首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
比较分析中国东部不同季风气候区中海伦黑土(HL)、封丘潮土(FQ)和鹰潭红壤(YT)3种土壤氨氧化细菌amoA基因多样性。采用非培养方法直接从土壤中提取微生物总DNA,用氨氧化细菌amoA基因特异引物扩增总DNA,构建了3种土壤amoA基因文库,并对文库进行限制性长度多态性(RFLP)分析。HL、FQ和YT的amoA基因文库克隆数量分别为49、50和48个,相应的RFLP类型数为10、10和14个OTUs,其中有4个OTUs为三种土壤共有;YT中氨氧化细菌amoA基因多样性指数最高,FQ最低;HL和FQ群落的相似为70%,HL与YT的相似度为50%,而FQ和YT之间仅为42%,说明氨氧化细菌具有地理分布的规律:17个amoA基因序列可以被聚成6个cluster,分属Nitrosospira和Nitrosomonas两个属。三种农田土壤中均存在丰富的氨氧化细菌,表明氨氧化细菌在农田土壤氮素循环中具有重要作用。  相似文献   

2.
The recently discovered complete ammonia oxidizers comammox Nitrospira contain clades A and B that can establish an independent one-step nitrification process; however, little is known about their environmental drivers or habitat distributions in agricultural soils. Previous studies on comammox Nitrospira in paddy soils have mainly focused on small-scale samples, and there is a lack of multisite research on comammox Nitrospira in paddy soils. In this study, we conducted a survey of 36 paddy soils to understand the community structure, abundance, and diversity of comammox Nitrospira and the degree to which they are affected by environmental factors at a large scale. Comammox Nitrospira were found to be widely distributed among the paddy soils. The abundance of comammox Nitrospira clade A was mostly lower than that of clade B, whereas its diversity was mostly higher than that of clade B. Correlation analysis showed that multiple factors affected (P < 0.05) the abundance of comammox Nitrospira, including soil pH, organic matter, total carbon, and total nitrogen, latitude, mean annual temperature, and mean annual precipitation. Moreover, there was a clear relationship between the comammox Nitrospira community and habitat, indicating that some amplicon sequence variants (ASVs) had a unique dominant position in specific habitats. Phylogenetic analysis showed that the ASVs of comammox Nitrospira clade A clustered with the known sequences in the paddy soils and were significantly different from the known sequences in other habitats, which may be related to the unique paddy field habitat. In contrast, comammox Nitrospira clade B showed no clear habitat dependence. These results support the wide distribution and high abundance of comammox Nitrospira in paddy soils and provide novel insights into nitrogen cycling and nutrient management in agricultural ecosystems.  相似文献   

3.
In this study, we investigated how co-occurrence patters of ammonia and nitrite oxidizers, which drive autotrophic nitrification, are influenced by tree species composition as well as soil pH in different forest soils. We expected that a decline of ammonia oxidizers in coniferous forests, as a result of excreted nitrification inhibitors and at acidic sites with low availability of ammonia, would reduce the abundance of nitrite-oxidizing bacteria (NOB). To detect shifts in co-occurrence patterns, the abundance of key players was measured at 50 forest plots with coniferous respectively deciduous vegetation and different soil pH levels in the region Schwäbische Alb (Germany). We found ammonia-oxidizing archaea (AOA) and Nitrospira-like NOB (NS) to be dominating in numbers over their counterparts across all forest types. AOA co-occurred mostly with NS, while bacterial ammonia oxidizers (AOB) were correlated with Nitrobacter-like NOB (NB). Co-occurrence patterns changed from tight significant relationships of all ammonia and nitrite oxidizers in deciduous forests to a significant relationship of AOB and NB in coniferous forests, where AOA abundance was reduced. Surprisingly, no co-occurrence structures between ammonia and nitrite oxidizers could be determined at acidic sites, although abundances were correlated to the respective nitrogen pools. This raises the question whether interactions with heterotrophic nitrifiers may occur, which needs to be addressed in future studies.  相似文献   

