首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rotenone and rotenoids (deguelin, beta-rotenolone (12a beta-hydroxyrotenone), tephrosin (12a beta-hydroxydeguelin), 12a alpha-hydroxyrotenone, and dehydrorotenone) were determined in cubè resins and formulations. Cubè resins from Lonchocarpus contain large quantities of deguelin (ca. 21.2%) and smaller quantities of tephrosin (ca. 3.5%) and beta-rotenolone (ca. 3.0%). The composition of commercial formulations may present very different rotenoid contents depending on the extracts used to prepare them. Because these rotenoids also present insecticide activity, the efficacy of these formulations may be very different. The storage stability and photodegradation of some rotenone formulations were studied. Rotenone and rotenoids are very sensitive to solar radiation, which degrades them rapidly, with half-lives in the order of a few tens of minutes. Some formulations show greater disappearance rates than that of cubè resin, indicating that not much attention has been paid to protecting the active ingredients from photodegradation in the formulation. A study on the residues on olives was also carried out to assess not only the rotenone content, but also that of the main rotenoids. At harvest, the residues of deguelin, tephrosin, and beta-rotenolone were 0.10, 0.06, and 0.10 mg/kg, respectively, very similar to rotenone (0.08 mg/kg), and though a few data indicate similar acute toxicity values for deguelin, only rotenone is taken into consideration in the legal determination of the residue.  相似文献   

2.
A trend analysis of information needs and communication channel use of rural women in Africa, Asia, and Latin America was conducted by examining empirical works published in reports, scholarly publications, and the popular press from 2000 to 2012. Results show that information about farming practices, health, education, gender and general family well-being issues were the most sought across the three continents. Demand for 14 information categories surged in volume and scope after 2009. Interpersonal communication sources trumped the mediated ones as the channels of choice; extension agents were the most preferred source. Radio was the most frequently mentioned preferred medium.  相似文献   

3.
Abstract

The study reported herein was intended to determine the effect of (i) wet‐incubation and subsequent air‐drying, and (ii) oven‐drying on DTPA‐Fe, Zn, Mn, and Cu.

Analysis of wet‐incubated soils showed significant decreases in DTPA‐Fe, Mn, and Cu at the 1% and Zn at the 10% level of probability. Air‐drying of these moist‐incubated soils increased the levels of Fe, Zn, and Cu to values close to their original levels. Levels of Mn sharply deviated from their original values after air‐drying of incubated soils. Correlation coefficients (r) between the amounts of extractable nutrients in original air‐dry soils and wet‐incubated soils were 0.54, 0.87, 0.91, and 0.13 for Fe, Zn, Cu, and Mn, respectively. Oven‐drying increased the levels of DTPA‐extractable micronutrients from 2 to 6 fold.  相似文献   

4.
Abstract

Vertisols of India are developed over isohyets of 600 to 1500 mm, and their chemical cycles are set by drainage, landforms, and particle size, which results in variable pedogenic development within the otherwise homogeneous soils. The purpose of this study was to identify pedogenic processes in the distribution of total and DTPA‐extractable zinc (Zn), copper (Cu), manganese (Mn), and iron (Fe). The soils are developed over basaltic parent material of Cretaceous age. Soil samples were drawn from genetic horizons of the 13 benchmark profiles and analyzed by using HF–HClO4 acid for total and DTPA extraction. Correlation coefficients were calculated taking all samples together. The total concentration varied from 24 to 102 mg kg?1 for Zn, 21 to 148 mg kg?1 for Cu, 387 to 1396 mg kg?1 for Mn, and 2.36 to 9.50% for Fe. Their variability was proisotropic and haplodized, and their concentrations increased with advancing isohyets. Within the isohyets, hindrance in drainage caused retention of Zn and Cu but loss of Fe. The piedmont soils had more Fe than alluvium soils. The spatial distribution of total contents of Zn, Cu, and Fe was influenced by the pedogenic processes associated with Haplusterts but not with provenance materials. Surface concentrations of the elements by biotic lifting and/or harvest removal were negated by the pedoturbation that further contributed to the irregular distribution of the elements in the profiles. Total Zn and total Cu had positive coefficients of correlations with coarse clay, whereas total Mn and total Fe were positively correlated with fine clay. The DTPA‐extractable forms were functions of isohyets and drainage and showed association with organic carbon content and coarse clay.  相似文献   

