首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Application of C-rich plant residues can change the soil system from C-limitation for microbial growth to limitation by other nutrients. However, the initial nutrient status of the soil may interact with the added amount of residues in determining limitation. We studied this interactive effect in soils from the Harvard Forest LTER, where annual addition of N since 1988 has resulted in soils with different N-status: No N (Unfertilized), 50 (Low N) and 150 (High N) kg N ha−1. We hypothesized that adding C-rich substrate would change the soil from being C- to being N-limited for bacterial growth and that the extent of N-limitation would be higher with increasing substrate additions, while becoming less evident in soil with increasing N-status. We compared the effect of adding two C-rich substrates, starch (0, 10, 20, 40 mg g−1 soil) and straw (0, 20, 40, 80 mg g−1), incubating the soils for up to 3 and 4 weeks for starch and straw, respectively. Nutrient limitations were studied by measuring bacterial growth 3 days after adding C as glucose and N as NH4NO3 in a full factorial design. Initially bacterial growth in all soils was C-limited. As hypothesized, adding C-rich substrates removed the C-limitation, with lower amounts of starch and straw needed in the unfertilized and Low N soils than in the High N soil. Combinations of different N-status of the soil and amendment levels of starch and straw could be found, where bacterial growth appeared close to co-limited both by available C and N. However, at even higher amendment levels, presumable resulting in N-limitation, bacterial growth still responded less by adding N then C-limited soils by adding C. Thus, in a C-limited soil there appeared to be N available immediate for growth, while in an N-limited soil, easily available C was not immediately available.  相似文献   

2.
The Static Fertilization Experiment Bad Lauchstädt (1902) consists of a crop rotation of sugar beets, spring barley, potatoes and winter wheat. Three farmyard manure (FYM) treatments and six mineral fertilizer treatments are combined orthogonally. Comparing the first and last decades, crop yields nearly doubled. In unfertilized plots, yields and N uptake by crops also increased when comparing first and last decades. On average for the decade 2001–2010, N uptake in unfertilized plots amounted 51.6 kg ha?1. Although soil organic carbon (SOC) levels for unfertilized plots remain almost unchanged, SOC increases slowly in the most highly fertilized treatment, resulting in a gradual widening of differences in SOC between the most extreme treatments to 0.952%. Climate change and increased harvesting and root residues due to rising yields are suggested as an explanation. Except for the plot with the highest application of mineral and organic fertilizer, in all treatments more N was taken up by crops than was applied by fertilizers. Higher FYM input leads to more unfavourable N balances because N release from FYM cannot be controlled. Considering atmospheric N input, only in the exclusively mineral fertilized treatment is N balanced out. Similar results are found for C balances: the exclusively mineral fertilized treatment shows the most favourable C balance.  相似文献   

3.
The present study investigates the impact of fire (low and high severity) on soil fungal abundance and microbial efficiency in C assimilation and mineralisation in a Mediterranean maquis area of Southern Italy over 2 years after fire. In burned and control soils total and active fungal mycelium, microbial biomass C, percentage of microbial biomass C present as fungal C, metabolic quotient (qCO2) and coefficient of endogenous mineralisation (CEM) were assayed together with several chemical properties of soil (i.e. pH and contents of organic C, total and mineral N, available K, Mg, Mn and water). Fire significantly decreased the fungal mycelium, whereas it stimulated microbial growth probably through the enhancement of bacterial growth because of the increase in organic C and nutrient contents in burned plots. This shift in microbial community composition might explain the observed reduction in soil microbial efficiency of C assimilation (high qCO2) and the increase in C mineralisation rate (CEM) in the first 84 days after fire. Therefore, fire might increase CO2 input to the atmosphere not only during combustion phase but also in the post-fire period.  相似文献   

