pH与各盐基阳离子的相关性大小依次为Ca2+> Na+> K+>Mg2+,并且交换性Ca2+含量最多,占盐基总量的89%~95%,对盐基饱和度贡献最大;(4)休耕轮作措施能够增加土壤的酸碱缓冲容量,休耕轮作后的土壤最高酸碱缓冲容量是长期连作土壤酸碱缓冲容量的2倍以上,从而增强了土壤对酸碱的缓冲性能,并且降低了土壤的酸化速率.  相似文献   

11.
  【目的】  长期过量施用化学氮肥加剧了红壤区农田土壤酸化,严重制约着该区域农业的可持续发展。施用石灰和有机肥是防治红壤酸化的主要措施,我们研究了有机无机肥配合提高红壤抗酸化能力的作用与机理。  【方法】  本研究基于2009年在湖南祁阳中国农业科学院红壤站开展的有机肥替代化学氮肥长期定位试验,其中4个处理分别为单施化肥(由于酸化严重,于2018年底添加石灰改良)、有机肥替代化肥氮20%、40%和60%,供试有机肥为猪粪。采集2018和2020年的土壤样品,分析各施肥处理红壤pH、交换性酸铝、阳离子交换量、有机质、酸缓冲能力等指标的变化及相互关系。  【结果】  至2018年,单施化肥处理较试验之初土壤pH降低了0.48个单位,交换性酸、铝分别增加了2.74和1.06 cmol/kg;添加石灰改良后,土壤pH升高了0.58个单位,交换性酸、铝分别降低了2.62和1.45 cmol/kg。有机肥替代化肥氮40%和60%处理均可有效防治红壤酸化,其中以替代60%处理效果最佳;至2020年60%有机替代处理土壤pH较初始值提高了0.78个单位,交换性酸和交换性铝分别降低了1.10和1.25 cmol/kg。有机肥替代化肥氮40%和60%处理较单施化肥处理显著提高了土壤阳离子交换量,而石灰改良前后土壤阳离子交换量无显著变化。土壤酸缓冲曲线表明,土壤交换性铝含量随着pH的降低而显著升高,单施化肥、有机肥替代化肥氮20%、40%和60%处理的斜率分别为2.71、2.42、1.93和0.16;土壤交换性铝对pH响应斜率与土壤pH、交换性镁、阳离子交换量、交换性钾、有机质含量呈极显著或显著负相关关系。  【结论】  有机肥替代40%以上化学氮肥既能防治红壤酸化,又能提升红壤抗酸化能力。土壤阳离子交换量和有机质可能是导致土壤交换性铝对pH响应差异的主要因素,即阳离子交换量和有机质含量高的土壤pH降低1个单位时,交换性铝增幅较小,但其作用机理还有待进一步研究。  相似文献   

12.
Abstract

Changes in surface reactivity produced by different types of liming in a Chilean Andisol were determined. Barros Aranas soil with 53% aluminum (Al) saturation and 4.8 pH was incubated with different amounts of calcitic and dolomitic lime. Each cmol of calcitic or dolomitic lime applied per kg of soil increased the pH with 0.13 and 0.16 units, respectively. Consequently, the decrease in Al saturation was higher with dolomitic than with calcitic liming material. The zero point of charge (ZPC) increased from 4.2 in unlimed soil to 4.6 and 4.8 in limed soil, while the point of zero salt effect (PZSE) decreased from 4.5 to 4.0 and 3.5 with calcitic and dolomitic lime, indicating an increase in negative charge. But, isoelectric point (IEP) values measured by electrophoretic migration suggested that the external charge only changed by treatment with calcitic liming materials. In both treatments, the acidity constant decreased, and consequently phosphorus (P) adsorption capacity also decreased.  相似文献   

13.
Abstract

Quantifying the effects of soil acidity on plant growth remains a challenging research topic as numerous soil and plant growth factors are influenced by pH and lime. In the field, annual ryegrass (Lolium multiflorum Lam. ‘Marshall') responded positively to the application of 3.8 Mg lime/ha on a strongly acid (pH 4.7) Lilbert loamy fine sand (loamy, siliceous, thermic, arenic Plinthic Paleudult) over three growing seasons. Dry matter yield in some cuttings, however, was better correlated with soil Al, P, Ca, Mg, and K than with pH. A greenhouse study was undertaken to quantitatively determine the effects of these five minerals plus Mo on ryegrass yield in limed and unlimed Lilbert soil material. Three ryegrass cuttings were obtained from unlimed (pH 4.8) or limed (1000 mg CaCO3/kg) Lilbert soil which was also amended with five rates of Ca, K, Mg, Al, P, and Mo in combinations stipulated by central composite design methodology. Response surface models that fit yield to the applied treatments and soil test data were complex because all factors and many interactions were significant. Furthermore, the models were transformed as the plants matured and element availability changed due to mineral uptake. Most yield improvement derived from liming occurred as a result of the elimination of exchangeable Al with a concomitant increase in P efficiency. Applied Ca did not alleviate Al toxicity in unlimed soil. Chlorotic plants developed in all pots where Mg was excluded. Yield was increased by applied Mg and Mo in unlimed soil, but not in limed soil. Applied K improved yield only in limed soil. Although regression accounted for a large portion of the yield variability (R2 values ranged from 0.75 to 0.95), these models were unable to accurately predict yield in control treatments.  相似文献   

