首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To enhance the use of the abundant biomass generated by the palm oil industry in Malaysia a study was conducted in view of exploring the papermaking potential of this industrial byproduct. Fiber strands from the frond of oil palm trees were examined relative to their physical and chemical characteristics and their response to chemical pulping such as sulfite, soda-sulfite and soda processes. Morphologically, the frond fibers are comparable to those of hardwood. They contain high content of holocellulose but low in lignin. Chemical pulps of 45–50% yield produced either by soda-sulfite or soda process exhibit acceptable papermaking properties comparable to those of hardwood kraft pulps. The study showed that frond pulp might be used as a reinforcement component in newsprint production using softwood thermomechanical fibers.  相似文献   

2.
Recycled fibers, in comparison to its virgin counterpart, generally have reduced conformability and interfiber bonding capability due to irreversible hardening or hornification of these fibers. The extent and reversibility of the reduction is dependent on the original pulp type and on the papermaking process. Various methods are used to recover the lost potentials of the recycled pulp such as mechanical beating, use of chemical additives, physical fractionation and blending; the latter being the subject of this study using oil palm fiber virgin soda pulp as the upgrading strength material. With as little as 20% addition of virgin unbeaten pulp and considerably lesser amount of ca. 10% of beaten virgin pulp is sufficient to completely restore the strength of the recycled paper. The major mechanism of strength improvement is probably due to increase of interfiber bonding as a result of substitution of inactive secondary fibers with active virgin fibers.  相似文献   

3.
A pitch precursor for a general purpose carbon fiber was prepared by condensation of pyrolized fuel oil (petroleum residual oil) with bromine under nitrogen blowing. Such a condensation raised the softening point of the pitch from 40°C to 265°C with a yield of 43%. The pitch precursor showed an enhanced aromaticity and enlarged molecular size, which led to a reduction in molecular mobility and optical isotropy. The precursor was spun into fibers of 20 μm diameter at a take-up speed of 700 m/min. The fiber was stepwise stabilized in air and carbonized in Ar gas to obtain an isotropic carbon fiber. The carbon fiber exhibited tensile strengths of 500–800 MPa though the fiber was formed via a crude method. The electric conductivity of the carbon fiber was relatively high, 2.2×102 S/cm, sufficient to be used as electrode materials.  相似文献   

4.
In this paper, viscose rayon-based knitted fabrics were utilized as the precursor to produce activated carbon fiber absorbents (ACFA). The effects of carbonization and activation conditions on characteristics (ACFA) were examined. Experimental results revealed that increasing the flow rate of environmental gas N2 and steam activator used in conjunction and decreasing the production rate of ACFA can obtain better pore properties. However, higher flow rate of steam activator and lower production rate of ACFA reduced the weight yield. According to our findings, to maintain good absorption property of ACFA, the optimum manufacturing conditions are flow rate of gas N2 at 80 cc/min, flow rate of steam activator at 60 ml/min, and production rate of ACFA at 30 cm/min, with flame retardant reagent concentration maintained at 30%. Under these conditions, the weight yield can be up to 40.85% and the BET surface area can exceed 1500 g/m2.  相似文献   

5.
A useful reinforcement for carbon fiber (CF) composites was found by performing the assisted electrophoretic deposition (EPD) of graphene oxide (GO) for carbon nanotubes (CNTs) onto the CF surface. GO-assisted EPD of CNTs was conducted without the use any other pre-treatment or additives in order to avoid destroying the structure of the CNTs and to facilitate preparation of stable dispersion that was suitable for EPD. The presence of GO-CNTs may effectively increase both the roughness and wettability of the CF surface, resulting in an improvement to the interfacial bonding strength between the CF and the epoxy (EP). In contrast to the pristine CF/EP composite, the GO-CNTs/CF/EP composite exhibited a 64.6 % increase in interlaminar shear strength. Meanwhile, the water absorption of the composites decreased from 0.36 wt.% to 0.14 wt.%. The variable surface morphology, surface roughness, surface free energy and surface chemical composition of the CF were considered to have had an effect on the interfacial properties of the CF/EP composites; these effects could be seen using atomic force microscopes, scanning electron microscopes, X-ray photoelectron microscopes and contact angle analysis characterizations.  相似文献   