5.
6.
Radon concentration and gamma activity concentration of naturally occurring radionuclides were determined and presented for two tourist caves (Karaca and Çal caves) in this study. These caves are reported to receive about 77,000 visitors during the summer season in 2007. It was seen that mean radon activity concentrations for the winter and summer seasons for the Karaca cave is 1,023 and 823 Bq/m3 and for the Çal cave is 264 and 473 Bq/m3. Mean 226Ra, 232Th, and 40K activity concentrations are found to be 43, 19, and 262 Bq/kg for the Karaca cave and 31, 27, and 460 Bq/kg for the Çal cave. Doses received by the cave guides due to radon were estimated to be 2.9 mSv/year for the winter season and 2.3 mSv/year for the summer season for the Karaca cave. Same values were estimated for the Çal cave, and the results were found to be 0.6 mSv/year for the winter season and 1.1 mSv/year for the summer season. Annual effective doses received by the visitors in both caves were estimated to be in the order of ??Sv/year because of the short exposure time comparing the cave guides. Although the reported values are below the recommended values, both groups are exposed to possible radiological risk during their stay inside the cave, since prolonged exposure to high radon concentration has been linked to lung cancer.  相似文献   

7.
Three major oat components, β-glucan, starch, and protein, and their interactions were evaluated for the impact on viscosity of heated oat slurries and in vitro bile acid binding. Oat flour from the experimental oat line "N979" (7.45% β-glucan) was mixed with water and heated to make oat slurry. Heated oat slurries were treated with α-amylase, lichenase, and/or proteinase to remove starch, β-glucan, and/or protein. Oat slurries treated with lichenase or lichenase combined with α-amylase and/or proteinase reduced the molecular weight of β-glucan. Heat and enzymatic treatment of oat slurries reduced the peak and final viscosities compared with the control. The control bound the least amount of bile acids (p < 0.05); heating of oat flour improved the binding. Heated oat slurries treated with lichenase or lichenase combined with α-amylase and/or proteinase bound the least amount of bile acid, indicating the contribution of β-glucan to binding. Oat slurries treated with proteinase or proteinase and α-amylase together improved the bile acid binding, indicating the possible contribution of protein to binding. These results illustrate that β-glucan was the major contributor to viscosity and in vitro bile acid binding in heated oat slurries; however, interactions with other components, such as protein and starch, indicate the importance of evaluating oat components as whole system.  相似文献   

8.
Abstract

Squash (Cucurbita pepo), cucumber (Cucranis sativus), and sweet melon (Cucumis dudain) were grown in sand cultures with N supply concentrations as the variable. For several reasons, total‐N values were found to be less satisfactory than NO ‐N for the purpose of determining the critical nitrogen concentration for maximum growth. Concentrations of total‐N in mature petioles were higher in plants severely deficient in N than in less deficient plants, characteristic of a Piper‐Steenbjerg effect.  相似文献   

9.
Distinct changes in air temperature since the end of the 1980s have led to clear responses in plant phenology in many parts of the world. In Germany phenological phases of the natural vegetation as well as of fruit trees and field crops have advanced clearly in the last decade of the 20th century. The strongest shift in plant development occurred for the very early spring phases. The late spring phases and summer phases reacted also to the increased temperatures, but they usually show lower trends. Until now the changes in plant development are still moderate, so that no strong impacts on yield formation processes were observed. But further climate changes will probably increase the effect on plants, so that in the future stronger impacts on crop yields are likely.  相似文献   

