首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study was to compare physical, mechanical and biological properties of 3-dimensional scaffolds prepared from Bombyx mori silk fibroin (SF), fibroin blended with collagen (SF/C), and fibroin blended with gelatin (SF/G) using a freeze-drying technique. The prepared scaffolds were sponge-like structure that exhibited homogeneous porosity with highly interconnected pores. Average pore size of these scaffolds ranged from 65–147 μm. All biodegradable scaffolds were capable of water absorption of 90 %. The degradation behavior of these scaffolds could be controlled by varying the amount of blended polymer. The SF/C and SF/G scaffolds showed higher compressive modulus than that of SF scaffolds which could be attributed to the thicker pore wall observed in the blended constructs. The less crystalline SF structure was observed in SF/G scaffolds as compared to SF/C scaffolds. Thus, the highest compressive modulus was observed on SF/C matrix. To investigate the feasibility of the scaffolds for cartilage tissue engineering application, rat articular chondrocytes were seeded onto the scaffolds. The MTT assay demonstrated that blending collagen or gelatin into SF sponge facilitated cell attachment and proliferation better than SF scaffolds. The blended SF scaffolds possessed superior physical, mechanical and biological properties in comparison to SF scaffolds and showed high potential for application in cartilage tissue engineering.  相似文献   

2.
The use of silk protein as a biomaterial has been studied for decades. In this study, silk fibroin (SF)/hyaluronic acid (HA) blend scaffolds were prepared by freeze-drying technique. The structure and properties of the blend scaffolds were examined and analyzed. The results demonstrated that the secondary structures of the SF/HA scaffolds were mainly amorphous and β-sheet structures. The pore radius and porosity of the scaffolds decreased with a decrease in the freezing temperature decrease and an increase in the HA ratio. The pore radius and porosity were regulated from 32.22 μm to 290.76 μm and from 74.1 % to 91.15 %, respectively. In vitro, the SF/HA scaffolds could support the fibroblast cell adhesion and proliferation and showed good cytocompatibility. In vivo, the SF/HA scaffolds were implanted into the dorsum of Sprague Dawley rats to evaluate their bioactivity for dermal tissue reconstruction. The vascular-like structures appeared more rapidly in SF/HA scaffolds than that in the PVA group, and a new dermal layer was formed, as determined by histological analysis. The SF/HA porous scaffolds have promise as a dermal substitute.  相似文献   

3.
Protein and polysaccharide was the most important extracellular matrix in dermal tissue. In this study, Silk fibroin (SF) / hyaluronic acid (HA) blend films mimicking the dermal tissue components were prepared and investigated. The results indicated that HA and SF has a good miscibility, HA interfered with SF to form crystal structure. By using EDC as cross-linker, effective cross-linking function on SF and HA macromolecules was reacted, the water solubility of the blend films decreased obviously after being cross-linked by EDC. The existence of EDC could promote SF to form Silk I structure. L929 cells were seeded on these blend films and showed normal attachment morphology. Cell-matrix interactions established by newly formed extracellular matrix were observed after 5 days in culture. The MTT assay showed that cell proliferation on the SF/HA blend films were enhanced significantly compared with that on the SF and HA films. These new 2D SF/HA blend films provided a favorable microenvironment for the proliferation of L929 cells and hold a potential for dermal tissue regeneration.  相似文献   

4.
5.
As a biomaterial, besides excellent biocompatibility and biodegradability, suitable macropores and pores structure should be provided to guide cell extension and migration. In present study, the silk fibroin (SF) scaffold with uniaxial channels was prepared by directional temperature field freezing technique. The average pore diameter, pore density and porosity of the scaffold with oriented channels are ~128.7 µm, ~158 mm?2 and ~91.4 %, respectively. By controlling of the temperature gradient direction, the oriented multichannels of the scaffolds were formed in longitudinal easily. In process of the scaffolds fabrication, the directional growth of ice crystal could shear and draft to the silk fibroin molecule segments, which resulted in the new crystal nucleus formation in new zone and increase of β-sheet components in the scaffolds. In vitro, L929 cells were seeded on the scaffolds with oriented channels to evaluate the effect on cell behavior. Cell viability, adhesion and morphology were determined by methyl thiazolyl tetrazolium, confocal microscope and scanning electron microscope. The results showed that the cells anchored on the oriented channels, spread along the direction of the channels and hold a higher viability on the scaffolds with oriented channels. These new oriented multichannel scaffold could guide the adhesion and proliferation of L929 cells, which hold a potential in tissue engineering.  相似文献   