14.
In acid soils, when no-tillage farmers intend to apply lime, the question arises as to whether it should be incorporated into the soil or whether it can be left on the soil surface. In this study, two types of limestone, calcitic (Lcal) and dolomitic (Lmag), were tested in two olive groves of cv. Cobrançosa, with an initial pH of 4.9 (S. Pedro) and 5.5 (Raparigas). In S. Pedro, limestone was incorporated into the soil (Lburied) and in Raparigas, it was left on the floor (Lfloor). The use of limestone significantly increased soil pH in the 0–0.10 m layer in both experiments. In the 0.10–0.20 m soil layer, only Lmag increased significantly the soil pH in comparison with the control. Lmag was more effective than Lcal in increasing cation exchange capacity (CEC) and reducing exchangeable acidity (EA) and aluminium (Al3+) in the Lfloor experiment. Both limes increased leaf calcium (Ca) concentration, and Lmag increased the leaf levels of magnesium (Mg). In Lfloor experiment (higher soil pH), soil microbial carbon (C) decreased, and microbial nitrogen (N) increased with liming, which may indicate an increase in bacteria in the soil and a decrease in fungi. In Lburied experiment (initial pH of 4.9), liming significantly increased accumulated (2018–2021) olive yield (56 and more than 67 kg tree−1, respectively, in the control and liming treatments). In Lfloor experiment (initial pH of 5.5), the accumulated olive yields did not differ significantly between treatments (average values between 105 and 115 kg tree−1). The results of this study provide evidence that liming may increase olive yield in very acid soils and that dolomitic limestone should preferably be used by no-tillage farmers, due its higher solubility and faster effect on soil and trees.  相似文献   

15.
The effectiveness of plantation wastes along with locally available organic materials in ameliorating acidic soil was studied by conducting an experiment with coconut husk, poultry manure, vermicompost, and compared with limestone. Application of organic amendments significantly increased the soil pH, and it was greatest in poultry manure–amended soils followed by vermicompost and coconut husk + poultry manure treatments. The relative liming efficiency was greatest for poultry manure through out the observation period of 180 days. The coconut husk alone showed the least liming effect and its liming efficiency had increased when applied in combination with poultry manure and or vermicompost. This increase in soil pH was mirrored by significant reductions in exchange acidity, exchangeable aluminum (Al3+), diethylenetriaminepentaacetic acid (DTPA)–extractable iron (Fe2+), and manganese (Mn2+) and increases in cation exchange capacity, exchangeable bases, especially calcium (Ca), and Olsen-extractable phosphorus (P) by addition of organic amendments and lime. This study indicated the potential of using coconut husk along with poultry manure for managing acidic soils in low-input agricultural systems, especially in tropical islands.  相似文献   

16.
This investigation was conducted by using alkaline slag and crop straw biochars to reduce acidity of an acidic Ultisol through incubation and pot experiments with lime as a comparison. The soil was amended with different liming materials: lime(1 g kg^-1),alkaline slag(2 and 4 g kg^-1), peanut straw biochar(10 and 20 g kg^-1), canola straw biochar(10 and 20 g kg^-1) and combinations of alkaline slag(2 g kg^-1) and biochars(10 g kg^-1) in the incubation study. A pot experiment was also conducted to observe the soybean growth responses to the above treatments. The results showed that all the liming materials increased soil p H and decreased soil exchangeable acidity. The higher the rates of alkaline slag, biochars, and alkaline slag combined with biochars, the greater the increase in soil p H and the reduction in soil exchangeable acidity. All the amendments increased the levels of one or more soil exchangeable base cations. The lime treatment increased soil exchangeable Ca^2+, the alkaline slag treatment increased exchangeable Ca^2+ and Mg^2+ levels, and the biochars and combined applications of alkaline slag with biochars increased soil exchangeable Ca^2+, Mg^2+ and K^+ and soil available P. The amendments enhanced the uptake of one or more nutrients of N, P, K, Ca and Mg by soybean in the pot experiment. Of the different amendments, the combined application of alkaline slag with crop straw biochars was the best choice for increasing base saturation and reducing soil acidity of the acidic Ultisol. The combined application of alkaline slag with biochars led to the greatest reduction in soil acidity, increased soil Ca, Mg, K and P levels, and enhanced the uptake of Ca, Mg, K and P by soybean plants.  相似文献   

