共查询到20条相似文献,搜索用时 0 毫秒
1.
Matthew P. Weand Mary A. Arthur Rebecca L. McCulley 《Soil biology & biochemistry》2010,42(12):2161-2173
Forest nitrogen (N) retention and soil carbon (C) storage are influenced by tree species and their associated soil microbial communities. As global change factors alter forest composition, predicting long-term C and N dynamics will require understanding microbial community structure and function at the tree species level. Because atmospheric N deposition is increasing N inputs to forested ecosystems across the globe, including the northeastern US, it is also important to understand how microbial communities respond to added N. While prior studies have examined these topics in mixed-species stands, we focused on the responses of different tree species and their associated microbial communities within a single forest type - a northern hardwood forest in the Catskills Mountains, NY. Based on prior studies, we hypothesized that N additions would stimulate extracellular enzyme activities in relatively labile litters, but suppress oxidative enzyme activities in recalcitrant litters, and tested for independent tree species effects within this context. During the 2007 growing season (May-June), we measured enzyme activities and microbial community composition (using phospholipid fatty acid analysis - PLFA) of the forest floor in single-species plots dominated by sugar maple (Acer saccharum), yellow birch (Betula alleghaniensis), red oak (Quercus rubra), American beech (Fagus grandifolia) and eastern hemlock (Tsuga canadensis), species whose litters range from relatively labile to recalcitrant. Half the plots were fertilized with N by adding NH4NO3 (50 kg ha−1 y−1) from 1997 to 2009. Non-metric multidimensional scaling (NMS) and multi-response permutation procedures (MRPP) were used to examine microbial community structure and relationship to enzyme activities.We found that in response to N additions, both microbial community composition and enzyme activities changed; however the strength of the changes were tree species-specific and the direction of these changes was and not readily predictable from prior studies conducted in mixed-species stands. For example, in contrast to other studies, we found that N additions caused a significant overall increase in fungal biomass that was strongest for yellow birch (24% increase) and weakest for sugar maple (1% increase). Contrary to our initial hypotheses and current conceptual models, N additions reduced hydrolytic enzyme activities in hemlock plots and reduced oxidative enzyme activity in birch plots, a species with relatively labile litter. These responses suggest that our understanding of the interactions between microbial community composition, enzyme activity, substrate chemistry, and nutrient availability as influenced by tree species composition is incomplete. NMS ordination showed that patterns in microbial community structure (PLFA) and function (enzyme activity) were more strongly influenced by tree species than by fertilization, and only partially agreed with the structure-function relationships found in other studies. This finding suggests that tree species-specific responses are likely to be important in determining the structure and function of northeastern hardwood forests in the future. Enhanced understanding of microbial responses to added N in single and mixed-species substrates with varying amounts of lignin and phenols may be needed for accurate predictions of future soil C and N dynamics. 相似文献
2.
Differences in soil microbial communities between ex-arable and undisturbed soils are often assumed to reflect long-term legacies of agricultural practices. Ex-arable soils, however, are commonly dominated by different plant species than undisturbed soils making it difficult to separate the importance of land-use and plant-growth legacies. In a system where non-native plants dominate ex-arable soils, we decoupled land-use (ex-arable, undisturbed) and plant-growth (native, non-native) effects on soil microbial communities using a factorial sampling design. Soils were removed from 14 sites that formed a 52-year chronosequence of agricultural abandonment. Microbial abundance and composition were measured using whole-soil phospholipid fatty acid analyses and microbial activity was measured in a subset of samples using sole-carbon-source utilization analyses. We found that both non-native-cultivated and ex-arable soils were independently associated with lower microbial abundance and diversity than native and undisturbed soils. We also found a correlation between microbial abundance and age-since-agricultural abandonment in ex-arable/non-native-cultivated soils suggesting that non-native plant effects accumulate over time. Microbial activity was consistent with microbial abundance; microbial communities in non-native-cultivated, ex-arable soils were slow to respire most carbon sources. Our data suggests that agricultural practices create soil conditions that favor non-native plant growth and non-native plants maintain these conditions. Potential mechanisms explaining how non-natives create soils with small microbial communities and how small microbial communities may benefit non-natives are discussed. 相似文献
3.