6.
Herein we report successful synthesis of silk fibroin (SF) three dimensional scaffolds (SF 3D-scaffold) from SF sponge and SF nanofibers. Both the nanofibers and sponge were prepared from Bombyx mori fibroin. The SF 3D-scaffold was prepared by electrospinning the fibroin nanofibers over the sponge. Surface morphology was determined by scanning electron microscopy (SEM), while nanofiber diameter and pore size were measured using imageJ software. Effect of spinning time on the pore size and cell adhesion was determined. Average diameter of the SF nanofibers was measured to be 320 nm and pore size was found to reduce with increasing spinning time, such that, for 1 h spinning time pore size was 231 µm and the same for 3.5 h was 4.1 µm. However, the number of pores increased with spinning time. The results confirmed adhesion of MC3T3-E1 cells on the SF sponge, SF nanofibers and SF three dimensional scaffolds. Higher cell adhesion was found on the three dimensional scaffold in comparison to the nanofibers and sponge, possibly due to highly porous structure with very small and numerous pores in the resultant composite; hence more cell adhesion sites. The cell adhesion result confirmed biocompatibility of the SF 3D-scaffold and hence its suitability for applications in tissue engineering.  相似文献   

7.
Particular attention has been given to axonal outgrowth of neurons to understand how topographical surface cues influence attachment and subsequent directional migration and growth. In present study, the silk fibroin (SF) scaffold with uniaxial channels was prepared by directional freeze-drying processes. The average pore diameter, the porosity, and pore density of the scaffold are 120 µm, 88 %, and 203 mm?2, respectively. Further, hippocampal neurons were seeded onto the scaffold and the hippocampal neurons morphology was investigated. Cell-cell networks and cell-matrix interactions had been established by newly formed axons and the diversity of neurons was much higher after culturing 7 days. The neurons expressed β-III-tubulin and nerve filament, while glial fibrillary acidic protein immunofluorescence was barely above background. These results indicated that the SF scaffolds with uniaxial multichannels could be guided axons of neurons spread along the channels. SF scaffolds with oriented pores have a potential for nerve tissue regeneration.  相似文献   

8.
Presently, tissue engineering is employed in the restoration and repair of tissue defects. Degradable scaffolds, stem cells and stimulating factors are employed in this method. In this study, the effect of melanocyte-stimulating hormone (MSH) and/or hydroxyapatite (HA) on proliferation, osteoblast differentiation, and mineralization of human dental pulp stem cells (hDPSCs) seeded on PLLA-PCL nanofibrous scaffolds was evaluated. For this aim, PLLA-PCL-HA nanofibrous scaffolds were fabricated using electrospinning method. FE-SEM images exhibited that all nanofibers had bead-free morphologies with average diameters ranging from 150–205 nm. Human DPSCs seeded into PLLA-PCL nanofibers were treated with MSH. Cell viability, proliferation, morphology, osteogenic potential, and the expression of tissue-specific genes were assessed by means of MTT assay, FE-SEM, alizarin red S staining, and RT-PCR analysis. hDPSCs exhibited improved adhesion and proliferation capacity on the PLLA-PCL-HA nanofibers treated with MSH compared to other groups (p<0.05). Additionally, PLLA-PCL-HA nanofibers treated with MSH exhibited significantly higher mineralization and alkaline phosphatase activity than other groups. RT-PCR results confirmed that PLLA-PCL-HA nanofibers enriched with MSH could significantly unregulated the gene expression of BMP2, osteocalcin, RUNX2 and DSPP that correlated to osteogenic differentiation (p<0.05). Based on results, incorporation of HA nanoparticles in PLLA-PCL nanofibers and addition of MSH in media exhibited synergistic effects on the adhesion, proliferation, and osteogenesis differentiation of hDPSCs, and therefore assumed to be a favorable scaffold for bone tissue engineering applications.  相似文献   