17.
Effects of watershed liming on the biomass and tissue chemistry of planted Picea rubens Sarg. (red spruce) seedlings were investigated for two growing seasons after two subcatchments in a forested Adirondack, New York (U.S.A.) watershed were limed aerially with 6.89 t ha-1 of calcitic limestone (CaCO3). Picea rubens has been the focus of numerous atmospheric deposition research studies, but less well investigated for responses to amelioration. Picea rubens seedlings were planted in limed and reference subcatchments and harvested the first and second growing season after liming to measure total, foliar, and stem (i.e., branch) biomass, and concentrations of Ca, Mg, K, Al, Na, and P in the annual growth increment of foliage and branches. In the second year after liming, both foliage and stem biomass of seedlings from reference plots were at least 50% greater than seedling biomass from limed plots. Seedlings in limed areas had significantly greater foliar concentrations of Mg and P in the first year after liming, but not in the second year. Foliar Ca was not significantly different in limed than reference seedlings. Foliar Al concentrations were greater in reference than limed seedlings, but still below documented toxicity levels. Stem concentrations of Mg, K, and P in seedlings from limed areas decreased significantly between the first and second growing season after liming, while reference seedling stem concentrations either increased or declined only slightly. Correlations among foliar nutrients and foliar biomass from limed plots were negative and suggest an inverse dilution effect. Foliar Al concentrations were negatively correlated with Ca, Mg, K, and P in seedlings from reference plots, but positively correlated in limed plots. The adverse response of P. rubens seedlings to lime may reflect changes in nutrient availability associated with changes in soil pH.  相似文献   

18.
ABSTRACT

The effects of long-term (1959–2005) liming in combination with cattle manure application on the chemical properties and aggregate stability of acid soil were investigated in the whole soil profile to a 100 cm depth. Investigations were performed in a long-term liming and fertilizing field trial at Vezaiciai Branch of Lithuanian Research Centre for Agriculture and Forestry situated in West Lithuania. The soil of the study site is Bathygleyic Distric Glossic Retisol (WRB 2014) with a texture of moraine loam. Acid soil had been periodically limed and manured at different intensity for 47 years. The experiment involved the following treatments: (1) unlimed and unfertilized (control); (2) unlimed and 60 t ha?1 manure; (3) limed and unfertilized; and (4) limed and 60 t ha?1 manure. During the 47-year period, liming was performed using pulverized limestone at a rate 1.0 (by hydrolytic soil acidity) every 7 years. During the whole study period, the soil received 38.7–36.5 t ha?1 CaCO3; 840 t ha?1 cattle manure, 2740 kg ha?1 mineral nitrogen; 3030 kg ha?1 phosphorus and 3810?kg?ha?1 potassium. The data showed that long-term (47 years) periodic liming of different intensities in combination with cattle manure application significantly changed the chemical properties of the whole soil profile. The soil acidification was neutralized in the topsoil and subsoil to the 60?cm depth when the soil had been systematically limed with 1.0 rate every 7 years in combination with 60?t?ha?1 manure application every 3–4 years. Periodic long-term liming in combination with manuring had a positive effect on the improvement of chemical properties of acid soil profile in the ElB1 and ElB2 horizons. The data of the soil structure in the topsoil and subsoil showed that such liming practice together with manuring had a positive effect on soil aggregate stability.  相似文献   

19.
Soybean is one of the most important legume crops in the world. Two greenhouse experiments were conducted to determine the influence of liming and gypsum application on yield and yield components of soybean and changes in soil chemical properties of an Oxisol. Lime rates used were 0, 0.71, 1.42, 2.14, 2.85, and 4.28 g kg?1 soil. Gypsum rates applied were 0, 0.28, 0.57, 1.14, 1.71, and 2.28 g kg?1 soil. Lime as well as gypsum significantly increased grain yield in a quadratic fashion. Maximum grain yield was achieved with the application of 1.57 g lime per kg soil, whereas the gypsum requirement for maximum grain yield was 1.43 g per kg of soil. Lime significantly improved soil pH, exchangeable soil calcium (Ca) and magnesium (Mg) contents, base saturation, and effective cation exchange capacity (ECEC). However, lime application significantly decreased total acidity [hydrogen (H) + aluminum (Al)], zinc (Zn), and iron (Fe) contents of the soil. The decrease in these soil properties was associated with increase in soil pH. Gypsum application significantly increased exchangeable soil Ca, base saturation, and ECEC. However, gypsum did not change pH and total acidity (H + Al) significantly. Adequate soil acidity indices established for maximum grain yield with the application of lime were pH 5.5, Ca 1.8 cmolc kg?1, Mg 0.66 cmolc kg?1, base saturation 53%, Ca saturation 35%, and Mg saturation 13%. Soybean plants tolerated acidity (H + Al) up to 2.26 cmolc kg?1 soil. In the case of gypsum, maximum grain yield was obtained at exchangeable Ca content of 2.12 cmolc kg?1, base saturation of 56%, and Ca saturation of 41%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号