首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Dyeing of wool fabrics with natural dyes from Phytolacca berries has been studied. The effect of dye concentration, dye bath pH, dyeing time and temperature were discussed. The influence of chitosan application on the dyeing properties of wool fabrics was investigated. The SEM photographs of chitosan treated wool fabrics clearly depict the deposition of chitosan on the fibers. The effect of chitosan concentration, dye bath pH, dyeing time and temperature has been studied by orthogonal experiment. It has been proved that the dyed wool samples pretreated by chitosan have higher color fastness, faster dyeing rate, and better antibacterial properties compared with untreated ones.  相似文献   

2.
The growing concern for the personal health and hygiene has created the necessity of acquiring wool fabric antibacterial activity. Silicon dioxide nanoparticles (SiO2 NPs) have appropriate features to enhance the functional properties of wool fabrics, especially with polymer application. In this study efficient coating using polyethylene glycol (PEG2000) and SiO2 NPs were used for imparting antibacterial properties to treated fabrics. All the treatments were carried out using both conventional and ultrasound techniques. The physical and chemical properties were evaluated using FTIR, XRD, and SEM. The result indicated that treated wool fabrics by PEG/SiO2 NPs improved the dyeability and antibacterial of the fabrics and also enhanced its mechanical properties. Furthermore, it is believed that the ultrasound radiation causes homogeneous distribution of cross-links and polymerization throughout the wool surface. This offers considerable advantages compared to conventional treatment.  相似文献   

3.
Antimicrobial treatments have become more important for the textile materials especially used in sportswear, activewear, and casual wear since they can easily be contaminated by perspiration leading to bacterial growth and body odor. In this work, antimicrobial activity of chitosan in a silica matrix on pretreated wool fabrics was studied. The pretreatment processes were applied by two different ways (enzymatic and enzymatic+hydrogen peroxide). Afterwards chitosan solutions were applied to the untreated samples and to the samples that were pretreated by two different ways to give antimicrobial effects. The antimicrobial activity of wool fabrics treated in various methods was assessed before and after repeated washings (up to 10 cycles) by the application of standard test method AATCC 147-1998. The morphology of the treated fabrics was investigated by SEM and their characterizations were made by the FT-IR spectral analysis. Results revealed that pretreatment ways and chitosan application methods were quite important for adsorption and diffusion of chitosan on wool fabrics and washing stability. From the SEM images, it was clearly observed that pretreatment processes caused some degradation on the surface of the fiber; but combined processes were found to be less degradative and more effective.  相似文献   

4.
Pretreated (enzymatic and enzymatic+hydrogen peroxide) knitted wool fabrics were treated with atmospheric argon and air plasma to improve their adsorption capacity. After plasma treatments chitosan solution was applied to have antimicrobial effect on wool fabrics. The treated fabrics were evaluated in terms of washing stability as well as antimicrobial activity. The surface morphology was characterised by SEM images and FTIR analysis. From the results it was observed that atmospheric plasma treatment had an etching effect and increased the functionality of a wool surface. Atmospheric plasma treatment also enhanced the adhesion of chitosan to the surface and improved the antimicrobial activity of the wool sample. Argon was found to be more effective than air, since argon radicals played an important role in killing and removing bacteria. No significant difference in washing durability was observed in terms of plasma treatments. The samples of combined pretreatment processes had good washing durability even after 10 washing cycle. From the SEM images it was observed that combination of plasma and the other pre-treatment processes gave less damage than only one process.  相似文献   

5.
In this study, a new finishing technique is introduced through treatment of wool fabric with graphene/TiO2 nanocomposite. Graphene oxide/titanium dioxide nanocomposite first applied on the wool fabric by hydrolysis of titanium isopropoxide in graphene oxide suspension and then this coating chemically converted by sodium hydrosulfite to graphene/TiO2 nanocomposite. The homogenous distribution of the graphene/TiO2 nanocomposite on the fiber surface was confirmed by field emission scanning electron microscopy (FE-SEM), Energy-dispersive X-ray spectroscopy (EDS) and X-ray mapping. X-ray diffraction patterns proved the presence of titanium dioxide nanoparticles with a crystal size of 127 Å on the treated wool fabric. Also, the defect analysis based on X-ray photoelectron spectroscopy (XPS) established the composition of the nanocomposite. Other characteristics of treated fabrics such as antibacterial activity, photo-catalytic self-cleaning, electrical resistivity, ultraviolet (UV) blocking activity and cytotoxicity were also assessed. The treated wool fabrics possess significant antibacterial activity and photo-catalytic self-cleaning property by degradation of methylene blue under sunlight irradiation. Moreover, this process has no negative effect on cytotoxicity of the treated fabric even reduces electrical resistivity and improves UV blocking activity.  相似文献   

