首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maleic acid (MA) and itaconic acid (IA) used as crosslinking agents for cotton fabrics are more cost-effective than the most efficient nonformaldehyde crosslinker 1,2,3,4-butanetetracarboxylic acid (BTCA), but poor stability of finishing bath and fabric yellowing are the main disadvantage of MA/IA in situ polymerization and crosslinking system. In this research, the application performance improvement of MA/IA crosslinking system for cotton fabrics was studied. Replacement of the widely used sodium hypophosphite (SHP) with potassium hypophosphite (PHP) as catalyst allowed for obtaining a stable finishing bath under ambient temperature and led to improved final durable press (DP) performance of the treated fabrics. The influences of PHP concentration, curing temperature, and curing time on the performance of finished fabrics were investigated. Cotton fabrics treated by MA/IA/PHP crosslinking system exhibited comparable DP performance and laundering durability to that finished with BTCA. To address the fabric yellowing problem, the residual MA and IA attached on the treated fabrics by single-ended ester linkage was determined by HPLC. The data indicated that the degree of fabric yellowing was linearly related to the unpolymerized carboxylic acid MA and IA concentration on the treated fabrics. Several approaches were explored to improve the whiteness of MA/IA/PHP crosslinked fabrics. It was found that steam drying with 30-50 % humidity could effectively improve fabric whiteness. The findings of this study have significant implications for better application of unsaturated polycarboxylic acids in crosslinking of cellulose.  相似文献   

2.
A new approach for an eco-friendly multi-functionalization of cotton/wool (C/W) and viscose/wool (V/W) blended fabrics was investigated. In this study, Ag-nanoparticle (Ag-NP) and/or ZnO-nanoparticle (ZnO-NP) functional agents were incorporated into the finishing bath along with citric acid (CA) or succinic acid (SA) as ester-crosslinking or esterifying agent, and sodium hypophosphite catalyst using the padding technique. The obtained results indicated that the extent of multi-functionalization expressed as antibacterial activity, UV-blocking functionality and wrinkle recovery ability were determined by kind of nanomaterial, nature of carboxylic acid, i.e., bi- or tri-functional and type of substrate. The results also demonstrated that blended fabrics finished with Ag-NP/ZnO-NP/CA/SHP nano-finishing formulation exhibited outstanding durable multi-functional properties even after 10 washing cycles. In addition, the change in surface morphology and the existence of Ag and/or Zn onto the selected V/W fabric surfaces have been confirmed by SEM and EDX analysis respectively.  相似文献   

3.
We studied eight carboxylates as potential catalysts for the cellulose cross-linking with 1,2,3,4-butanetetracarboxylic acid (BTCA) and compared them with sodium hypophosphite (SHP). The results showed that the fabrics treated with sodium formate (SF) exhibited the highest wrinkle recovery angle (WRA) among the selected carboxylates, nearly equivalent to the WRA of the fabrics treated with SHP. We compared the radii and relative concentration ratios of different carboxylates anions, and found that SF had a particular amount of anions in the optimum pH range of the BTCA finishing bath, and had the smallest anion radius, both of which accounted for the higher WRA. The SF anions were present throughout the curing process. Based on the thermogravimetric analysis curves of SF and SHP, SF significantly decreased the temperature of the anhydride formation. In addition, the FTIR spectra displayed a stronger ester absorbance of the fabrics treated with BTCA/SF than those treated only with BTCA, which confirmed that SF accelerated the esterification between BTCA and cellulose.  相似文献   

4.
Continuous photografting/crosslinking of polyethyleneglycol dimethacrylate oligomers onto cotton using a water-soluble benzophenone photoinitiator was investigated. Photografting increased with increasing irradiation dose, oligomer concentration and photoinitiator concentration. Maximum grafting efficiency of DM 400 and 600 were 83% and 79%, respectively. The photografting increased the wrinkle resistance of cotton implying surface crosslinking of cotton. Both surface crosslinking and bulk crosslinking of cotton were accomplished via dual curing of a mixed formulation containing both a thermally curable component (BTCA/SHP) and a UV-curable component. The wrinkle resistance of the crosslinked cotton was found to be higher when cured by thermal curing after UV curing rather than by UV curing after thermal curing due to the facile post-polymerization of the UV active component. The presence of crosslinks in the dually crosslinked cotton was verified with FT-IR and thermogravimetric analysis.  相似文献   