4.
Soil erosion modelling applied to burned forests in different global regions can be unreliable because of a lack of verification data. Here, we evaluated the following three erosion models: (1) Water Erosion Prediction Project (WEPP), (2) Morgan-Morgan-Finney (MMF) and (3) Universal Soil Loss Equation-Modified (USLE-M). Using field plots that were either untreated or mulched with straw, this study involved observations of soil loss at the event scale at a burned pine forest in Central Eastern Spain. The erosion predictions of the three models were analysed for goodness-of-fit. Optimization of the MMF model with a new procedure to estimate the C-factor resulted in a satisfactory erosion prediction capacity in burned plots with or without the mulching treatment. The WEPP model underestimated erosion in the unburned areas and largely overestimated the soil loss in burned areas. The accuracy of soil loss estimation by the USLE-M model was also poor. Calibration of the curve numbers and C-factors did not improve the USLE-M model estimation. Therefore, we conclude that an optimized MMF model was the most accurate way to estimate soil loss and recommend this approach for in Mediterranean burned forests with or without postfire mulching. This study gives land managers insight about the choice of the most suitable model for erosion predictions in burned forests.  相似文献   

5.
Concern about the apparent decline in butterfly populations has led to projects designed to obtain quantitative information on their abundance and diversity. Three methods of sampling communities of butterflies are suggested, and the use of a diversity index, β, is recommended. This index gives an estimate of the probability that an individual sampled at random from a community will be different from the previous individual sampled. Change and stability in diversity can be used as a guide for conservation and management programmes.  相似文献   

6.
Although there has been much recent interest in the effect of litter mixing on decomposition processes, much remains unknown about how litter mixing and diversity affects the abundance and diversity of decomposer organisms. We conducted a litter mixing experiment using litterbags in a New Zealand rainforest, in which treatments consisted of litter monocultures of each of 8 forest canopy and understory plant species, as well as mixtures of 2, 4 and 8 species. We found litter mixing to have little effect on net decomposition rates after either 279 or 658 days, and for each species decomposition rates in mixture treatments were the same as in monoculture. Litter species identity had important effects on litter microfauna, mesofauna and macrofauna, with different litter types promoting different subsets of the fauna. Litter mixing had few effects on densities of mesofauna and macrofauna, but did have some important effects on components of the microfauna, notably microbe-feeding and predatory nematodes. At day 279, litter mixing also consistently reduced the ratio of bacterial-feeding to microbe-feeding (bacterial-feeding+fungal-feeding) nematodes, pointing to mixing causing a significant switch from the bacterial-based to the fungal-based energy channel. Litter mixing sometimes influenced the community composition and diversity of nematodes and macrofauna, but effects of litter mixing on diversity were not necessarily positive, and were much weaker than effects of litter species identity on diversity. We conclude that litter mixing effects on the abundance and diversity of decomposer biota, when they occur, are likely to be of secondary and generally minor significance when compared to the effects of litter species identity and composition.  相似文献   

7.
Conflicting reports in the literature on the effects of tillage on earthworms are reviewed in the light of their roles in agro-ecosystem functioning. Tillage can change the abundance (by 2–9 times) as well as the composition (diversity) of earthworm populations. The actual impact is dependent on soil factors, climatic conditions and the tillage operations but hitherto this information was seldom provided in research reports. The declines in earthworm population often reported in conventionally tilled soils are associated with undesirable changes in the soil environmental conditions resulting from excessive tillage. Different species of earthworm respond differently to tillage. While the abundance of the deep burrowing species (anecic) tends to decline under tillage, particularly under deep ploughing, endogeic species can actually increase in number especially when there is increased food supply. Under conservation tillage systems, earthworms can potentially play a more important role than under conventional tillage in the functioning of the farming systems because of their abilities to modify the soil physical environment and nutrient cycling. However, adoption of conservation tillage does not automatically result in an optimal earthworm population in terms of abundance and diversity. There are opportunities to introduce more beneficial species to improve the ecological performance of agro-ecosystems. More research is needed to fully understand the ecology of different earthworm species, their interactions and their potential roles in promoting more sustainable farming systems.  相似文献   