6.
Knitted wool and wool/nylon blend dyed fabrics were treated with low temperature plasma (LTP) to achieve optimum shrink-resistance without impairing surface topography, colour or fastness to washing of the fabrics. As LTP tends to impair handle of the fabrics, both wool and wool/nylon blend fabrics were submitted to industrial softening and/or biopolymer treatments after LTP treatment, leading to hydrophilic wool and wool/nylon blend fabrics with improved shrink-resistance without any colour changes and good fastness to washing. The results obtained were compared with those obtained by an industrial shrink-resist treatment.  相似文献   

7.
In this study silver nanoparticles with different particle sizes and hence colors were synthesized on silk and cotton fabrics through reduction of silver nitrate. Particle sizes of the silver colloids were measured by dynamic light scattering (DLS). The structure and properties of the treated fabrics were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and UV-Vis reflectance spectroscopy. Various characteristics of the treated fabrics including antibacterial activities against a Gram positive (Staphylococcus aureus) and a Gram negative (Escherichia coli) bacteria, color effect, wash and light fastness, water absorption, fabric rigidity, and UV blocking properties were also assessed. The results indicated that the treated fabrics displayed different colors in the presence of silver nanoparticles with different particle sizes and exhibited good and durable fastness properties. Also, the size of the silver particles had a tangible effect on antibacterial activity of treated fabrics and its antibacterial performance was improved by decreasing the size of particles. Moreover, this process imparted significantly UV blocking activity to fabric samples.  相似文献   

8.
The microbial transglutaminase (mTGase) is used as a bio-catalyst to repair the wool damages caused by chemical or enzymatic treatments. In this paper, the effect of mTGase on the degree of yarn strength, area shrinkage, wettability, and the dyeing properties of wool was investigated. Through mTGase treatment, the yarn strength was improved about 22.2 %. The knitted wool fabrics treated with mTGase after pretreatment of H2O2 and protease displayed 7.5 % of area shrinkage and about 22.3 % recovery in tensile strength when compared with those treated without mTGase. Also, mTGase treatment could improve the wettability and dyeing properties of wool fabrics. With the increase of mTGase concentration, the initial dye exhaustion increased significantly and the time to reach the dyeing equilibrium was shortened. It was evident that the improvement of dyeing properties was closely related to the improvement of wettability performance of wool fabric by using transglutaminase.  相似文献   

9.
There is an increasing demand for air-dry performance of fluorocarbon finished materials. Thus, surface modifications of wool fabrics were evaluated. Untreated, gaseous fluorinated, Chlorine/Hercosett processed 100 % wool fabrics were treated with different fluorochemicals and their liquid repellency after washing, and dry cleaning were evaluated. The results indicated that Chlorine-Hercosett treated samples, wool with a positive charge, after few washing cycles, showed better air dry performance with higher level of repellent properties. In addition, the comparison of the wool surface modifications treatment with different applied fluorochemicals, with different commercial formulations, illustrated that the fluorocarbon chain re-orientation and fastness properties are more affected by the nature of the wool surface while the used fluorocarbons showed more or less similar behaviours. In general, the fluorination increases fabric stiffness with lower fabric formability. The surface interface was effectively probed by X-ray Photoelectron Spectroscopy, XPS, which enabled the characterisation of the loss of surface lipids, the nature of the fibre oxidation and the deposition of fluoropolymers.  相似文献   

10.
The wool fabrics were treated by ultraviolet (UV) radiation and then dyed with Camellia sinensis (L.) O. Ktze var. waldensae (S.Y.Hu) Chang (yellow-bud tea) extract using meta-mordant dyeing method. The results indicated that the hydrophilicity of wool fabrics was improved after UV radiation treatment, which was conducive in improving color performance for the meta-mordant dyeing with yellow-bud tea extract of wool fabrics. The optimal dyeing process was that the powdered extract (5.0 % o.w.f) and the CuSO4 (2.0 % o.w.f) were added to the dyeing liquor, the pH value was adjusted to 3.5-4.0 by HCOOH, the wool fabrics treated by UV radiation for 10 min and then were dyed at a bath ratio of 1:50 under 95 °C for 70 min. By means of three-factor quadratic current rotation revolving design (TQCRRD) method, the computation results of the mathematical equations and models indicated that UV radiation was the most important factor for meta-CuSO4 dyeing with yellow-bud tea extract for wool fabrics.  相似文献   