9.
Background: Bone tissue engineering requires materials that are biocompatible, mechanically suited for bone function, integrated with the host skeleton, and support osteoinduction of the implanted cells for new bone formation. The aim of this study was to compare the osteogenic potential of xenograft with hydroxyapatite/β- tricalcium phosphate (HA/β-TCP) scaffold. Methods: New Zealand rabbits (n = 9) were divided into 3 groups. Osteoblast cells were originally isolated from rabbit iliac crest and cultured in DMEM/F12. After creating a critical-sized defect (2 × 3 cm) in rabbit tibia bone, the defect was filled with an implant of HA/TCP with osteoblasts and xenograft in the hole of left (as control) and right tibia, respectively. The new bone formation and the development of bone union within the defect were evaluated by x-ray images and eosine and hematoxylin staining at 4, 8, and 12 weeks post-operation. Results: The bone partially formed in both groups was filled with osteoblast cultured on porous implants at 4 weeks. Over time, progressive bone regeneration was observed inside the pores. Moreover, a progressive vascular ingrowth and progressive integration with the host bone were obvious in xenograft when compared to HA/β-TCP. A good integration between the xenograft implants and the bone was observed radiographically and confirmed by histological section. Conclusion: The result showed that the bone defect can be repaired using both synthetic and xenograft implants. However, the xenograft showed a better osteointegration as compared to HA/β-TCP scaffold.Key Words: Osteoblasts, Hydroxyapatite/β-Tricalcium phosphate (TCP), Bone tissue  相似文献   

10.
In this study, to improve the cellular biocompatibility of PVP-PCL micro- and nanofiber scaffold, a novel electrospun collagen/PVP-PCL micro- and nanofiber scaffold was sucessfully prepared assisted by ultrasonic irradiation using chloroform/ethanol mixtures as solvent. The micro- and nanofibers of the electrospun PCL-PVP scaffolds still presented compact inter-fiber entanglement and three-dimensional netlike network with some certain range of pore space after introducing collagen. The incorporated collagen phase was dispersed as inclusions within the electrospun fibers, and then could be easily released by immersing the scaffold in Hanks simulated body fluid. Meanwhile, the integral triple helix structure of collagen could be maintained after blending with the PVP-PCL mixture due to the weak intermolecular interactions. Furthermore, the suitable mechanical and degradation properties of the PVP-PCL scaffold were still reserved after introducing collagen, and the introduction of collagen could further promote the thermostability of the PVP-PCL scaffold. Above all, the collagen/PVP-PCL scaffold showed no cytotoxicity, better cell proliferation, and improved viability of primary fibroblasts than the PVP-PCL scaffold. In conclusion, blending collagen with the PVP-PCL mixture in this study has potential for promoting the biocompatibility of PVP-PCL micro- and nanofiber scaffolds for tissue engineering.  相似文献   

11.
In this study, a three-dimensional (3D) poly(lactide-co-glycolide) (PLGA) microfibrous scaffold with high porosity (ca. 90 % porosity) was developed for evaluating its performance in tissue engineering application. A dope solution of PLGA/polyethylene oxide (PEO) blend was electrospun into a methanol coagulation bath for fabricating highly porous 3D PLGA scaffold and a salt leaching method was used for making interconnected pores of 100?C200 ??m size inside the scaffold. The morphological structure, pore size and porosity of the microfibrous scaffold were determined, and compared with twodimensional (2D) mat-type and 3D sponge-type of PLGA scaffold. Also, swelling ratio, water uptake and compressive strength were compared in order to elucidate the structure-property relationships of different types of the scaffolds, especially in a wet condition. As a result of scanning electron microscopy (SEM) observation, normal human dermal fibroblasts (nHDF) were migrated, attached, and proliferated well inside the 3D scaffold. MTT assay confirmed that the highly porous 3D PLGA microfibrous scaffold had superior cell adhesion and proliferation abilities due to fibrous structure of large specific surface area, and interconnected pore structure. Therefore, this high performance 3D PLGA scaffold can have a high potentiality for application in tissue engineering in comparison with conventional PLGA scaffolds.  相似文献   