凋落物分解是陆地生态系统养分循环的关键过程,明确凋落物多样性如何影响土壤微生物群落构成和多度,继而潜在地改变凋落物分解的微生物学机制有助于认识生物多样性和森林生态系统功能的关系。通过小盆模拟试验,应用磷脂脂肪酸谱图的方法研究了我国南方红壤丘陵区典型物种马尾松和湿地松的凋落物分别与白栎和青冈的凋落物混合,与单一针叶凋落物分解时相比,针阔混合凋落物分解过程中土壤微生物群落结构的变化,结果显示:(1)针阔混合凋落物分解时土壤微生物群落磷脂脂肪酸(Phospholipidfatty acids,PLFA)总量低于单一针叶处理,细菌和放线菌的相对多度高于单一针叶处理,真菌则相反,群落真菌/细菌低于单一针叶处理,土壤微生物生物量的差异主要来自于真菌;(2)主成分分析表明:针阔混合凋落物分解与单一针叶凋落物分解的土壤微生物群落结构差异显著,两个时期(分解9个月和18个月)主成分一分别可以解释65.74%和89.63%的变异,第一主成分主要包括18∶2ω6,9、18∶1ω9c、17∶0和10Me18∶0等磷脂脂肪酸;(3)土壤微生物群落结构受凋落物初始C/N和木质素/N调控,土壤微生物群落细菌的相对多度与凋落物初始C/N和木质素/N显著负相关,真菌则与凋落物初始C/N和木质素/N显著正相关,群落真菌/细菌与凋落物初始C/N和木质素/N显著正相关。针阔凋落物混合分解通过改变凋落物C/N和木质素/N,提供了对分解者更为有利的微环境。 相似文献
4.
Invasive earthworms alter the structure of soils in northern hardwood forests, but the quantitative impacts on litter-dwelling invertebrates are unclear. Litter loss should reduce the habitat space, but nutrient-rich earthworm burrows might provide food resources. We investigated the impact of invasive earthworms on populations of Ixodes scapularis (black-legged ticks) and other litter-dwelling arthropods to determine the impact of a reduced litter environment. We used five pairs of one-hectare sites (earthworm invaded versus reference) within four separate contiguous forests in New York state. The presence of earthworms decreased the density of nymphal I. scapularis by 46.1% and larval I. scapularis by 29.3%. We also observed a dramatic decline in the total abundance of litter-dwelling arthropods with 69.9% of the arthropod population disappearing in the presence of earthworms. Additionally, litter arthropod populations declined disproportionately to leaf litter mass reduction indicating that the quality of the remaining litter material in the earthworm sites was poor. The impact of earthworm invasion on the litter environment and implications for the position of an important disease vector (I. scapularis) within the litter ecosystem are explored. 相似文献
5.
Invasions of exotic plant species are among the most pervasive and important threats to natural ecosystems, however, the effects of plant invasions on soil processes and the soil biota have rarely been investigated. We grew two exotic and a native under-story plant species in the same mineral soil from a non-invaded forest stand in order to test whether observed differences in the field could be experimentally produced in the greenhouse. We characterized changes in the soil microbial community structure (as indexed by PLFAs) and function (as indexed by enzyme activities and SIR), as well as changes in potential nitrogen mineralization rates. We found that the invasion of two very dissimilar exotic species into the under-story of deciduous forests in eastern North America can rapidly cause changes in most of the studied soil properties. At the end of the three-month incubation, soils under the exotic species had significantly different PLFA, enzyme and SIR profiles than both initial soils and soils where native shrubs had been grown. We also observed a significant increase in pH and nitrification rates under one of the exotic plants. Such changes in the soil are potentially long-term (e.g. changes in soil pH) and are therefore likely to promote the re-invasion of these and other exotics. Both management of exotic plant invasions and the restoration of native communities must take into account exotic species effects on the soil. 相似文献
6.