8.
The effect of the combined application of urease and nitrification inhibitors on ammonia volatilization and the abundance of nitrifier and denitrifier communities is largely unknown. Here, in a mesocosm experiment, ammonia volatilization was monitored in an agricultural soil treated with urea and either or both of the urease inhibitor N‐(n‐butyl) thiophosphoric triamide (NBPT) and the nitrification inhibitor 3,4‐dimethylpyrazole phosphate (DMPP), with 50% and 80% water‐filled pore space (WFPS). The effect of the treatments on the abundance of bacteria and archaea was estimated by quantitative PCR (qPCR) amplification of their respective 16S rRNA gene, that of nitrifiers using amoA genes, and that of denitrifiers by qPCR of the norB and nosZI denitrification genes. After application of urea, N losses due to NH3 volatilization accounted for 23.0% and 9.2% at 50% and 80% WFPS, respectively. NBPT reduced NH3 volatilization to 2.0% and 2.4%, whereas DMPP increased N losses by up to 36.8% and 26.0% at 50% and 80% WFPS, respectively. The combined application of NBPT and DMPP also increased NH3 emissions, albeit to a lesser extent than DMPP alone. As compared with unfertilized control soil, both at 50% and 80% WFPS, NBPT strongly affected the abundance of bacteria and archaea, but not that of nitrifiers, and decreased that of denitrifiers at 80% WFPS. Regardless of moisture conditions, treatment with DMPP increased the abundance of denitrifiers. DMPP, both in single and in combined application with NBPT, increased the abundance of nitrification and denitrification genes.  相似文献   

9.
Li  Jie  Shi  Yuanliang  Luo  Jiafa  Li  Yan  Wang  Lingli  Lindsey  Stuart 《Journal of Soils and Sediments》2019,19(3):1250-1259
Purpose

Nitrification and denitrification in the N cycle are affected by various ammonia oxidizers and denitrifying microbes in intensive vegetable cultivation soils, but our current understanding of the effect these microbes have on N2O emissions is limited. The nitrification inhibitor, 3,4-dimethylpyrazole phosphate (DMPP), acts by slowing nitrification and is used to improve fertilizer use efficiency and reduce N losses from agricultural systems; however, its effects on nitrifier and denitrifier activities in intensive vegetable cultivation soils are unknown.

Materials and methods

In this study, we measured the impacts of DMPP on N2O emissions, ammonia oxidizers, and denitrifying microbes in two intensive vegetable cultivation soils: one that had been cultivated for a short term (1 year) and one that had been cultivated over a longer term (29 years). The quantitative PCR technique was used in this study. Three treatments, including control (no fertilizer), urea alone, and urea with DMPP, were included for each soil. The application rates of urea and DMPP were 1800 kg ha?1 and 0.5% of the urea-N application rate.

Results and discussion

The application of N significantly increased N2O emissions in both soils. The abundance of ammonia-oxidizing bacteria (AOB) increased significantly with high rate of N fertilizer application in both soils. Conversely, there was no change in the growth rate of ammonia-oxidizing archaea (AOA) in response to the applied urea despite the presence of larger numbers of AOA in these soils. This suggests AOB may play a greater role than AOA in the nitrification process, and N2O emission in intensive vegetable cultivation soils. The application of DMPP significantly reduced soil NO3?-N content and N2O emission, and delayed ammonia oxidation. It greatly reduced AOB abundance, but not AOA abundance. Moreover, the presence of DMPP was correlated with a significant decrease in the abundance of nitrite reductase (nirS and nirK) genes.

Conclusions

Long-term intensive vegetable cultivation with heavy N fertilization altered AOB and nirS abundance. In vegetable cultivation soils with high N levels, DMPP can be effective in mitigating N2O emissions by directly inhibiting both ammonia oxidizing and denitrifying microbes.

  相似文献   

10.
This study tests the hypothesis that microbial biomass phosphorus (P) makes a significant contribution to P solubility in riparian buffer strip soils. In 36 soils collected from buffer strips within three UK soil associations, water-extractable inorganic P solubility was most strongly related to NaHCO3 extractable inorganic P. However, within individual soil associations where soil pedological properties and management were similar, water-extractable inorganic P was most strongly related to microbial biomass P. These results highlight the difficulty in predicting dissolved P leaching risk based on agronomic soil P tests alone and the dissolved P leaching risk presented by having soils high in organic matter and microbial biomass P in close proximity to surface waters.  相似文献   