6.
The bioavailability of riboflavin from fortified palm juice was assessed in young adult men, Riboflavin status was assessed from urinary riboflavin excretion and erythrocyte glutathione reductase activity coefficient (EGR-AC) while iron status was assessed from haemoglobin and serum ferritin concentrations. Although the consumption of unfortified palm juice made significant contribution to the meager riboflavin intake, it conferred no metabolic advantage. The consumption of fortified palm juice produced a marked reduction in EGR-AC values and a significant increase in urinary riboflavin excretion. Since iron release from storage sites may be flavin dependent, riboflavin deficiency may affect iron utilization. Fortification may prove effective in alleviating nutrient deficiencies, but the carrier vehicle must be acceptable to all age groups.  相似文献   

7.
The tribological performance of PA6 and carbon fiber reinforced polyamide 6 (CF/PA6) under dry sliding condition was examined. Different contents of carbon fibers were employed as reinforcement. All filled and unfilled polyamide 6 composites were tested against CGr15 ball and representative testing was performed. The effects of carbon fiber content on tribological properties of the composites were investigated. The worn surface morphologies of neat PA6 and its composites were examined by scanning electron microscopy (SEM) and the wear mechanisms were discussed. Moreover, all filled polyamide 6 have superior tribological characteristics to unfilled polyamides 6. The optimum wear reduction was obtained when the content of carbon fiber is 20 vol%.  相似文献   

8.
Carbon fibers were coated with E51 plus Methacryl-POSS together in an attempt to improve the interfacial properties between carbon fibers and unsaturated polyester resins matrix. Atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were performed to characterize the changes of carbon fiber surface. AFM results show that the coating of E51 plus POSS significantly increased the carbon fiber surface roughness. XPS indicates that silicon containing functional groups obviously increased after modification. Dynamic mechanical analysis was carried out to investigate the surface energy of carbon fiber. Force modulation atomic force microscopy (FMAFM) and Interlaminar shear strength (ILSS) were used to characterize the interfacial properties of the composites. ILSS was increased by 21.9 % after treatment.  相似文献   

9.
The effects of chemical treatment on the flexural and impact properties of sugar palm fiber reinforced high impact polystyrene (HIPS) composites were studied. Two types of concentration of alkali solution (4 % and 6 %) and also two types of percentage of compatibilizing agent (2 % and 3 %) have been used in this study. The alkaline treatment is carried out by immersing the fibers in 4 % and 6 % of alkali solution for 1 hour. A 40 wt. % of alkali treated sugar palm fiber (SPF) was blended with HIPS using Brabender machine at temperature of 165 °C. The second treatment was employed by compounding mixture of sugar palm fibers and HIPS with 2 and 3 % of compatibilizing agent using the same procedure. The composites plate with dimensions of 150×150×3 mm was produced by using the hot press machine. The flexural strength, flexural modulus and impact strength of composites were measured and the values were compared to the untreated composites. Improvement of the mechanical properties of the composites has been shown successfully. Alkali treatment using 6 % NaOH solution improve the flexural strength, flexural modulus and impact strength of the composites as amount 12 %, 19 % and 34 % respectively, whereas compatibilizing agent treatment only showed the improvement on the impact strength, i.e. 6 % and 16 % improvement for 2 % and 3 % MAH respectively.  相似文献   

10.
Sugar palm fiber is one of the most abundant natural fibers used in biocomposites. However, prediction of the mechanical properties of such natural fiber reinforced composites is still challenging. Most of the theoretical modelings are based the micromechanical method. There have been little studies involving statistical approach for prediction of mechanical properties of natural fiber reinforced composites. In this study, the tensile properties of short sugar palm fiber-reinforced high impact polystyrene (SPF-HIPS) composites obtained by means of statistical approach were investigated and compared with the experimental observations and with micromechanical models available in the literature. Statistical approach was used to predict the performance of the composite part with different fiber loadings. A two-parameter Weibull distribution function was used to model the fiber length distribution in the composite. For the experimental validation, the composites were prepared by hot compression technique for different fiber loadings (10 %, 20 %, 30 %, 40 % and 50 % by weight). Tensile testing of the composites was carried out according to ASTM D638 to obtain the composites tensile strength and modulus of elasticity. Experimental results showed that the tensile strength of the composite reduced due to the addition of sugar palm fibers, whereas the elastic modulus increased by a factor of up to 1.34. The current statistical model predicted the tensile properties of SPF-HIPS composite close to the experimental values. It was found that statistical approach with standard micromechanical models can be used to predict the mechanical properties of sugar palm fiber reinforced HIPS composites. Hence, this study could assist in decisions regarding the design of natural fiber reinforced composite products.  相似文献   