4.
Resource availability and limiting factors for bacterial growth during early stages of soil development (8-138 years) were studied along a chronosequence from the glacial forefield of the Damma glacier in the Swiss Alps. We determined bacterial growth (leucine incorporation) and we investigated which resource (C, N or P) limited bacterial growth in soils formed by the retreating glacier. The latter was determined by adding labile sources of C (glucose), N and P to soil samples and then measuring the bacterial growth response after a 40 h incubation period. Bacterial growth increased with increasing soil age in parallel with the build up of organic matter. However, lower bacterial growth, when standardized to the amount of organic C, was found with time since the glacier retreat, indicating decreasing availability of soil organic matter with soil age. Bacterial growth in older soils was limited by the lack of C. The bacteria were never found to be limited by only N, only P, or N + P. In the youngest soils, however, neither the addition of C, N nor P singly increased bacterial growth, while a combination of C and N did. Bacterial growth was relatively more limited by lack of N than P when the C limitation was alleviated, suggesting that N was the secondary limiting resource. The availability of N for bacterial growth increased with time, as seen by an increased bacterial growth response after adding only C in older soils. This study demonstrated that bacterial growth measurements can be used not only to indicate direct growth effects, but also as a rapid method to indicate changes in bacterial availability of nutrients during soil development.  相似文献   

5.
To investigate the consequences of long-term N additions on soil CH4 dynamics, we measured in situ CH4 uptake rates, soil profiles and kinetics parameters during the growing season in a temperate deciduous forest in northwestern Pennsylvania (Allegheny College Bousson Environmental Forest). Measurements were made in control and adjacent plots amended with 100 kg N ha–1 year–1 for 8 years. We found that the in situ consumption rates were 0.19±0.02 (mean±SE) for the control and 0.12±0.01 mg CH4–C m–2 h–1 for the N treatment, indicating that consumption had been reduced by 35% after 8 years of N amendments. Despite the large difference in rates of consumption, there were no differences in the CH4 concentration profiles between the control and N-amended plots. Laboratory incubations of CH4 consumption throughout the soil column (organic horizon and mineral soil depths) showed that rates were greatest in the organic horizon of both control and N-amended soils, although consumption was reduced by 42% in the N-amended plot. However, the rate in the organic horizon was only about 50% the rate measured in organic horizons at other temperate forests. The apparent Km [Km(app)] value in the organic horizon of the control plot was fourfold less than the Km(app) value in the organic horizon of another temperate forest, but similar to the Km(app) values in adjacent plots amended with N for a decade. Unlike results for other temperate forests, Km(app) values at Bousson generally did not decrease with soil depth. These results indicate that N cycling strongly controls the CH4-consuming community, and suggest that alterations of the N cycle due to N deposition or addition may alter rates and the location of CH4 consumption by soils, even in soils with high N content and cycling rates.  相似文献   

6.
To achieve higher yields and better soil quality under rice–legume–rice (RLR) rotation in a rainfed production system, we formulated integrated nutrient management (INM) comprised of Azospirillum (Azo), Rhizobium (Rh), and phosphate-solubilizing bacteria (PSB) with phosphate rock (PR), compost, and muriate of potash (MOP). Performance of bacterial bioinoculants was evaluated by determining grain yield, nitrogenase activity, uptake and balance of N, P, and Zn, changes in water stability and distribution of soil aggregates, soil organic C and pH, fungal/bacterial biomass C ratio, casting activities of earthworms, and bacterial community composition using denaturing gradient gel electrophoresis (DGGE) fingerprinting. The performance comparison was made against the prevailing farmers’ nutrient management practices [N/P2O5/K2O at 40:20:20 kg ha−1 for rice and 20:30:20 kg ha−1 for legume as urea/single super-phosphate/MOP (urea/SSP/MOP)]. Cumulative grain yields of crops increased by 7–16% per RLR rotation and removal of N and P by six crops of 2 years rotation increased significantly (P < 0.05) in bacterial bioinoculants-based INM plots over that in compost alone or urea/SSP/MOP plots. Apparent loss of soil total N and P at 0–15 cm soil depth was minimum and apparent N gain at 15–30 cm depth was maximum in Azo/Rh plus PSB dual INM plots. Zinc uptake by rice crop and diethylenetriaminepentaacetate-extractable Zn content in soil increased significantly (P < 0.05) in bacterial bioinoculants-based INM plots compared to other nutrient management plots. Total organic C content in soil declined at 0–15 cm depth and increased at 15–30 cm depth in all nutrient management plots after a 2-year crop cycle; however, bacterial bioinoculants-based INM plots showed minimum loss and maximum gain of total organic C content in the corresponding soil depths. Water-stable aggregation and distribution of soil aggregates in 53–250- and 250–2,000 μm classes increased significantly (P < 0.05) in bacterial bioinoculants-based INM plots compared to other nutrient management plots. Fungal/bacterial biomass C ratio seems to be a more reliable indicator of C and N dynamics in acidic soils than total microbial biomass C. Compost alone or Azo/Rh plus PSB dual INM plots showed significantly (P < 0.05) higher numbers of earthworms’ casts compared to urea/SSP/MOP alone and bacterial bioinoculants with urea or SSP-applied plots. Hierarchical cluster analysis based on similarity matrix of DGGE profiles revealed changes in bacterial community composition in soils due to differences in nutrient management, and these changes were seen to occur according to the states of C and N dynamics in acidic soil under RLR rotation.  相似文献   