11.
Rapid nitrogen(N) transformations and losses occur in the rice rhizosphere through root uptake and microbial activities. However,the relationships between rice roots and rhizosphere microbes for N utilization are still unclear. We analyzed different N forms(NH+4,NO-3, and dissolved organic N), microbial biomass N and C, dissolved organic C, CH4 and N2O emissions, and abundance of microbial functional genes in both rhizosphere and bulk soils after 37-d rice growth in a greenhouse pot experiment. Results showed that the dissolved organic C was significantly higher in the rhizosphere soil than in the non-rhizosphere bulk soil, but microbial biomass C showed no significant difference. The concentrations of NH+4, dissolved organic N, and microbial biomass N in the rhizosphere soil were significantly lower than those of the bulk soil, whereas NO-3in the rhizosphere soil was comparable to that in the bulk soil. The CH4 and N2O fluxes from the rhizosphere soil were much higher than those from the bulk soil. Real-time polymerase chain reaction analysis showed that the abundance of seven selected genes, bacterial and archaeal 16 S rRNA genes, amoA genes of ammonia-oxidizing archaea and ammonia-oxidizing bacteria, nosZ gene, mcrA gene, and pmoA gene, was lower in the rhizosphere soil than in the bulk soil, which is contrary to the results of previous studies. The lower concentration of N in the rhizosphere soil indicated that the competition for N in the rhizosphere soil was very strong, thus having a negative effect on the numbers of microbes. We concluded that when N was limiting, the growth of rhizosphere microorganisms depended on their competitive abilities with rice roots for N.  相似文献   

12.
N2-fixation by free-living (diazotrophic) microorganism is a key process affecting ecosystem functioning in soils. Understanding drivers affecting diazotrophic community assemblages and activities may lead to management practices to increase primary production and/or environmental sustainability. We used PCR-DGGE to determine the fundamental relationships between diazotrophic community structure and in a wide range of soils across southern Australia. In addition qPCR, RT-qPCR and N2-fixation (acetylene reduction) were used to investigate factors influencing gene abundance, expression and processes in similar soils with different agricultural inputs. Across 22 soils, the structural composition of the nifH community was significantly influenced by site (ANOSIM R = 0.876; P = 0.001). The effects of management practices were evident, and often larger than between-soil differences, but were only present at some sites. Differences in nifH communities between sites correlated to particulate organic carbon (POC; measured by mid-infrared spectroscopy) content of the soils (BIO-ENV test; ρ = 0.502; P = 0.001), but not other factors including total soil C. In 3 soils from the Murrumbidgee irrigation region of NSW, intensification of the farming systems was associated with increasing N2-fixation (P < 0.05), except where rice was cultivated. N2-fixation correlated either with nifH abundance or gene expression in soils, but not both. Our data shows that soil C is closely linked to diazotrophic ecology. Principally, the amount of C entering the soil system is directly related to the abundance and N2-fixation activity of free-living bacteria. However, we also show that C in the POC pool has associative links to the genetic diversity of the soil diazotroph community. Given the importance of diversity and abundance of functional organisms in supporting ecosystem processes, we suggest that soil C inputs should be considered for both qualitative and quantitative properties when considering impacts on diazotrophic bacterial ecology.  相似文献   

13.
Fungal abundance and diversity in earthworm casts and in uningested soil   总被引:1,自引:0,他引:1  
Earthworm casts and adjacent uningested soil from 30 different locations were compared to determine the abundance and diversity of fungal species. The casts contained larger fungal populations (g-1 dry soil weight) and numbers of fungal species than the soil. Variations in these parameters between casts and soil were statistically significant (P=0.05). Fungal populations and the number of fungal species in casts and soil also varied significantly (P=0.05) between samples from different locations. A total of 27 fungal species were recorded from the casts and soil. Indices of dominance (0.084 casts; 0.14 soil) and general diversity (2.53 casts; 2.02 soil) demonstrated that the casts displayed more diverse fungal flora than the soil. The diversity of fungal species increased in earthworm casts after passing through the earthworm gut.  相似文献   