11.
The paper reports modification and characterization of wool fabrics achieved through thiol-epoxy click chemistry. A pretreatment with tris (2-carboxyethyl) phosphine (TCEP) as an effective reducing agent was carried out to produce thiol groups on wool surface. Glycidyl trimethyl ammonium chloride (GTAC) was later covalently bonded with wool fibers via thiol-epoxy reaction. The reaction was confirmed by SEM, FTIR, Raman and TG analysis. Antibacterial activity, antistatic property, hydrophilicity and dyeability of treated wool fabric were assessed. The results demonstrated that TCEP-GTAC treatment can endow wool fabric good antibacterial and antistatic properties as well as improved hydrophilicity. Tensile strength studies indicated fiber strength loss of ~12 % on modification.  相似文献   

12.
The effect of scouring, bleaching and dyeing on the low stress mechanical and surface properties of wool woven fabrics was studied. Fabric properties were measured by the KES-FB system. In general, mechanical properties of the treated fabrics are greatly affected by scouring, moderately by dyeing and least by bleaching.  相似文献   

13.
As the use of high performance textiles has grown, the need for chemical finishes to provide the fabric properties required in the special applications has grown accordingly. In this project, a series of water dispersible polyurethanes dispersion (CS-PUs) with multipurpose performance profile was developed using isophorone diisocyanate (IPDI), polyethylene glycol (PEG), 2,2-dimethylol propionic acid (DMPA) and chitosan (CS) for textile applications. In two step synthesis process, NCO functional PU prepolymers prepared by reacting IPDI, PEG, and DMPA were extended with varying molar quantities of chitosan followed by structural characterization through FTIR. The prepared CS-PU dispersions were applied onto the dyed and printed poly-cotton blend fabrics. The performance behavior of the treated fabric in terms of crease recovery, tear strength, tensile strength, and antibacterial properties was evaluated by applying standard test methods. These investigations show that the CS-PU dispersions can be applied as antibacterial textile finishes with significant improvement in the physical and mechanical properties of poly-cotton fabrics.  相似文献   

14.
Three different silicone polymer systems, such as aminofunctional, epoxyfunctional, and hydrophilic epoxyfunctional silicone polymers, were applied onto plasma pretreated wool fabric to improve the dimensional properties. The results showed that the plasma pretreatment modified the cuticle surface of the wool fiber and increased the reactivity of wool fabric toward silicone polymers. Felting shrinkage of plasma and silicone treated wool fabric was decreased with different level depending on the applied polymer system. Fabric tear strength and hand were adversely affected by plasma treatment, but these properties were favorably restored on polymer application. Therefore, it has been concluded that the combination of plasma and silicone treatments can achieve the improved dimensional stability, and better performance properties of wool fabric. The surface smoothness appearances of treated fabrics were measured using a new evaluation system, which showed good correspondence with the results of KES-FB4 surface tester.  相似文献   

15.
The enzymatic anti-felting of wool with proteases is a promising eco-friendly alternative to the chlorine-Hercosett process. However, protease molecules could penetrate into the interior of fibers during wool processing, easily causing unacceptable damages. In this paper, the action and mechanism of two protease treatments, i.e. Savinase and papain treatments on the properties of cutinase-pretreated wool fabrics were investigated and compared. The results showed that the anti-felting processing based on cutinase and papain treatments seemed more effective. When the percentages of weight loss for the combined treated fabrics were similar, the improvement of wettability and shrink-resistance for the cutinase-papain treated sample was more remarkable, the strength loss was also lower than that of the sample treated with cutinase and Savinase consecutively. The mechanisms of the two different combined treatments were further evaluated by Allwöden’s reaction and amino acid analysis. The comprehensive comparison proved that the hydrolytic activity of papain towards the scale exocuticle of wool was a bit higher than that of Savinase and less degradation of the interior of fibers occurred during the cutinasepapain treatment.  相似文献   

16.
Influence of chitosan on the effects of proteases on wool fibers   总被引:1,自引:0,他引:1  
Textile processes generally produce a large amount of wastewater and cause a negative environmental impact. The use of proteases in wool finishing could be an appropriate alternative to classical finishing methods. However, the enzymatic treatment could cause excessive fiber damage. The application of biopolymer chitosan on wool fabrics prior to proteases treatment in attempt to overcome the damage promoted by the enzymes has been studied. The treatments based on chitosan application followed by enzymatic treatment reduce felting shrinkage, enhance whiteness degree, and improve dyeability of wool. Moreover, it plays an important role in minimizing the wool fiber damage.  相似文献   