7.
Organic inputs [e.g. animal manure (AM) and plant residues] contribute directly to the soil organic N pool, whereas mineral N fertilizer contributes indirectly by increasing the return of the crop residues and by microbial immobilization. To evaluate the residual effect of N treatments established in four long‐term (>35 yr) field experiments, we measured the response of barley (grain yield and N offtake at crop maturity) to six rates (0, 30, 60, 90, 120 and 150 kg N/ha) of mineral fertilizer N (Nnew) applied in subplots replacing the customary long‐term plot treatments of fertilizer inputs (Nprev). Rates of Nprev above 50–100 kg N/ha had no consistent effect on the soil N content, but this was up to 20% greater than that in unfertilized treatments. Long‐term unfertilized plots should not be used as control to test the residual value of N in modern agriculture with large production potentials. Although the effect of mineral Nprev on grain yield and N offtake could be substituted by Nnew within a range of previous inputs, the value of Nprev was not eliminated irrespective of Nnew rate. Provided a sufficient supply of plant nutrients other than N, the use‐efficiency of Nnew did not change significantly with previous mineral N fertilizer rate. The residual effect of mineral N fertilizer was negligible compared with the residual effect of N from AM and catch crop residues.  相似文献   

8.
Abstract

Available soil mineral nitrogen (N) varies both temporally and spatially. These variations affect field‐scale N‐use efficiency. A field study was conducted for three years to investigate spatial variability in available soil mineral N within uniform research plots in relation to leaf greenness or chlorophyll content (plant N sufficiency) and yield. Variations within the plot in available soil mineral N sampled at the 6‐ligule stage was related to N fertility: the higher the fertilizer N levels, the higher the variability. The standard deviation for the 200 kg N ha‐1 treatment was up to five times higher than the unfertilized control treatment. The nitrate (NO3)‐N accounted for 70 to 80% of soil mineral N in fertilized plots compared to 50 to 60% in unfertilized control plots. The variability in grain yield of individual maize (Zea mays L.) plants within a plot was inversely related to soil N fertility: the higher the fertilizer N levels, the lower the yield variability (at 100 or 200 kg N ha‐1, yield ranged from 97 to 148 g plant1, or 10% CV within ayear compared to ranges from 0 to 82, or 50% CV in the same year at 0 kg N ha‐1). On an individual plant basis, chlorophyll content from the 6‐ligule stage through the growing season generally showed much smaller CV's, but had a similar trend to variations in yield. Leaf greenness from 6‐ligule stage to silking was significantly correlated with harvest yield (r>0.60, P<0.01), and both also correlated with available soil mineral N, though to a lesser degree (r>0.36). The number of fully expanded leaves prior to silking differentiated N treatments better than did single leaf chlorophyll measurements with higher yields associated with more rapid vegetative development. Our data suggest that multiple core samples are required to estimate available soil mineral N, particularly in fertilized plots that have greater spatial variability. Variability of plant‐based measures, such as chlorophyll content, could be used as an indicator of relative plant N sufficiency at early growth stages as spatial variability declined with higher soil N fertility.  相似文献   