12.
Osteoarthritis (OA) is a multifactorial disease leading to degeneration of articular cartilage, causing morbidity in approximately 8.5 million of the UK population. As the dense extracellular matrix of articular cartilage is primarily composed of collagen, cartilage repair strategies have exploited the biocompatibility and mechanical strength of bovine and porcine collagen to produce robust scaffolds for procedures such as matrix-induced chondrocyte implantation (MACI). However, mammalian sourced collagens pose safety risks such as bovine spongiform encephalopathy, transmissible spongiform encephalopathy and possible transmission of viral vectors. This study characterised a non-mammalian jellyfish (Rhizostoma pulmo) collagen as an alternative, safer source in scaffold production for clinical use. Jellyfish collagen demonstrated comparable scaffold structural properties and stability when compared to mammalian collagen. Jellyfish collagen also displayed comparable immunogenic responses (platelet and leukocyte activation/cell death) and cytokine release profile in comparison to mammalian collagen in vitro. Further histological analysis of jellyfish collagen revealed bovine chondroprogenitor cell invasion and proliferation in the scaffold structures, where the scaffold supported enhanced chondrogenesis in the presence of TGFβ1. This study highlights the potential of jellyfish collagen as a safe and biocompatible biomaterial for both OA repair and further regenerative medicine applications.  相似文献   

13.
Electrospinning has been recognized as an efficient technique for the fabrication of neural tissue engineering scaffolds. Many approaches have been developed on material optimization, electrospinning techniques, and physical properties of scaffolds to produce a suitable scaffold for tissue engineering aspects. In this study, structural properties of scaffolds were promoted by controlling the speed of fiber collection without any post-processing. PLGA scaffolds, in two significantly different solution concentrations, were fabricated by the electrospinning process to produce scaffolds with the optimum nerve cell growth in a desired direction. The minimum, intermediate and maximum rate of fiber collection (0.4, 2.4, 4.8 m/s) formed Random, Aligned and Drown-aligned fibers, with various porosities and hydrophilicities. The scaffolds were characterized by fiber diameter, porosity, water contact angle and morphology. Human nerve cells were cultured on fiber substrates for seven days to study the effects of different scaffold structures on cell morphology and proliferation, simultaneously. The results of MTT assay, the morphology of cells and scaffold characterization recommend that the best structure to promote cell direction, morphology and proliferation is accessible in an optimized hydrophilicity and porosity of scaffolds, which was obtained at the collector linear speed of 2.4 m/s.  相似文献   

14.
The complex nature of spinal cord injuries has provided much inspiration for the design of novel biomaterials and scaffolds which are capable of stimulating neural tissue repair strategies. Recently, conductive polymers have gained much attention for improving the nerve regeneration. In our previous study, a three-dimensional (3D) structure with reliable performance was achieved for electrospun scaffolds. The main purpose in the current study is formation of electrical excitable 3D scaffolds by appending polyaniline (PANI) to biocompatible polymers. In this paper, an attempt was made to develop conductive nanofibrous scaffolds, which can simultaneously present both electrical and topographical cues to cells. By using a proper 3D structure, two kinds of conductive scaffolds are compared with a non-conductive scaffold. The 3D nanofibrous core-sheath scaffolds, which are conductive, were prepared with nanorough sheath and aligned core. Two different sheath polymers, including poly(lactic-co-glycolic acid) PLGA and PLGA/PANI, with identical PCL/PANI cores were fabricated. Nanofibers of PCL and PLGA blends with PANI have fiber diameters of 234±60.8 nm and 770±166.6 nm, and conductivity of 3.17×10-5 S/cm and 4.29×10-5 S/cm, respectively. The cell proliferation evaluation of nerve cells on these two conductive scaffolds and previous non-conductive scaffolds (PLGA) indicate that the first conductive scaffold (PCL/ PANI-PLGA) could be more effective for nerve tissue regeneration. Locomotor scores of grafted animals by developed scaffolds showed significant performance of non-conductive 3D scaffolds. Moreover, the animal studies indicated the ability of two new types of conductive scaffolds as spinal cord regeneration candidates.  相似文献   