11.
Phytoncide, a volatile essential oil produced by plants and trees, has not only anti-microbial activity, but also a stress relieving effect. We prepared a sheath/core type melt-spun fiber that releases phytoncide for a prolonged time. The fiber is comprised of a nylon sheath and a polypropylene (PP) core material. Phytoncide-containing microcapsules are embedded within the core part. The phytoncide microcapsule-containing nylon/PP sheath/core (M-Ny/PP) fiber has suitable mechanical properties for textile application. The phytoncide release from the microcapsule-containing the PP fiber (M-PP) reached a plateau level after 4 days and maintained that level for an additional 7 days, indicating a zero-order release after the initial burst. The M-Ny/PP fiber emitted the volatile phytoncide even though the fiber was spun at 250 °C. The release of phytoncide decreased in the M-Ny/PP fiber compared to the phytoncide microcapsule-containing PP (M-PP) fiber due to the dense sheath layer.  相似文献   

12.
In this paper, the short carbon fiber (SCF)/PP composite foams with fine open cell were prepared with batch foaming technique using supercritical CO2. The effects of SCF contents, saturation pressure and depressurization rate on the cell morphology were studied. The experimental results indicate that the cell morphology of foamed composites was significantly influenced by the SCF contents and saturation pressure. It is found that the cell size increased and cell density decreased with the increment of SCF contents while the saturation pressure had the opposite effect. However, depressurization rate showed little impacts on the cell morphology due to the presence of SCF.  相似文献   

13.
This study uses rayon woven fabrics as the raw material for activated carbon fabrics (ACFs), which were manufactured by oxidation, carbonization and activation engineering in a continuous semi-open high-temperature furnace. First, the activated carbon fabrics are prepared under two specific manufacturing conditions with different production rates and flow rates of steam activation at 1000 °C. Then the electrochemical prosperities of the ACFs are evaluated by a three-electrode device. The experimental results show that the BET specific surface area and electrical capacitance are higher with a lower production rate. Moreover, the steam activator higher flow rate under the proposed approach. ACFs with a 2332.1 m2/g specific surface area and 78.7 % mesopore ratio result in a higher electronic conductivity of 430.4 F/g at the low rate charge (5 mV/s) and with 60 % capacitance retention during the high-speed charging-discharging process (100 mV/s).  相似文献   

14.
Lignin, nature’s abundant polymer with a remarkably high carbon content, is an ideal bio-renewable precursor for carbon fiber production. However, the poor mechanical property of lignin-derived fibers has hindered their industrial application as carbon fiber precursor. In this work, process engineering through the application of computational modeling was performed to optimize wet-spinning conditions for the production of lignin precursor fibers with enhanced mechanical properties. Continuous lignin-derived precursor fibers with the maximum possible lignin content were successfully produced in a blend with polyacrylonitrile, as a wet-spinning process facilitator. Response surface methodology was employed to systematically investigate the simultaneous influence of material and process variables on mechanical properties of the precursor fibers. This allowed generating a mathematical model that best predicted the tensile strength of the precursor fibers as a function of the processing variables. The optimal wet-spinning conditions were obtained by maximizing the tensile strength within the domain of the developed mathematical model.  相似文献   

15.
We propose a novel method to uniformly graft high density carbon nanotubes (CNTs) onto carbon fiber (CF) using poly (acryloyl chloride) (PACl) as coupling agents. Compared to micromolecule couping agent previously reported in literature [2,3], PACl can supply much more active groups, which is beneficial for grafting high density CNTs onto CF surface. Moreover, in order to further increase the grafting density of CNTs, the solvothermal strategy was used for improving the reactive activity between CF and CNTs. After CNTs grafting treatment, there are still substantial amounts of reactive groups which can further react with various types of molecules to meet different requirements. In order to create chemical bonding between CF and unsaturated polyester (UP), CF-CNT was further grafted with undecylenic alcohol (UA) to get CF-CNT-UA hierarchical reinforcement. The interfacial adhesion of the resulting composites showed a dramatic improvement.  相似文献   

16.
Polyvinylpyrrolidone/date palm leaf fiber (PVP/DPL) biocomposites were prepared by melt mixing fabrication technique with different weight percentage of fibers. DPL fibers were chemically modified by acrylic acid in order to have better dispersion and compatibility with PVP matrix. The interaction of DPL fibers with PVP matrix was studied by Fourier transforms infrared spectroscopy (FTIR). Field emission scanning electron microscope (FESEM) was used for the study the morphology of chemically modified DPL fibers and PVP/DPL biocomposites. Mechanical properties were improved with fiber loading due to strong interfacial adhesion between PVP and DPL fibers. The storage modulus, loss modulus and tan delta values of PVA/DPL biocomposites were measured by DMTA. The rheological properties were investigated to study the shearing storage and loss modulii along with complex viscosity of biocomposites. The thermal and conducting properties of biocomposites were measured and compared with that of virgin PVP.  相似文献   