17.
The purpose of this study was to investigate the effects of bending properties and drapability on the hand and appearance of wool-blended fabrics for comparison of real clothing with online and 3D virtual garments. Objective evaluations were performed by measuring mechanical properties of fabrics, while subjective evaluations were performed by subjects evaluating sensory images of fabrics; real clothing evaluations were performed offline and online, and 3D virtual garments were evaluated. Bending properties and drape coefficients of fabrics were affected by wool blending ratio, and fabrics with high wool blending ratio showed low stiffness, warm-cool, weight, and high smoothness, drapability image. In the real clothing evaluation, stiffness image showed many differences with online evaluation with respect to wool blending ratio. Objective bending properties and drape coefficients showed no correlation with subjective sensory images offline. For the online results, objective mechanical properties had good correlations with all sensory images except smoothness. Stiffness and warm-cool online scores were higher than the offline ones and the offline drapability was higher than the online one for 100 % wool fabrics. Thus, clothing was generally evaluated online as more hard and moist than real clothing. For the virtual garment evaluation, sensory images had no difference according to wool blending ratio compared with real clothing. Many differences in subjective sensory images between real clothing and virtual garments were observed, except for smoothness and weight images. The results showed that it is difficult to exactly predict the hand and appearance of clothing according to fabric properties using 3D virtual garment system.  相似文献   

18.
Setting of wool fabrics during dyeing is an acute industrial dilemma facing most of wool dyers. Therefore, wool fabrics were dyed with acid, basic, as well as mono- and bi-functional reactive dyes in the presence of selected aliphatic and aromatic anti-setting agents; namely 3,3-dithiodipropionic acid (DTDPA), dithiodiglycolic acid (DTDGA), 5,5-dithio-bis(2-nitrobenzoic acid) (DTBNBA), dithiodibutyric acid (DTDBA), 2,2-dithiodisalicylic acid (DTDSA), and 6,6-dithiodinicotinic acid (DTDNA). The effect of incorporating the said thiol/disulfide-exchangers into the dyeing bath of wool on its dimensional stability was assessed. The influence of the proposed anti-setting agents on the dyeability of wool with the said reactive dyes was monitored. The alteration in the chemical composition of the dyed fabrics was monitored by determining their sulfur and nitrogen contents, cysteine content, and the solubility degree in alkaline solution. The used reagents were found to be effective in stabilization of wool during dyeing with reactive dyes to different extents depending on the nature of the used anti-setting agent. Limited change in the chemical composition of the dyed samples was monitored without affecting their dyeability with the said dyes. The mechanism of interaction of these reagents with wool fabrics during dyeing was proposed.  相似文献   

19.
Poly(ethylene terephthalate) (PET) films, comprising surfaces hydrolyzed with caustic soda solution to incorporate the functional groups of carboxylic acids, were treated with a solution containing chitosan oligomer, a cross-linking agent, and a catalyst in order to modify various surface characteristics, including hydrophilicity and anti-staticity. Chitosan oligomers were prepared by depolymerizing chitosan with sodium nitrite. The chitosan molecules were fixed to the PET film surface by the reaction between the carboxylic groups in the PET film and the amino groups of the chitosan molecules. FT-IR(ATR) spectra, surface free energies, anti-staticity and other properties were measured and interpreted in relation to the structural change that was induced in the PET films by these treatments. In addition, we investigated the effect of chitosan oligomer treatment on the handle of polyester fabrics by using Kawabata evaluation system. The hydrophilic and anti-static properties of the PET film were highly improved by alkaline hydrolysis and low-molecular-weight chitosan treatment. The handle of PET fabric was gradually hardened by chitosan treatment with increasing the concentration of chitosan.  相似文献   

20.
Three unreported cationic reactive dyes based on azobenzene were synthesized using a novel synthetic route. Synthesized dyestuffs containing three primary color dyes were characterized by FTIR, H-NMR, LC-MS, Element Analysis and UV-vis spectroscopic techniques. The absorption spectra of dyes were measured in three solvents with different polarities. The dyeing and color fastness properties of three cationic reactive dyes on wool, acrylic and wool/acrylic blend fabrics were determined. The optimum pH for wool and acrylic fabrics were 6 and 5, respectively. Effect of temperature, time on dyeing properties and color fastness properties on wool fabric showed the same tendency with acrylic fabric. The K/S value of wool fabric dyed with three dyes was similar to that of acrylic fabric when both fabrics were dyed simultaneously in the same dyebath using low dye concentration. Wool/acrylic blend fabric dyed with three cationic reactive dyes using onebath one-step method achieved good union dyeing property and excellent color fastness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号