9.
Tree girdling is a common practice in forestry whenever trees are to be killed without felling. The effect of tree girdling on soil nitrogen (N) mineralisation was estimated in both an old and a young spruce forest. The dynamics of mineral N (NO3–N and NH4+–N) and soil microbial biomass carbon (MBC) and N (MBN) were determined for different seasons. The in situ net N mineralisation was measured by incubating soil samples in stainless steel cylinders and the gross N mineralisation rates were measured by 15N pool dilution method. Mineral N concentrations increased significantly in the girdled plots in both old and young spruce forests and showed variations between soil horizons and between sampling times. Tree girdling significantly increased net N mineralisation in both spruce forests. Annual net N mineralisation was 64 and 39 kg N ha−1 in O horizon of the girdled plots in old and young forest plots, respectively, compared to 25 and 21 kg N ha−1 in the control plots. Annual N mineralisation in A horizon was similar between girdled and control plots (31 kg N ha−1) in the old forest whereas in the young forest A horizon N mineralisation was about 2.5 times higher in the girdled plots. As a result, the annual carbon budget was significantly more positive in the girdled plots than in the control plots in both old and young forests. However, we found significantly higher gross N mineralisation rates in both horizons in the control plots than the girdled plots in the old forest, but no differences between the treatments in the young forest. The MBC and MBN contents only showed significant changes during the first three months of the experiment and were similar later on. They first decreased as girdling removed the root carbohydrate, amino and organic acid exudation from the C sources for microorganisms then increased two months after the treatment root dieback acted as a new source of C. Mineralising microorganisms enhanced the mineral N concentrations in girdled plots as a result of greater activity rather than larger population size.  相似文献   

10.
Abstract

The influence of farmyard manure (FYM) and equivalent mineral NPK application on organic matter content, hot water extractable carbon (HWC), microbial biomass C (Cmic), and grain yields in a long-term field experiment was assessed after 40 years in Hungary. The unfertilized plot, FYM fertilized plots and plots fertilized with equivalent NPK fertilizer contained 0.99%, 1.13% and 1.05% total organic carbon (TOC) respectively. Compared to the unfertilized plot, FYM application resulted in 8.2% higher TOC than equivalent NPK fertilization. The highest TOC was only 1.21%, much lower than expected for a soil containing 21.3% of clay. The quantity of HWC varied depending on the type of fertilization: Compared to control, FYM treatments lead to 29% more HWC than mineral fertilization (FYM: 328 mg kg?1; NPK: 264 mg kg?1). The impact of FYM and equivalent NPK fertilizer on Cmic was contrary. FYM and NPK resulted in 304 and 423 mg kg?1 Cmic, respectively. The difference was 119 mg kg?1; 42% as compared to the unfertilized plot. Despite the higher HWC content, FYM treatments lead to significantly less (35%) grain yields than equivalent NPK doses; Cmic content showed closer correlation to grain yields.  相似文献   

11.
Long-term effects of mineral fertilization on microbial biomass C (MBC), basal respiration (R B), substrate-induced respiration (R S), β-glucosidase activity, and the rK-growth strategy of soil microflora were investigated using a field trial on grassland established in 1969. The experimental plots were fertilized at three rates of mineral N (0, 80, and 160 kg ha−1 year−1) with 32 kg P ha−1 year−1 and 100 kg K ha−1 year−1. No fertilizer was applied on the control plots (C). The application of a mineral fertilizer led to lower values of the MBC and R B, probably as a result of fast mineralization of available substrate after an input of the mineral fertilizer. The application of mineral N decreased the content of C extracted by 0.5 M K2SO4 (C ex). A positive correlation was found between pH and the proportion of active microflora (R S/MBC). The specific growth rate (μ) of soil heterotrophs was higher in the fertilized than in unfertilized soils, suggesting the stimulation of r-strategists, probably as the result of the presence of available P and rhizodepositions. The cessation of fertilization with 320 kg N ha−1 year−1 (NF) in 1989 also stimulated r-strategists compared to C soil, probably as the result of the higher content of available P in the NF soil than in the C soil.  相似文献   