14.
Elucidating the biodiversity of CO2-assimilating bacterial communities under different land uses is critical for establishing an integrated view of the carbon sequestration in agricultural systems. We therefore determined the abundance and diversity of CO2 assimilating bacteria using terminal restriction fragment length polymorphism and quantitative PCR of the cbbL gene (which encodes ribulose-1,5-biphosphate carboxylase/oxygenase). These analyses used agricultural soils collected from a long-term experiment (Pantang Agroecosystem) in subtropical China. Soils under three typical land uses, i.e., rice–rice (RR), upland crop (UC), and paddy rice–upland crop rotation (PU), were selected. The abundance of bacterial cbbL (0.04 to 1.25?×?108 copies g?1 soil) and 16S rDNA genes (0.05–3.00?×?1010 copies g?1 soil) were determined in these soils. They generally followed the trend RR?>?PU?>?UC. The cbbL-containing bacterial communities were dominated by facultative autotrophic bacteria such as Mycobacterium sp., Rhodopseudomonas palustris, Bradyrhizobium japonicum, Ralstonia eutropha, and Alcaligenes eutrophus. Additionally, the cbbL-containing bacterial community composition in RR soil differed from that in upland crop and paddy rice–upland crop rotations soils. Soil organic matter was the most highly statistically significant factor which positively influenced the size of the cbbL-containing population. The RR management produced the greatest abundance and diversity of cbbL-containing bacteria. These results offer new insights into the importance of microbial autotrophic CO2 fixation in soil C cycling.  相似文献   

15.

Purpose

Two recent discoveries in nitrogen (N) cycling processes, i.e., archaeal ammonia oxidizers and anaerobic ammonia (ammonium) oxidation (anammox), have triggered great interest in studying microbial ammonia oxidation processes. The purpose of this review is to highlight recent progress in ammonia oxidation processes in soils and sediments and to propose future research activities in this topic.

Results and discussion

Aerobic ammonia oxidation and anammox processes are linked through the production and consumption of nitrite, respectively, thereby removing the reactive N (NH4 +, NO2 ?, NO3 ?) from soil and sediment ecosystems. Ammonia-oxidizing microorganisms are widely distributed in soils and sediments, and increasing evidence suggests that ammonia-oxidizing archaea and bacteria are functionally dominant in the ammonia oxidation of acid soils and other soils, respectively. The widespread occurrence and great variation in the abundance of anammox bacteria indicate their heterogeneous distribution and niche differentiation. Therefore, the worldwide distribution of both microbial groups in nature has stimulated researchers to investigate the physiology and metabolism of related groups, as well as appraising their contribution to N cycling.

Conclusions

We summarized the current progress and provided future perspectives in the microbiology of aerobic and anaerobic ammonia oxidation in soils and sediments. With increasing concern and interest in soil and sediment ammonia oxidation processes, studies in the microbial mechanisms underlying nitrification and anammox, as well as their interactions, are essential for understanding their contribution to the loss of N either through nitrate leaching or N-related gas emissions.  相似文献   

16.
Arid soils where water and nutrients are scarce occupy over 30% of the Earth's total surface. However, the microbial autotrophy in the harsh environments remains largely unexplored. In this study, the abundance and diversity of autotrophic bacteria were investigated, by quantifying and profiling the large subunit genes of ribulose-1,5-bisphosphate carboxylase/oxygenase(Ru Bis CO) form I(cbb L) responsible for CO2 fixation, in the arid soils under three typical plant types(Haloxylon ammodendron, Cleistogenes chinensis,and Reaumuria soongorica) in Northwest China. The bacterial communities in the soils were also characterized using the 16 S r RNA gene. Abundance of red-like autotrophic bacteria ranged from 3.94 × 105 to 1.51 × 106 copies g-1dry soil and those of green-like autotrophic bacteria ranged from 1.15 × 106 to 2.08 × 106 copies g-1dry soil. Abundance of both red- and green-like autotrophic bacteria did not significantly differ among the soils under different plant types. The autotrophic bacteria identified with the cbb L gene primer were mainly affiliated with Alphaproteobacteria, Betaproteobacteria and an uncultured bacterial group, which were not detected in the 16 S r RNA library. In addition, 25.9% and 8.1% of the 16 S r RNA genes were affiliated with Cyanobacteria in the soils under H. ammodendron and R. soongorica, respectively. However, no Cyanobacteria-affiliated cbb L genes were detected in the same soils. The results suggested that microbial autotrophic CO2 fixation might be significant in the carbon cycling of arid soils, which warrants further exploration.  相似文献   