The chemical, physical and biological processes occurring in the rhizosphere can influence plant growth by modifying root associated microorganisms and nutrient cycles. Although rhizosphere has been widely investigated, little is known about the rhizosphere effect of pioneer plants in soils of periglacial environments. The knowledge of the processes controlling soil–plant relationships in these severe environments may help understanding the ecological evolution of newly deglaciated surfaces. We selected three plants [Helianthemum nummularium (L.) Mill. subsp. grandiflorum (Scop.), Dryas octopetala (L.), and Silene acaulis (L.) Jacq. subsp. cenisia (Vierh.) P. Fourn.] that sparsely occupy deglaciated areas of central Apennines (Italy), with the aim to assess changes between rhizosphere and bulk soil in terms of physical, chemical, and biological properties. The three plants considered showed to have different rhizosphere effect. Helianthemum induced a strong rhizosphere effect through a synergistic effect between root activity and a well adapted rhizosphere microbial community. Dryas did not foster a microbial community structure specifically designed for its rhizosphere, but consumes most of the energetic resources supplied by the plant to make nutrients available. Conversely to the other two species, Silene produced slight soil changes in the rhizosphere, where the microbial community had a structure, abundance and activity similar to those of the bulk soil. The ability to colonize harsh environments of Silene is probably linked to the shape and functions of its canopy rather than to a functional rhizosphere effect.This study showed that the rhizosphere effect differed by species also under high environmental pressure (periglacial conditions, poorly developed soil), and the activity of roots and associated microbial community is decisive in modifying the soil properties, so to create a suitable environment where plants are able to grow. 相似文献
7.
Lynne M. Macdonald Eric Paterson A James S. McDonald 《Soil biology & biochemistry》2006,38(4):674-682
The influence of repeated defoliation on soil microbial community (SMC) structure and root turnover was assessed in two contrasting Lolium perenne cultivars (AberDove and S23) grown in fertilised (+F) and non-fertilised (NF) soil. BiOLOG sole carbon source utilisation profiles (SCSUPs) indicated consistently greater potential carbon utilisation in defoliated (+D) compared to non-defoliated (ND) soils regardless of cultivar and fertiliser, and was accounted for in a variety of substrate groups (sugars, carboxylic, amino and phenolic acids). Potential carbon utilisation was also stimulated in +F compared to NF soils, primarily through increased potential utilisation of carboxylic acids. PLFA indicators for the bacterial biomass did not significantly differ between cultivar, soil fertilisation, or defoliation. Defoliated swards grown in fertilised soil (+F+D) had a higher fungal:bacterial ratio and a greater bacterial stress index (cy19:0/18:1w7c), compared to that of +F ND, NF ND and NF+D, and regardless of cultivar. Overall SMC structure (canonical variate (CV) analysis of PLFAs) discriminated based on cultivar, defoliation and soil fertilisation. Primary discrimination of the SMCs could be related to differences in root density and total plant biomass, and in the case of NF soils, secondary community shifts, evident with defoliation, related to root disappearance over the growing season. Despite the strong common effects of defoliation, and to a lesser extent soil fertilisation, cultivar specific drivers of the soil microbial community were maintained, resulting in consistent, but subtle, discrimination of the SMC associated with the contrasting L. perenne cultivars. 相似文献
8.
Microbial composition is known, on similar soil types, to vary based on differing organic matter inputs, or stand composition. Fine-textured luvisolic soils, which dominate the upland boreal forests of Western Canada, support a canopy cover of aspen (Populus tremuloides Michx.), white spruce (Picea glauca (Moench) Voss) or a mixture of the two. These soils then reflect different belowground biogeochemical processing of organic matter. Novel, anthropogenic soils formed from a combination of peat litter and fine textured mineral soil, are now also a part of the landscape in the western boreal. This study set out to determine if a simple labeled compound (13C glucose) was processed differently by soils from the two dominant stand types (aspen and spruce) and from an anthropogenic (newly reclaimed) site. Results indicate that while all three soils rapidly incorporated and respired the labeled carbon, each maintained a distinct microbial community structure (as evidenced by phospholipid fatty acid analysis) throughout the 300 hour experiment. Therefore soils with different microbial communities from varied organic matter inputs decompose organic carbon by different processes, even in the case of simple labile compounds. 相似文献
9.
Plant-soil feedbacks are gaining attention for their ability to determine plant community development. Plant-soil feedback models and research assume that plant-soil interactions occur within days to weeks, yet, little is known about how quickly and to what extent plants change soil community composition. We grew a dominant native plant (Pseudoroegneria spicata) and a dominant non-native plant (Centaurea diffusa) separately in both native- and non-native-cultivated field soils to test if these species could overcome soil legacies and create new soil communities in the short-term. Soil community composition before and after plant growth was assessed in bulk and rhizosphere soils using phospholipid fatty acid analyses. Nematode abundance and mycorrhizal colonization were also measured following plant growth. Field-collected, native-cultivated soils showed greater bacterial, Gram (−), fungal, and arbuscular mycorrhizal PLFA abundance and greater PLFA diversity than field-collected, non-native-cultivated soils. Both plant species grew larger in native- than non-native-cultivated soils, but neither plant affected microbial composition in the bulk or rhizosphere soils after two months. Plants also failed to change nematode abundance or mycorrhizal colonization. Plants, therefore, appear able to create microbial legacies that affect subsequent plant growth, but contrary to common assumptions, the species in this study are likely to require years to create these legacies. Our results are consistent with other studies that demonstrate long-term legacies in soil microbial communities and suggest that the development of plant-soil feedbacks should be viewed in this longer-term context. 相似文献
10.
Structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil 总被引:26,自引:0,他引:26
E. Kandeler D. Tscherko K. D. Bruce M. Stemmer P. J. Hobbs R. D. Bardgett W. Amelung 《Biology and Fertility of Soils》2000,32(5):390-400
Particle-size fractionation of a heavy metal polluted soil was performed to study the influence of environmental pollution
on microbial community structure, microbial biomass, microbial residues and enzyme activities in microhabitats of a Calcaric
Phaeocem. In 1987, the soil was experimentally contaminated with four heavy metal loads: (1) uncontaminated controls; (2)
light (300 ppm Zn, 100 ppm Cu, 50 ppm Ni, 50 ppm V and 3 ppm Cd); (3) medium; and (4) heavy pollution (two- and threefold
the light load, respectively). After 10 years of exposure, the highest concentrations of microbial ninhydrin-reactive nitrogen
were found in the clay (2–0.1 μm) and silt fractions (63–2 μm), and the lowest were found in the coarse sand fraction (2,000–250 μm).
The phospholipid fatty acid analyses (PLFA) and denaturing gradient gel electrophoresis (DGGE) separation of 16S rRNA gene
fragments revealed that the microbial biomass within the clay fraction was predominantly due to soil bacteria. In contrast,
a high percentage of fungal-derived PLFA 18 : 2ω6 was found in the coarse sand fraction. Bacterial residues such as muramic
acid accumulated in the finer fractions in relation to fungal residues. The fractions also differed with respect to substrate
utilization: Urease was located mainly in the <2 μm fraction, alkaline phosphatase and arylsulfatase in the 2–63 μm fraction,
and xylanase activity was equally distributed in all fractions. Heavy metal pollution significantly decreased the concentration
of ninhydrin-reactive nitrogen of soil microorganisms in the silt and clay fraction and thus in the bulk soil. Soil enzyme
activity was reduced significantly in all fractions subjected to heavy metal pollution in the order arylsulfatase >phosphatase
>urease >xylanase. Heavy metal pollution did not markedly change the similarity pattern of the DGGE profiles and amino sugar
concentrations. Therefore, microbial biomass and enzyme activities seem to be more sensitive than 16S rRNA gene fragments
and microbial amino-sugar-N to heavy metal treatment.
Received: 21 January 2000 相似文献
11.
This study investigated the possible effects of tree species diversity and identity on the soil microbial community in a species-rich temperate broad-leaved forest. For the first time, we separated the effects of tree identity and tree species diversity on the link between above and belowground communities in a near-natural forest. We established 100 tree clusters consisting of each three tree individuals represented by beech (Fagus sylvatica L.), ash (Fraxinus excelsior L.), hornbeam (Carpinus betulus L.), maple (Acer pseudoplatanus L.), or lime (Tilia spec.) at two different sites in the Hainich National Park (Thuringia, Germany). The tree clusters included one, two or three species forming a diversity gradient. We investigated the microbial community structure, using phospholipid fatty acid (PLFA) profiles, in mineral soil samples (0–10 cm) collected in the centre of each cluster.The lowest total PLFA amounts were found in the pure beech clusters (79.0 ± 23.5 nmol g−1 soil dw), the highest PLFA amounts existed in the pure ash clusters (287.3 ± 211.3 nmol g−1 soil dw). Using principle components analyses (PCA) and redundancy analyses (RDA), we found only for the variables ‘relative proportion of beech trees’ and ‘living lime fine root tips associated with ectomycorrhiza’ a significant effect on the PLFA composition. The microbial community structure was mainly determined by abiotic environmental parameters such as soil pH or clay content. The different species richness levels in the clusters did not significantly differ in their total PLFA amounts and their PLFA composition. We observed a tendency that the PLFA profiles of the microbial communities in more tree species-rich clusters were less influenced by individual PLFAs (more homogenous) than those from species-poor clusters.We concluded that tree species identity and site conditions were more important factors determining the soil microbial community structure than tree species diversity per se. 相似文献
12.