15.
A major goal of biomimetics is the development of chemical compositions and structures that simulate the extracellular matrix. In this study, gelatin-based electrospun composite fibrous membranes were prepared by electrospinning to generate bone scaffold materials. The gelatin-based multicomponent composite fibers were fabricated using co-electrospinning, and the composite fibers of chitosan (CS), gelatin (Gel), hydroxyapatite (HA), and graphene oxide (GO) were successfully fabricated for multi-function characteristics of biomimetic scaffolds. The effect of component concentration on composite fiber morphology, antibacterial properties, and protein adsorption were investigated. Composite fibers exhibited effective antibacterial activity against Staphylococcus aureus and Escherichia coli. The study observed that the composite fibers have higher adsorption capacities of bovine serum albumin (BSA) at pH 5.32–6.00 than at pH 3.90–4.50 or 7.35. The protein adsorption on the surface of the composite fiber increased as the initial BSA concentration increased. The surface of the composite reached adsorption equilibrium at 20 min. These results have specific applications for the development of bone scaffold materials, and broad implications in the field of tissue engineering.  相似文献   

16.

Background

The aim of this study was to fabricate the poly caprolactone (PCL) aligned nanofiber scaffold and to evaluate the survival, adhesion, proliferation, and differentiation of rat hair follicle stem cells (HFSC) in the graft material using electrospun PCL nanofiber scaffold for tissue engineering applications.

Methods

The bulge region of rat whisker was isolated and cultured in DMEM: nutrient mixture F-12 supplemented with epidermal growth factor. The morphological and biological features of cultured bulge cells were observed by light microscopy using immunocytochemistry methods. Electrospinning was used for production of PCL nanofiber scaffolds. Scanning electron microscopy (SEM), 3-(4, 5-di-methylthiazol- 2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, and histology analysis were used to investigate the cell morphology, viability, attachment and infiltration of the HFSC on the PCL nanofiber scaffolds.

Results

The results of the MTT assay showed cell viability and cell proliferation of the HFSC on PCL nanofiber scaffolds. SEM microscopy images indicated that HFSC are attached, proliferated and spread on PCL nanofiber scaffolds. Also, immunocytochemical analysis showed cell infiltration and cell differentiation on the scaffolds.

Conclusion

The results of this study reveal that PCL nanofiber scaffolds are suitable for cell culture, proliferation, differentiation and attachment. Furthermore, HFSC are attached and proliferated on PCL nanofiber scaffolds.Key Words: Nanofiber, Electrospinning, Stem cells, Tissue engineering  相似文献   

17.
Over the last few years, significant research has been conducted in the construction of artificial bone scaffolds. In the present study, different types of polymer scaffolds, such as chitosan-alginate (Chi-Alg) and chitosan-alginate with fucoidan (Chi-Alg-fucoidan), were developed by a freeze-drying method, and each was characterized as a bone graft substitute. The porosity, water uptake and retention ability of the prepared scaffolds showed similar efficacy. The pore size of the Chi-Alg and Chi-Alg-fucoidan scaffolds were measured from scanning electron microscopy and found to be 62–490 and 56–437 µm, respectively. In vitro studies using the MG-63 cell line revealed profound cytocompatibility, increased cell proliferation and enhanced alkaline phosphatase secretion in the Chi-Alg-fucoidan scaffold compared to the Chi-Alg scaffold. Further, protein adsorption and mineralization were about two times greater in the Chi-Alg-fucoidan scaffold than the Chi-Alg scaffold. Hence, we suggest that Chi-Alg-fucoidan will be a promising biomaterial for bone tissue regeneration.  相似文献   