12.
In this study, a 15N tracing incubation experiment and an in situ monitoring study were combined to investigate the effects of different N fertilizer regimes on the mechanisms of soil N dynamics from a long-term repeated N application experiment. The field study was initiated in 2003 under a wheat-maize rotation system in the subtropical rain-fed purple soil region of China. The experiment included six fertilization treatments applied on an equivalent N basis (280 kg N ha−1), except for the residue only treatment which received 112 kg N ha−1: (1) UC, unfertilized control; (2) NPK, mineral fertilizer NPK; (3) OM, pig manure; (4) OM-NPK, pig manure (40% of applied N) with mineral NPK (60% of applied N); (5) RSD, crop straw; (6) RSD-NPK, crop straw (40% of applied N) with mineral NPK (60% of applied N). The results showed that long-term repeated applications of mineral or organic N fertilizer significantly stimulated soil gross N mineralization rates, which was associated with enhanced soil C and N contents following the application of N fertilizer. The crop N offtake and yield were positively correlated with gross mineralization. Gross autotrophic nitrification rates were enhanced by approximately 2.5-fold in the NPK, OM, OM-NPK, and RSD-NPK treatments, and to a lesser extent by RSD application, compared to the UC. A significant positive relationship between gross nitrification rates and cumulative N loss via interflow and runoff indicated that the mechanisms responsible for increasing N loss following long-term applications of N fertilizer were governed by the nitrification dynamics. Organic fertilizers stimulated gross ammonium (NH4+) immobilization rates and caused a strong competition with nitrifiers for NH4+, thus preventing a build-up of nitrate (NO3). Overall, in this study, we found that partial or complete substitution of NPK fertilizers with organic fertilizers can reduce N losses and maintain high crop production, except for the treatment involving application of RSD alone. Therefore, based on the N transformation dynamics observed in this study, organic fertilizers in combination with mineral fertilizer applications (i.e. OM, OM-NPK, and RSD-NPK treatments) are recommended for crop production in the subtropical rain-fed purple soils in China.  相似文献   

13.
Dense hyphal mats formed by ectomycorrhizal (EcM) fungi are prominent features in Douglas-fir forest ecosystems, and have been estimated to cover up to 40% of the soil surface in some forest stands. Two morphotypes of EcM mats have been previously described: rhizomorphic mats, which have thick hyphal rhizomorphs and are found primarily in the organic horizon, and hydrophobic mats, which occur in the mineral horizon and have an ashy appearance. This study surveyed EcM mat and non-mat soils from eight early and late seral conifer forest stands at the H.J. Andrews Experimental Forest in western Oregon. EcM mats were classified by morphology and taxonomic identities were determined by DNA sequencing. A variety of chemical and biochemical properties, including enzymes involved in C, N, and P cycling were measured. Analysis was confined to a comparison of rhizomorphic mats colonizing the organic horizon with non-mat organic soils, and hydrophobic mats with non-mat mineral soils. Both the organic and mineral horizons showed differences between mat and non-mat enzyme profiles when compared on a dry weight basis. In the organic horizon, rhizomorphic mats had greater chitinase activity than non-mat soils; and in the mineral horizon, hydrophobic mats had increased chitinase, phosphatase, and phenoloxidase activity compared to the non-mat soil. The rhizomorphic mats had 2.7 times more oxalate than the non-mats and significantly lower pH. In the mineral horizon, hydrophobic mats had 40 times more oxalate and significantly lower pH than non-mat mineral soils. Microbial biomass C was not significantly different between the rhizomorphic mat and non-mat organic soils. In the mineral horizon, however, the hydrophobic mats had greater microbial biomass C than the non-mat soils. These data demonstrate that soils densely colonized by EcM fungi create a unique soil environment with distinct microbial activities when compared to non-mat forest soils.  相似文献   