10.
Microbial biomass, β-glucosidase and β-glucosaminidase activities, and availability, storage, and age of soil organic C were investigated after 26 years of conversion from sugarcane (Saccharum officinarum) to forest (Eucaliptus robusta or Leucaena leucocephala), pasture (mixture of tropical grasses), and to vegetable cropping (agriculture) in a vertisol in Puerto Rico. Soil organic C (SOC) at 0–100 cm was similar under Leucaena (22.8 kg C/m2), Eucalyptus (18.6 kg C/m2), and pasture (17.2 kg C/m2), which were higher than under agriculture (13.0 kg C/m2). Soil organic N (SON) at 0–100 cm was similar under the land uses evaluated which ranged from 1.70 (under agriculture) to 2.28 kg N/m2 (under Leucaena forest). Microbial biomass C (MBC) and N (MBN) of the 0–15-cm soil layer could be ranked as: pasture > Leucaena = Eucalyptus > agriculture. The percentages of SOC and SON present as MBC and MBN, respectively, were nearly 1% in pasture and less than 0.50% in forest under Leucaena or Eucalyptus and agricultural soil. The activity of β-glucosidase of the 0–15-cm soil layer could be ranked as: Leucaena = Eucalyptus > pasture > agriculture; while β-glucosaminidase activity was ranked as: Eucalyptus > Leucaena = pasture > agriculture. The soil δ 13C changed from 1996 to 2006 in forest under Eucalyptus (18.7‰ to 21.2‰), but not under Leucaena (20.7‰ to 20.8‰). The soil under Leucaena preserved a greater proportion of old C compared to the forest under Eucalyptus; the former had an increased soil mineralizable C from the current vegetation inputs. The soil under agriculture had the lowest enzyme activities associated with C cycling, lowest percentage of SOC as MBC, highest percentage of SOC present as mineralizable C, and highest percentage of MBC present as mineralizable C compared to the other land uses.  相似文献   

11.
Nitrate levels and nitrate reductase activity (NRA) of the widely cultivated prickly‐pear Opuntia ficus‐indica were measured for 5‐year‐old orchard plants in the field between flowering and fruit ripening (May‐August) and for rooted cladodes (stem segments) in a glasshouse in pots that were supplied with 0.8,4, or 16 mM nitrate during the early growth of new cladodes (6 weeks). Nitrate levels were much higher in the cladodes than in the fruit peels or the roots; in both cladodes and fruit peels, nitrate levels were higher in the inner water‐storing layer (parenchyma) than in the outer green photosynthetic layer (chlorenchyma). NRA was confined to the cladode chlorenchyma and was higher in new cladodes than in the underlying cladodes. The orchard study suggested that the nitrate accumulated in 2‐ and 3‐year‐old cladodes served as a reserve for the growth of new organs. At the beginning of the reproductive season, such older cladodes had high nitrate levels of 7 mg/g DW in the chlorenchyma and 45 mg/g DW in the parenchyma, which decreased by 72% and 43%, respectively, by the end of the season. The glasshouse experiments indicated that the cladodes were more important for nitrate reduction than the roots, particularly under high external nitrate concentrations.  相似文献   

12.
This work aimed to compare methods for the formation of complexes of bixin and curcumin with β-cyclodextrin (β-CD) and to evaluate the stability of the complexes formed by these methods and their food applications. The stoichiometric relationship between curcumin and β-CD was 1:2 and that between bixin and β-CD was 1:1. Curcumin-β-CD and bixin-β-CD complexes formed by kneading, coprecipitation, and simple mixing were evaluated by differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), or nuclear magnetic resonance (NMR-H). For both curcumin and bixin, the best method of complexation was coprecipitation. Complexation of colorants with β-CD promoted an intensification of color and increased water solubility; however, stabilization in the presence of light occurred only for bixin. Application of curcumin-β-CD in cheese and yogurt and bixin-β-CD in the curd did not alter the initial characteristics of the products, which were sensorialy well accepted. Therefore, the complexation of these natural colorants with β-CD favors their use in low-fat foods, broadening the field of industrial application.  相似文献   