A range of agricultural practices influence soil microbial communities, such as tillage and organic C inputs, however such effects are largely unknown at the initial stage of soil formation. Using an eight-year field experiment established on exposed parent material (PM) of a Mollisol, our objectives were to: (1) to determine the effects of field management and soil depth on soil microbial community structure; (2) to elucidate shifts in microbial community structure in relation to PM, compared to an arable Mollisol (MO) without organic amendment; and (3) to identify the controlling factors of such changes in microbial community structure. The treatments included two no-tilled soils supporting perennial crops, and four tilled soils under the same cropping system, with or without chemical fertilization and crop residue amendment. Principal component (PC) analysis of phospholipid fatty acid (PLFA) profiles demonstrated that microbial community structures were affected by tillage and/or organic and inorganic inputs via PC1 and by land use and/or soil depth via PC2. All the field treatments were separated by PM into two groups via PC1, the tilled and the no-tilled soils, with the tilled soils more developed towards MO. The tilled soils were separated with respect to MO via PC1 associated with the differences in mineral fertilization and the quality of organic amendments, with the soils without organic amendment being more similar to MO. The separations via PC1 were principally driven by bacteria and associated with soil pH and soil C, N and P. The separations via PC2 were driven by fungi, actinomycetes and Gram (−) bacteria, and associated with soil bulk density. The separations via both PC1 and PC2 were associated with soil aggregate stability and exchangeable K, indicating the effects of weathering and soil aggregation. The results suggest that in spite of the importance of mineral fertilization and organic amendments, tillage and land-use type play a significant role in determining the nature of the development of associated soil microbial community structures at the initial stages of soil formation. 相似文献
13.
Fuensanta García‐Orenes Antonio Roldn Alicia Morugn‐Coronado Carlos Linares Artemi Cerd Fuensanta Caravaca 《Land Degradation u0026amp; Development》2016,27(6):1622-1628
Soil microbial populations and their functions related to nutrient cycling contribute substantially to the regulation of soil fertility and the sustainability of agroecosystems. A field experiment was performed to assess the medium‐term effect of a mineral fertilizer and two organic fertilization systems with different nitrogen sources on the soil microbial community biomass, structure, and composition (phospholipid fatty acids, pattern, and abundance), microbial activity (basal respiration, dehydrogenase, protease, urease, β‐glucosidase, and total amount of phosphomonoesterase activities), and physical (aggregate stability) and chemical (total organic C, total N, available P and water‐soluble carbohydrates) properties in a vineyard under semiarid Mediterranean conditions after a period of 10 years. The three fertilization systems assayed were as follows: inorganic fertilization, addition of grapevine pruning with sheep manure (OPM), and addition of grapevine pruning with a legume cover crop (OPL). Both treatments, OPM and OPL, produced higher contents of total organic carbon, total N, available P, water‐soluble carbohydrates, and stable aggregates. The organic fertilization systems increased microbial biomass, shifted the structure and composition of the soil microbial community, and stimulated microbial activity, when compared with inorganic fertilization. The abundances of fungi and G+ bacteria were increased by treatments OPM and OPL, without significant differences between them. Organic and inorganic fertilization produced similar grapevine yields. The ability of the organic fertilization systems for promoting the sustainability and soil biological and chemical fertility of an agroecosystem under semiarid conditions was dependent of the organic N source. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
14.
免耕和秸秆还田对潮土酶活性及微生物量碳氮的影响 总被引:9,自引:0,他引:9
利用中国科学院封丘农业生态实验站玉米-小麦轮作保护性耕作定位试验平台,研究了全翻耕((T)、免耕((NT)、全翻耕+秸秆还田((TS)以及免耕+秸秆还田((NTS)处理分别对田间0 ~ 10、10 ~ 20和20 ~ 30 cm土层酶活性及土壤微生物量碳、氮的影响。结果表明:①在0 ~ 10和10 ~ 20 cm土层内,土壤碱性磷酸酶、转化酶、脲酶、脱氢酶活性为免耕处理大于全翻耕处理,有秸秆还田处理大于无秸秆还田处理,以NTS处理最高,T处理最低;在20 ~ 30 cm土层中,土壤碱性磷酸酶、转化酶、脱氢酶活性免耕处理大于全翻耕处理,土壤碱性磷酸酶、转化酶、脲酶活性有秸秆还田处理大于无秸秆还田处理。②在0 ~10和10 ~ 20 cm土层内,土壤微生物量碳、氮均为免耕处理大于全翻耕处理,有秸秆还田处理大于无秸秆还田处理;在20 ~ 30 cm土层中,微生物量碳以NTS处理最高,微生物量氮以TS处理最高;③4种处理下的土壤酶活性和微生物量碳、氮均随着土层的加深而减少,且在各土层中差异达显著水平。 相似文献
15.