14.
Exotic earthworms can profoundly alter soil carbon (C) and nitrogen (N) dynamics in northern temperate forests, but the mechanisms explaining these responses are not well understood. We compared the soil microbial community (SMC) composition (measured as PLFAs) and enzyme activity between paired earthworm-invaded and earthworm-free plots in northern hardwood forests of New York, USA. We hypothesized that differences in SMCs and enzyme activity between plots would correspond with differences in soil C content and C:N ratios. Relative abundance of several bacterial (mostly gram-positive) PLFAs was higher and that of two fungal PLFAs was lower in earthworm compared to reference plots, largely because of earthworm incorporation of the organic horizon into mineral soil. In surface mineral soil earthworms increased arbuscular mycorrhizal fungi (AMF) and gram-positive bacterial PLFAs, and decreased fungal (mostly saprotrophic) and several bacterial (gram-negative and non-specific) PLFAs. Earthworms also increased the activities of cellulolytic relative to lignolytic enzymes in surface mineral soil, and the relationships between enzyme activities and components of the SMC suggest a substrate-mediated effect on the SMC and its metabolism of C. A highly significant relationship between components of the SMC and soil C:N also suggests that earthworms reduce soil C:N through functional and compositional shifts in the SMC. Finally, changes in AMF abundances were linked to phosphatase activity, suggesting that earthworms do not necessarily inhibit P-acquisition by AMF-associated plants in our study system. We conclude that the combined influence of earthworm-related changes in physical structure, accessibility and chemistry of organic matter, and relative abundance of certain groups of fungi and bacteria promote C metabolism, in particular by increasing the activities of cellulolytic vs. lignolytic enzymes.  相似文献   

15.
Total soil organic carbon (TOC) and nitrogen (Nt) and labile soil N and C fractions were investigated in a field experiment in the Swabian Mountains, Germany. The plots used had been farmed conventionally or organically since 1972 and treated with either mineral or organic fertiliser. There were no significant differences between organic and conventional plots in terms of TOC, Nt, C and N mineralisation potentials (Cpot, Npot) and microbial C/N ratio. Microbial biomass C and N, however, were significantly higher on organic plots in spring. There was only a weak correlation between Npot and microbial N. It is proposed that limitations in microbial N availability, as reflected in the microbial N/C ratio, control net N mineralisation rates in the incubation experiments, as indicated by the highly significant correlations between both Npot and Npot/Cpot ratios and microbial N/C ratios. The conclusion reached is that, under these field conditions, the positive effect of organic farming on the microbial biomass N pool does not contribute to an (relative or absolute) increase in the N available to plants.  相似文献   

16.
The exotic earthworm invasion in hardwood forests of the northern United States is associated with many ecosystem-level changes. However, less is known about the effects of the invasion on the composition of the soil microbial community through which ecosystem-level changes are mediated. Further, earthworm effects on soil microbial community composition have not been well studied in the field. To evaluate changes in bacterial and fungal abundance associated with the earthworm invasion we quantified bacterial and fungal biomass by microscopic counts in paired earthworm-invaded (earthworm) and earthworm-free (reference) plots in five forest stands in central New York (USA). Earthworms significantly increased the ratio of bacteria to fungi on an area basis (per m2), by more than two times in mid-summer and early autumn. While this effect was associated primarily with the lack of the fungal-dominated organic horizon in earthworm plots, a higher ratio of bacteria to fungi in the surface 5 cm mineral soil also contributed as it developed between spring and mid-summer. Earthworm reduction of fungal biomass was confirmed by substantially lower growth of fungal hyphae into mesh sand bags in earthworm compared to reference plots. Burrowing activity by the earthworm Lumbricus terrestris increased the ratio of bacteria to fungi over the short-term within earthworm plots, introducing small-scale spatial heterogeneity associated with burrows. Our study suggests that the exotic earthworm invasion in these northern hardwood forests markedly increased the ratio of bacteria to fungi by eliminating the fungal-rich organic horizon, and was associated localized increases in bacterial vs. fungal abundance in mineral soil, setting the stage for future research into linkages between the earthworm invasion, bacterial and fungal abundance, and ecosystem processes.  相似文献   

17.