13.
A field study was made of the seasonal changes in dry‐matter production, and the uptake, distribution, and redistribution of 12 mineral nutrients in the semi‐dwarf spring wheat, Egret, grown under typical irrigation farming conditions. Most of the dry‐matter production and nutrient uptake had occurred by anthesis, with 75–100% of the final content of magnesium (Mg), copper (Cu), chloride (Cl), sulfur (S), phosphorus (P), nitrogen (N), and potassium (K) being taken up in the pre‐anthesis period. The above‐ground dry‐matter harvest index was 37%, and grain made up 76% of the head dry matter. Redistributed dry matter from stems and leaves could have provided 29% of the grain dry matter. Concentrations of phloemmobile nutrients, such as N and P, decreased in the leaves and stems throughout the season, whereas concentrations of phloem‐immobile nutrients, such as calcium (Ca) and iron (Fe), generally increased. The decline in the N concentration in stems and leaves was not prevented by N fertilizer applied just before anthesis. Leaves had the major proportion of most nutrients in young plants, but stems had the major proportion of these nutrients at anthesis. Grain had over 70% of the N and P, and 31–64% of the Mg, manganese (Mn), S, and zinc (Zn), but less than 20% of the K, Ca, sodium (Na), Cl, and Fe in the plant. Over 70% of the N and P, and from 15 to 51% of the Mg, K, Cu, S, and Zn was apparently redistributed from stems and leaves to developing grain. There was negligible redistribution of Ca, Na, Cl, Fe, and Mn from vegetative organs. Redistribution from stems and leaves could have provided 100% of the K, 68–72% of the N and P, and 33–48% of the Zn, Cu, Mg, and S accumulated by grain. It was concluded that the distribution patterns of some key nutrients such as N, P, and K have not changed much in the transition from tall to semi‐dwarf wheats, and that the capacity of wheat to redistribute dry matter and nutrients to grain is a valuable trait when nutrient uptake is severely restricted in the post‐anthesis period.  相似文献   

14.
In a long‐term maize–wheat rotation at the Punjab Agricultural University, Ludhiana, India (subtropical climate), the effects of nitrogen (N), phosphorus (P), and potassium (K) addition on soil fertility and forms of inorganic P and K in the plow layer of an alkaline sandy loam soil were measured after 11 and 22 years of cropping. The treatments comprised four rates of N (0, 60, 120, and 180 kg N ha?1) as urea, three rates of P (0, 17.5, and 35 kg P ha?1) as single superphosphate, and two rates of K (0 and 33 kg K ha?1) as muriate of potash. The treatments selected for the present study were N0P0K0, N120P0K0, N120P17.5K0, N120P35K0, N120P17.5K33, and N120P35K33. A significant year × treatment interaction in decreasing available N [alkaline potassium permanganate (KMnO4)–oxidizable N) status of soils was found in all the treatments. Available P (Olsen P) in the control plot decreased over time whereas in plots with added P, available P increased significantly after years 11 and 22, with the greatest increase in the N120P17.5Ko treatment. Compared to the initial values, continuous P fertilization resulted in greater total P and chloride P concentrations after 11 and 22 years. Although sodium hydroxide (NaOH) P and sulfuric acid (H2SO4) P increased in P‐treated plots from the start of the trial to year 11, they decreased from year 11 to year 22. Among these inorganic P forms, chloride P was significantly positively correlated with P uptake (r = 0.811*). When only N and P were applied, available K [ammonium acetate (NH4OAc)–extractable K] significantly decreased over time. In plots without K addition, water‐soluble and exchangeable K decreased from their initial status. Compared to year 11, water‐soluble K increased, whereas exchangeable K decreased after year 22 in plots receiving no K fertilizer. Compared with NPK treatments, a significant decrease of total K in NP treatment plots suggests the release and uptake of nonexchangeable K. Water‐soluble K and exchangeable K were not correlated with K uptake. These results suggest that long‐term application of P fertilizers resulted in the accumulation of P in the soil, which could have resulted in saturation of P binding sites. Of the soil inorganic P fractions, only chloride P appears to be a good indicator of plant‐available P. The gradual loss in native soil K and release of nonexchangeable K indicates the need for adding K fertilizer to maintain soil fertility.  相似文献   