18.
The study aims at performing a comparative assessment of two types of burn wound treatment. The present study was designed to prepare crosslinked and blended two natural polymers nanofiber scaffolds using gelatin (GE) and hyaluronic acid (HA). The GE/HA composite nanofibrous membranes with varied GE/HA weight ratio have also been successfully fabricated by an electrospinning method. The average diameter of GE/HA fibers was in the range of 20 to 150 nm. In vivo efficacy was also investigated based on a deep second degree burns model for Wistar rats. At 14 days post-operation, the dermal defect basically recovered its normal condition. A percentage of wound closure of GE/HA composite nanofibrous membranes and ChitoHeal gel reached up to 81.9 % and 77.8 % respectively, compared with 65 % of the untreated control (p<0.05). Also, histological parameters were assessed on postoperative day 7 and 14. The results of in vivo experiments showed that more epidermis was formed in the gel and scaffold groups compared to the control group. The numbers of inflammatory cells in these two groups were also smaller as compared with the control group, which could well be the reason for the delayed healing in the control group.  相似文献   

19.
Background: Spinal cord has a limited capacity to repair; therefore, medical interventions are necessary for treatment of injuries. Transplantation of Schwann cells has shown a great promising result for spinal cord injury (SCI). However, harvesting Schwann cell has been limited due to donor morbidity and limited expansion capacity. Furthermore, accessible sources such as bone marrow stem cells have drawn attentions to themselves. Therefore, this study was designed to evaluate the effect of bone marrow-derived Schwann cell on functional recovery in adult rats after injury. Methods: Mesenchymal stem cells were cultured from adult rats’ bone marrow and induced into Schwann cells in vitro. Differentiation was confirmed by immunocytochemistry and RT-PCR. Next, Schwann cells were seeded into collagen scaffolds and engrafted in 3 mm lateral hemisection defects. For 8 weeks, motor and sensory improvements were assessed by open field locomotor scale, narrow beam, and tail flick tests. Afterwards, lesioned spinal cord was evaluated by conventional histology and immunohistochemistry. Results: In vitro observations showed that differentiated cells had Schwann cell morphology and markers. In this study, we had four groups (n = 10 each): laminectomy, control, scaffold and scaffold + Schwann cells. Locomotor and sensory scores of cell grafted group were significantly better than control and scaffold groups. In histology, axonal regeneration and remyelination were better than control and scaffold groups. Conclusion: This study demonstrates that bone marrow-derived Schwann cells can be considered as a cell source for Schwann cells in SCI treatment. Key Words: Rats, Spinal cord injuries (SCI), Bone marrow, Schwann cells, Cell transdifferentiation  相似文献   

20.
A three-dimensional, porous collagen/chitosan complex sponge was prepared to closely simulate basic extracellular matrix (ECM) constitutes, collagen and glycosaminoglycan. The complex sponge was prepared by a lyophilization method and had the regular network with highly porous structure, suitable for cell adhesion and growth. The pores were well interconnected, and their distribution was fairly homogeneous. The complex sponge was crosslinked using 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) to increase its biological stability and enhance its mechanical properties. The crosslinking medium had a great effect on the inner structure of the sponge. The homogeneous, porous structure of the sponge was remarkably collapsed in an aqueous crosslinking medium. However, the morphology of the sponge remained almost intact in a water/ethanol mixture crosslinking milieu. Mechanical properties of the collagen/chitosan sponge were significantly enhanced by EDC-mediated crosslinking. The potential of the sponge as a scaffold for tissue engineering was investigated using a Chinese hamster ovary cell (CHO-K1) line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号