Purpose

While the influence of integrated fertility management systems on yield and N cycling in Mollisols is documented, its effect on soil C sequestration remains to be determined. We examined the response of organic C pools and crop yields to 21 years’ organic amendments applied at relatively low rates in a high-C Mollisol to optimize win–win management practices that balance agronomic and environmental interests.

Materials and methods

This study was based on five treatments: CK (unfertilized control), NPK (chemical fertilizer alone), NPKS1 (NPK plus crop residues), NPKS2 (NPK plus double amounts of crop residues), and NPKM (NPK plus pig manure). Crop yield was determined by harvesting a defined area. Organic C was quantified by dry combustion. A two-step acid hydrolysis technique was used to quantify hydrolysable and non-hydrolysable C fractions.

Results and discussion

All organic-treated plots produced significantly higher crop yields than the NPK plots, but only the manure treatment resulted in a significant increase in SOC compared with the NPK treatment after 21 years of experiment. It seems that the effects of organic amendments on SOC depend primarily on the type of organic materials when the application rates were relatively low. This indicated that organic amendments offer relatively short-term soil benefits for plant growth. The pig manure builds SOC over the long term, which provides secondary benefits while also sequestering C.

Conclusions

Overall, manure integrated with mineral fertilizer should be recommended to maintain the SOC content and increase crop yield in the Mollisols.  相似文献   

18.
The aim of this investigation was to prepare and evaluate organic manures (vermicompost, compost and FYM) and mineral fertilizers on crop productivity and changes in soil organic carbon (SOC) and fertility under a four-year-old maize-wheat cropping system. The results demonstrated that yields and nutrient uptake by crops increased significantly in plots receiving manures and mineral fertilizers either alone or in combination than unfertilized control. Application of manures and fertilizers also enhanced SOC, mineral N, Olsen-P and ammonium acetate-extractable K (NH4OAc-K) after both the crops. Surface soil maintained greater build-up in SOC, mineral N, Olsen-P and NH4OAc-K than sub-surface soil. Plots amended with manures at 5 t ha?1 and 50% recommended dose of fertilizer (RDF) had pronounced impact on improving SOC and fertility after both the crops indicating that integrated use of manures and mineral fertilizers could be followed to improve and maintain soil fertility, increase crop productivity under intensive cropping system.  相似文献   

19.
Microbial growth in soil is mostly limited by lack of carbon (C). However, adding fresh, C-rich litter can induce nitrogen (N) limitation. We studied the effect of alleviating C and N limitation in high-pH (> 8) soils, soils expected to favor bacterial over fungal growth. Nitrogen limitation was induced by incubating soils amended with C-rich substrate (starch or straw) for 4 weeks. Limiting nutrients and the effects of alleviating limitation were then studied by adding C (as glucose) or N (as NH4NO3) and measuring microbial growth and respiration after 4 d. In non-amended, C-limited soils, adding C but not N increased both microbial respiration and bacterial growth. In N-limited, substrate-amended soils, adding C increased respiration, whereas adding N increased both microbial respiration and growth. Inducing N limitation by amending with straw was most easily detected in increased fungal growth after the addition of N, whereas with starch, only bacterial growth responded to alleviating N limitation. Compared to earlier results using a low-pH soil, the effect of substrate used to induce N limitation was more important than pH for inducing bacterial or fungal growth after alleviating N limitation. Furthermore, we found no evidence that alleviating N limitation resulted in decreased respiration concomitant with increased microbial growth in soil, suggesting no drastic changes in C use efficiency.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号