15.
Enzyme assays that use fluorescently labeled substrates and microplate formats have been incorporated into laboratory protocols to improve sensitivity and reduce the time and labor involved in traditional bench-scale analyses. Microplate protocols vary, and the methods have not been evaluated systematically for comparability and reproducibility. In this study, p-nitrophenol (pNP)-based and 4-methylumbelliferone (MUF)-based microplate methods for estimating β-glucosidase activity were compared in two soils with different properties. Microplate method reproducibility was evaluated in replicate soil suspensions, and Michaelis–Menten kinetics for the microplate assays were compared to those of a standard pNP bench-scale assay. The effect of soil sample sonication on reproducibility was determined for the MUF microplate method. The MUF microplate method was reproducible in five replicate soil suspensions, but the pNP microplate method showed greater variability. The K m Michaelis–Menten constant was significantly different in the microplate methods compared to the bench method. Enzyme activities measured by the MUF and bench methods were comparable, but the pNP microplate method resulted in more variable measurements and was less sensitive in the soils studied. Sonication of soil at an intensity of 15 W ml?1 resulted in higher (MUF) measurements, but greater variability. The effects of high background absorbance on the reproducibility, sensitivity, and accuracy of the pNP microplate method do not support this method as a substitute for the standard bench method. A robust comparison study of the MUF microplate method across laboratories is recommended to further validate its use in comparative analyses.  相似文献   

16.
Abstract: The industrial activity areas, rivers, and water sources in neighboring areas are influenced by wastewater of manufacturers. Utilizing water influenced by wastewater increased heavy metals in soils and plants. In 2004, to investigate the effects of wastewater on cadmium (Cd), nickel (Ni), chromium (Cr), and lead (Pb) content in soil and plants, wastewaters of three manufactures (chrome chemical, wood and paper, and textiles) were examined. At harvest time roots, whole shoots (rice, spinach, clover, grass), and rice grain in industrial wastewater–influenced areas and uninfluenced areas were sampled. Soil samples were also taken (0–15, 15–30 cm). Results indicated that when wastewater was discharged into the river water, the concentrations of Cd, Ni, Cr, and Pb increased in river water. Application of river water influenced by industrial wastewater for irrigation of rice and another plants enhanced, the amounts of available Cd, Ni, Cr and Pb in soil. In subsurface horizons (15–30 cm), the concentrations of heavy metals were more than in the surface horizon (0–15 cm). With increasing cation exchange capacity in the soil, the amount of available Cr increased. When the calcium carbonate content in soils was raised, the available Cd and Pb increased in the soil, but Ni and Cr decreased. Meanwhile, organic matter enhanced the concentrations of heavy metals in soil. Accumulations of heavy metals were higher in the roots of rice (control and treatment) than in shoot and rice grain. Cadmium accumulation in rice root was three times that in whole shoot, and grain was two times more than control. The concentrations of Ni, Cr, and Pb in root, whole shoot, and grain of rice were two times higher in industrial wastewater–treated areas. The concentrations of heavy metals in root and whole shoot of spinach, clover, and grass in industrial wastewater area increased about 100%, but not to a toxic level. Cadmium translocated more than other heavy metals from soil to root, whole shoot, and grain of rice, and whole shoot of spinach, clover, and grass.  相似文献   