17.
In this study, the effect of boron nitride nano particle (BNNP) and/or carbon nanotube (CNT) adding for epoxy modification upon tensile, flexural and shear properties of epoxy resin and carbon fiber (CF) laminated nanocomposites were investigated. Epoxy based polymer nanocomposites were prepared by conventional casting in stainless steel mold and the CF/epoxy laminated nanocomposites were produced via vacuum assisted resin transfer molding (VARTM). Experimental results showed that the tensile, shear and flexural properties of epoxy nanocomposites and CF/epoxy laminated nanocomposites considerably increased by adding nanoparticle. Scanning electron microscopy (SEM) was utilized in order to determine damage formation of experimented nanocomposite samples. The results of laboratory tests showed that the highest values of mechanical properties were obtained for BNNP-CNT hybrid nanocomposite specimens. Bending stiffness increasement values of BNNP-CNT/Epoxy and BNNP-CNT-Epoxy/CF achieved by 27.5 %, and 38.5 %, respectively. Shear strength increasement for BNNP-CNT/Epoxy and BNNP-CNT-Epoxy/CF were determined by 23 %, and 90 %, respectively.  相似文献   

18.
This work investigated the effects of date palm leaf fiber (DPLF) content on the thermal and tensile properties; and morphology of compatibilized polyolefin ternary blend. Recycled polyolefin ternary blend consisting of low density polyethylene (RLDPE), high density polyethylene (RHDPE) and polypropylene (RPP) were fabricated at different parts per hundred resin (phr) of DPLF. Maleic anhydride grafted polyethylene (MAPE) was used as compatibilizer to enhance the adhesion between filler and polymer matrix. The composites were prepared using melt extrusion and tests samples were produced via injection molding process. Thermal conductivity results showed that as much as 11 % reduction in thermal conductivity was achieved with the incorporation of 30 phr DPLF. Highest tensile strength was observed with the incorporation of 10 phr DPLF. The elongation at break was reduced with the addition of DPLF due to impediment of chain mobility by the fillers. Initial degradation temperature increased with the addition of DPLF. Hence, it is concluded that DPLF can be used to develop green and thermally insulating composites. It is hoped that the present results will stimulate further studies on the thermally insulative materials based on natural fibers reinforced polymer composites for applications in the building industries.  相似文献   

19.
Thermal and oxidation resistant coating is necessary for carbon fiber (CF) in CF reinforced concrete (CFRC) composite application in order to fulfil a high level of safety standard in case of fire. Pre-ceramic coatings such as Polysilazane, Polysiloxane, and Methyl silicone resin have been deposited on CF filament yarn by means of wet chemical continuous dip coating method. The surface analyses e.g. scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (IR) results showed the changes of surface morphology by the coatings. Thermo gravimetric analysis (TGA) revealed that the high temperature (up to 800 °C) oxidation stability of CF was significantly improved with coatings. Thermo-mechanical properties also significantly enhanced up to 600 °C. CF yarn retains its original strength and elasticity modulus/stiffness at 700 °C due to thermal and oxidation resistant coatings.  相似文献   

20.
In this research, results of an experimental and artificial neural network fuzzy interface system (ANFIS) modeling of operating parameters on tensile strength of the carbon fibers are investigated. To do these experiments, the commercial polyacrylonitrile (PAN) fiber of Polyacryl Iran Corporation (PIC) was used as the precursors. The results show that increasing all of parameters improves tensile strength performance. ANFIS was applied to predict tensile strength of carbon fibers as a function of stabilization temperature at first stage (STFIS), stabilization temperature at second stage (STSS), stabilization temperature at third stage (STTS), stabilization temperature at fourth stage (STFOS), and carbonization temperature (CT). The optimum levels of influential factors, determined for tensile strength are STFIS 200 °C, STSS 225 °C, STTS 240 °C, STFOS 260 °C, CT, and 1400 °C. The modeling results showed that there is an excellent agreement between the experimental data and the predicted values. Furthermore, the fiber process is optimized applying differential evolution (DE) algorithm as an effective and robust optimization method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号