Changes in the soil microbial community structure with latitude in eastern China, based on phospholipid fatty acid analysis 总被引:3,自引:0,他引:3
Yuping Wu Bin Ma Ling Zhou Haizhen Wang Jianming Xu Sarah Kemmitt Philip C. Brookes 《Applied soil ecology》2009,43(2-3):234-240
Phospholipid fatty acid (PLFA) profiles were measured in soils from 14 sites in eastern China representing typical geographic zones of varying latitude from north (47.4°N) to south (21.4°N). Amounts of soil microbial biomass, measured as total amounts of PLFAs, showed no regular trend with latitude, but were positively correlated with soil organic carbon content, the concentration of humic acid and amorphous iron oxide. Soil microbial community structure showed some biogeographical distribution trends and was separated into three groups in a cluster analysis and principal coordinate analysis of log transformed PLFA concentrations (mol%). Soils in the first group came from northern China with medium mean annual temperature (1.2–15.7 °C) and rainfall (550–1021 mm). Soils in the second group originated from southern China with a relatively higher mean annual temperature (15.7–21.2 °C) and rainfall (1021–1690 mm). Soils clustered in the third group originated from the most southerly region. The northern soils contained relatively more bacteria and Gram-negative PLFAs, while the southern soils had more fungi and pressure indexed PLFAs. These differences in soil microbial community structure were largely explained by soil pH, while other site and soil characteristics were less important. 相似文献
16.
Huacui Xiao;Hao Sheng;Liang Zhang;Wandong Liang;Liang Wei;Ping Zhou; 《Land Degradation u0026amp; Development》2024,35(12):3921-3933
Evaluating the impact of land-use intensification on soil microbial communities is essential for recognizing the implications on microbiome stability and ecosystem function. The microbial biomass and enzyme activity in the topsoil have been found to decrease as a consequence of natural forest conversion; however, the impact of land-use conversion on the microbes in subsoil remains largely unclear. Here, we examined the effect of primary forest conversion to plantations and cultivated lands on microbial communities at three sites with similar soil, climate, and landform. The forest conversion was set as the experimental treatment, and the primary forest as the control. A linear mixed-effect model was applied to investigate the role of environmental parameters in shaping the soil microbial biomass and community determined by the phospholipid fatty acids analysis in both the topsoil (0–20 cm) and subsoil (20–40 cm). Compared to the primary forest, the total microbial biomass, β-1,4-N-acetylglucosaminidase, leucine aminopeptidase, acid phosphatase activities, and labile organic C fraction contents in both topsoil and subsoil were reduced in cultivated lands. The ratios of gram-positive bacteria to gram-negative bacteria and arbuscular mycorrhizal fungi to saprotrophic fungi in subsoil decreased by 45%–53% and increased by 29%–151%, respectively, following the primary forest conversion to cultivated lands. The response ratio (the percentage of microbial and enzyme indicator response to the primary forest conversion) ranged from −80% to 140% depending on the soil depth, specific microbial group, and converted land-use type. Microbial biomass and enzyme activity are primarily controlled by the labile organic C content and nutrients availability in both topsoil and subsoil. This study suggests that the primary forest conversion exerts an adverse effect on the microbial biomass, enzyme activity, and substrate availability in both topsoil and subsoil, highlighting the degradation of subsoil health in subtropical China. 相似文献
17.
耕作方式通过影响土壤微生物群落而影响土壤生态系统过程。本研究以传统耕作玉米连作处理为对照,通过测定土壤微生物量碳及磷脂脂肪酸含量,分析了保护性耕作(包括免耕玉米连作和免耕大豆-玉米轮作)对黑土微生物群落的影响。结果表明,保护性耕作可显著增加土壤表层(0~5cm)全碳、全氮、水溶性有机碳、碱解氮和微生物量碳(P0.05),为微生物代谢提供了丰富的资源。同时,保护性耕作显著提高了土壤表层(0~5cm)总脂肪酸量、真菌和细菌生物量(P0.05),提高了土壤的真菌/细菌值,有利于农田土壤生态系统的稳定性。研究结果对于探讨保护性耕作的内在机制具有重要意义。 相似文献
18.