17.
The sorption of four endocrine disruptors, bisphenol A (BPA), estrone (E1), 17β-estradiol (E2), and 17α-ethinylestradiol (EE2) in tropical sediment samples was studied in batch mode under different conditions of pH, time, and sediment amount. Data obtained from sorption experiments using the endocrine disruptors (EDs) and sediments containing different amounts of organic matter showed that there was a greater interaction between the EDs and organic matter (OM) present in the sediment, particularly at lower pH values. The pseudosecond order kinetics model successfully explained the interaction between the EDs and the sediment samples. The theoretical and experimentally obtained q e values were similar, and k values were smaller for higher SOM contents. The k F values, obtained from the Freundlich isotherms, varied in the ranges 4.2–7.4 × 10−2 (higher OM sediment sample, S2) and 1.7 × 10−3–3.1 × 10−2 (lower OM sediment sample, S1), the latter case indicating an interaction with the sediment that increased in the order: EE2 > > E2 > E1 > BPA. These results demonstrate that the availability of endocrine disruptors may be directly related to the presence of organic material in sediment samples. Studies of this kind provide an important means of understanding the mobility, transport, and/or reactivity of this type of emergent contaminant in aquatic systems.  相似文献   

18.
《Biological conservation》1986,38(3):233-242
Hedgerow and ditch removal between 1838 and 1984 in an agricultural area of south east Essex was studied using maps, aerial photographs and field survey results as source materials. An opisometer was used to record hedgerow and ditch lengths (metres) at seven reference points over the 146-year period. Removal was found to have occurred in two main periods, 1838–1873 (35 km) and 1960–1984 (49 km). The rate of removal for the latter period showed no signs of decline. Removal of hedegerows and ditches on farms has occurred piecemeal, with larger farms undergoing greater changes. Smaller farms (<70 ha) hedgerow field boundaries) of the study area still have relatively high hedgerow densities (average 136m ha−1). As 3·8 km of hedgerow removed between 1980 and 1984 was due to farm enlargement in the western region, future losses are expected in this area upon further amalgamation of the smaller farms with adjacent larger concerns (>150 ha). As the hedgerows on these small farms are important wildlife features, such a future trend has important implications for conservation on farms.  相似文献   

19.
Maize plants, grown for 7 and 21 days on a nutrient solution with NO3 as the sole nitrogen source showed a clear diurnal pattern with respect to the in vivo NRA. Especially in roots dark/light fluctuations of the enzyme activity were high. Also in NO3 uptake, OH efflux and endogenous content of water soluble carbohydrates a diurnal variation was found. The plant age did not significantly affect the daily rhythm.

Because day/night changes of the in vivo root NRA and nitrate uptake were proportional, the relative content of reduced N in the xylem sap of the plants was constant during a day/night interval. At both day 7 and day 21 about 40–50% of the N was transported via the xylem as amino N. As a result of non‐synchronous variation of the specific root and shoot NRA, root reduction capacity showed a great within‐day variation. It varied between 20 and 40% of the whole plant reduction capacity. Since the ratio N‐organic to N‐total in the xylem sap was about 0.5, cycling of organic nitrogen was very likely in these maize plants.  相似文献   

20.
Abstract

Efficient soil fertility management is essential for sustained production of high crop yields. Field experiments were conducted on an Entisol soil during 1984 to 1987 at Bidhan Chandra Agricultural University, West Bengal, India, to study the changes in soil N, P, and K in sub‐humid tropics under irrigated intensive cropping in rice‐potato‐mung bean (Oryza sativa L.‐ Solanum tuberosum L.‐ Vigna radiatus Roxb.) and rice‐potato‐sesame (O. sativa L.‐ S. tuberosum L.‐ Sesamum indicum L.) cropping sequences. The crops were grown with or without application of farmyard manure and with or without incorporation of crop residues. Different quantities of inorganic fertilizers based on locally recommended practices for fertilization were applied to rice and potato, and their residual effects on succeeding mung bean or sesame crops were assessed. At the end of experimentation, the total N status of soil improved more under the rice‐potato‐mung bean sequence than under the rice‐potato‐sesame sequence. The available phosphorus status of soil showed a positive balance in both sequences except in the treatment receiving 50% of the recommended amounts of N, P, and K. A reduction in the recommended fertilization without a compensating application of manure or crop residues resulted in the depletion of soil‐available K. All treatments reduced nonexchangeable K, and depletion was low wherever manure or crop residues were added into the cropping system. Integration of inorganic fertilizers with organic fertilizers, such as manure or crop residues, maintained soil N, P, and K under intensive agriculture and sustained soil productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号