17.
过碳酰胺是一种新型精细化工品,也是一种新型氮肥,在国外已得到广泛的应用和开发,而我国对其开发和应用刚刚起步。试验研究了3种酸性土壤和3种碱性土壤施入过碳酰胺(和尿素对照)后的氨挥发特性。结果表明,过碳酰胺和尿素在供试6种土壤上的氨挥发强度具有相同的规律,都是先从小到大出现峰值,然后又降低;3种酸性土壤氨挥发高峰期约在第7d左右,3种碱性土壤的氨挥发高峰期约在第3d左右。土壤氨挥发含量的变化与pH变化同步。在最初挥发高峰期阶段,过碳酰胺的氨挥发强度在6种土壤上都大于尿素,但在供试的3种酸性土壤上,过碳酰胺的氨挥发总量均略小于尿素,而在供试的3种碱性土壤上,却正好相反。  相似文献   

18.
The Western Peat District of The Netherlands has a characteristic Dutch landscape. It consists mainly of meadows for dairy farming, crisscrossed by a dense network of ditches. Its biodiversity is regarded as of high national and international importance, but is declining as a result of intensive farming. Besides the establishment of reserves, measures to conserve and restore biological diversity have been implemented in the form of agri-environment schemes (AES). The aim of this research is to investigate, first, whether the reserves, assuming these provide source populations, affect the distribution of amphibians and, second, whether AES in the form of nature-friendly ditch bank management benefits amphibian diversity and abundance and enhances distribution across the agricultural landscape. In total, 42 ditches (24 control ditches and 18 AES ditches) were studied. Each ditch was perpendicular to the boundary of one of the reserves and was divided into five ditch sections of 100 m spread over 800 m, starting in the reserve and proceeding into the farmland. Generalized Linear Modelling was used to quantify the effect of nature-friendly ditch bank management (AES) and distance to the nature reserve on amphibian diversity and abundance. Species richness was high in AES ditches as compared to control ditches. The number of observed green frog (Rana esculenta synkl.) seemed to decline in the control ditches at large distances from the reserve. The other species, although their abundances were higher in the reserves, did not show a declining trend across the farmland. However, all adult amphibians except green frogs together had significantly higher abundances in the AES ditches compared to the control ditches. These results illustrate the potential role of agricultural ditches, combined with reserves and nature-friendly ditch bank management, in the conservation of amphibian populations.  相似文献   

19.
The occurrence and distribution of culturable fungi in Taylor Valley, Antarctica was assessed in terms of soil habitat. Soil transects throughout the valley revealed differential habitat utilization between filamentous and non-filamentous (yeast and yeast-like) fungi. In addition, there were significant differences in species distribution patterns with respect to soil pH, moisture, distance from marine coastline, carbon, chlorophyll a, salinity, elevation and solar inputs. Filamentous fungal abundance is most closely associated with habitats having higher pH, and soil moistures. These close associations were not found with yeast and yeast-like fungi demonstrating that yeast and yeast-like fungi utilize a broader range of habitat. An intensive survey of the Victoria Land is necessary to gain a better understanding of their role in soil functioning and nutrient cycling processes.  相似文献   

20.
In order to study the variations in spore abundance and root colonization parameters of arbuscular mycorrhizal (AM) fungi in a naturally heavy metals polluted site and their relationships with soil properties, 35 plots in the Anguran Zn and Pb mining region were selected along a transect from the mine to 4500 m away. Within each plot, a composite sample of root and rhizospheric soil from a dominant indigenous plant was collected. The soil samples were analyzed for their physico-chemical characteristics. Spores were extracted, counted and identified at genus level. The roots were examined for colonization, arbuscular abundance, mycorrhizal frequency and intensity. Along the transect, the total and available (DTPA-extractable) concentration of Zn decreased from 6472 to 45 mg kg−1 and 75 to 5 mg kg−1, respectively. For Pb the values varied from 5203 to 0 mg kg−1 and 32 to 0 mg kg−1, respectively. In parallel, root colonization rate in the dominant native plants (except Alyssum sp.) varied from 35% to 85% and the spore numbers from 80 to 1306 per 200 g dry soil along the transect. Spores of Glomus were abundantly found in all plots as dominant, while Acaulospora spores were observed only in some moderately polluted and in control plots. AM fungal propagules never disappeared completely even in soils with the highest rates of both heavy metals. Spore numbers were more affected by Zn and Pb concentrations than root colonization. The variations of AM fungi propagules were better related to available than to total concentration of both metals. Spore numbers were positively correlated with mycorrhizal colonization parameters, particularly with arbuscular abundance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号