Phospholipid fatty acid profiles as indicators for the microbial community structure in soils along a climatic transect in the Judean Desert 总被引:6,自引:0,他引:6
Yosef Steinberger L. Zelles Quing Yun Bai Margit von Lützow Jean Charles Munch 《Biology and Fertility of Soils》1999,28(3):292-300
Analyses of phospholipid fatty acids (PLFAs) were used to assess variations in soil microbial biodiversity, community structure
and biomass, and consequently, the soil microbial successions in time along the climate gradient of the Judean Desert. Principal
component analysis of the PLFA data revealed that the degree of time- and space-related variations in PLFA composition and
microbial community structure was high among the desert habitats. Significant shifts of specific groups of fatty acids caused
by climatic variations were observed. The biomass represented by the total amounts of PLFAs indicated that the greater the
average amount of precipitation, the higher the biomass. The results indicate that at least three different microorganism
strategies were probably followed: (1) in soils with a high biomass during the rainy period, a significant biomass decrease
occurred during the dry period, mainly due to an extraordinary decrease of Gram-negative bacteria as indicated by the decrease
of typical monounsaturated fatty acids and hydroxy-substituted phospholipid fatty acids in semi-arid climates; (2) in soils
with low biomass content during the rainy period, a significant increase of biomass during the dry period occurred, due mainly
to the increase of eukaryotes, Gram-positive, and Gram-negative bacteria characterized by polyunsaturated, branched chain
and some of the monounsaturated fatty acids, respectively; and (3) relatively low and constant biomass during the entire observation
period in the more arid zones of the Judean Desert.
Received: 12 January 1998 相似文献
19.
PLFAs稳定同位素技术及其在土壤微生物学中的应用 总被引:1,自引:0,他引:1
磷脂脂肪酸(PLFAs)是微生物细胞膜的重要组分,可作为活体微生物的生物标记物。稳定同位素技术与生物标记物相结合为揭示微生物种群结构及其功能提供了一种有效的方法,可用来阐明复杂土壤生态系统中微生物源有机质代谢途径以及个别微生物种群特征,将特定微生物种群与相应生物化学过程相联系。介绍了PLFAs稳定同位素分析技术,包括气相色谱-燃烧-同位素比例质谱(GC-c-IRMS),气相色谱-质谱联机(GC-MS)以及核磁共振(NMR),并描述上述方法在土壤微生物学中的应用以及其优缺点。 相似文献
20.
Understanding the influence of long-term crop management practices on the soil microbial community is critical for linking soil microbial flora with ecosystem processes such as those involved in soil carbon cycling. In this study, pyrosequencing and a functional gene array (GeoChip 4.0) were used to investigate the shifts in microbial composition and functional gene structure in a medium clay soil subjected to various cropping regimes. Pyrosequencing analysis showed that the community structure (β-diversity) for bacteria and fungi was significantly impacted among different cropping treatments. Functional gene array-based analysis revealed that crop rotation practices changed the structure and abundance of genes involved in C degradation. Significant correlations were observed between the activities of four enzymes involved in soil C degradation and the abundance of genes responsible for the production of respective enzymes, suggesting that a shift in the microbial community may influence soil C dynamics. We further integrated physical, chemical, and molecular techniques (qPCR) to assess relationships between soil C, microbial derived enzymes and soil bacterial community structure at the soil micro-environmental scale (e.g. within different aggregate-size fractions). We observed a dominance of different bacterial phyla within soil microenvironments which was correlated with the amount of C in the soil aggregates suggesting that each aggregate represents a different ecological niche for microbial colonization. Significant effects of aggregate size were found for the activity of enzymes involved in C degradation suggesting that aggregate size distribution influenced C availability. The influence of cropping regimes on microbial and soil C responses declined with decreasing size of soil aggregates and especially with silt and clay micro-aggregates. Our results suggest that long term crop management practices influence the structural and functional potential of soil microbial communities and the impact of crop rotations on soil C turnover varies between different sized soil aggregates. These findings provide a strong framework to determine the impact of management practices on soil C and soil health. 相似文献