5.
N-halamine precursor 2,2,6,6-tetramethyl piperidinol (TMP), a hindered amine light stabilizer, was bonded onto cotton fabric by using 1,2,3,4-butanetetracarboxylic acid (BTCA) as a crosslinking agent. A variety of treating conditions including TMP concentration, curing temperature and time, and catalyst were studied. The treated fabrics were characterized using FTIR spectra and scanning electron microscope (SEM). The cotton fabric treated with TMP precursor could be rendered biocidal upon exposure to dilute household bleach. The chlorinated cotton swatches showed great efficacy and inactivated 100 % of Staphylococcus aureus with 7.1 log reduction with 5 min of contact and 83.25 % of E. coli O157:H7 at 10 min of contact. In addition, the wrinkle recovery angle of the treated cotton fabrics increased from 229 ° of untreated cotton fabrics to 253 °. This study provided a practical finishing process to produce cotton fabrics with easy care and antibacterial functionalities at the same time.  相似文献   

6.
In this study, a facile method was developed to coat AgCl nanoparticles (NPs) onto knitted cotton fabrics. The AgCl NPs were characterized by ultraviolet absorption spectrum, X-ray diffraction (XRD) and dynamic laser light scattering (DLS). The AgCl NPs were coated onto cotton fabrics through a pad-dry-cure process with the assistance of 1,2,3,4- butanetetracarboxylic acid (BTCA). Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), ICP-OES analysis and energy-dispersive X-ray spectroscopy (EDX) confirmed that AgCl NPs were successfully coated onto cotton fabrics. The prepared cotton samples exhibited excellent antimicrobial activity against both Gram-positive S. aureus and Gram-negative K. pneumonia bacteria. Rat skin fibroblast cytotoxicity testing demonstrated the treated cotton fabrics to be non-toxic. The washing durability evaluation showed that the antimicrobial function of cotton fabrics was durable to washing. In addition, the wrinkle resistance of the coated cotton fabrics was improved and there was no obvious change in whiteness.  相似文献   

7.
In this study, durable antibacterial cotton fabrics were prepared by a simple two-step impregnation method. Firstly, thioglycolic acid (TGA) was grafted onto cotton fabric via esterification with the hydroxyl groups of cellulose, then silver nanoparticles (Ag NPs) were immobilized on the cotton fabric surface via coordination bonds with the TGA thiol groups. As a result, the mean size of Ag NPs coating on the cotton fabric is around 74 nm, and these functionalized cotton fabrics show superior antibacterial properties and excellent laundering durability. After withstand 50 laundering cycles, the obtained cotton fabrics still showed outstanding bacterial reduction rates (BR) against both S. aureus and E. coli, and the rates are all higher than 97 %. Therefore, this method to prepare antibacterial cotton fabric shows great potential applications in socks, cosmetic, and medical textiles.  相似文献   

8.
In this study, Berberis vulgaris L. wood as an agricultural waste was used for dyeing and functional finishing of cotton. To facilitate the attachment of natural dye, citric acid was used to create carboxylic acid functional groups on cotton fibers. The process of crosslinking of cotton fabric with citric acid was optimized in order to obtain the maximum dyeability with the cationic natural dye. The effects of three important factors including citric acid concentration, sodium hypophosphite concentration and curing temperature on the color strength of the dyed samples with woods of barberry tree were analyzed by response surface methodology and the optimum conditions for obtaining the highest color strength was obtained. The crosslinking of citric acid on cotton fibers was confirmed by FTIR spectroscopy. The dyed sample prepared under the optimum conditions of crosslinking showed good wash and light fastness properties besides very good antibacterial activity against gram-negative and gram-positive bacteria.  相似文献   

9.
A novel bifunctional quinizarin dye possessing two photoactive methacrylate groups was synthesized by the reaction of quinizarin with methacryloyl chloride. The synthesized dye, a low substantive dye under the conventional dyeing process, can be photografted onto cotton and wool fabrics at room temperature without neutral salts, which makes it a novel coloration process of excellent environmental friendliness. The concurrent polymerization and grafting of the synthesized dye onto cotton or wool can be assisted by a photoinitiator and acrylic acid in the case of cotton grafting. Moreover, color yields of the grafted fabrics improved significantly with the photografting of the bifunctional dye. The bifunctional dye can be photopolymerized with the increase in UV energy to 25 J/cm2 and the oligomeric dye has a degree of polymerization of 5 or more. Furthermore, the color fastness properties of the grafted fabrics were superior to those of the dyed fabrics via exhaustion.  相似文献   

10.
The paper discusses a method to functionalize cotton fabrics using biologically active natural compounds to achieve the antibacterial characteristics required for medical application. The biologically active natural compounds include propolis, beeswax, and chitosan. Three 100 % cotton knitted fabrics with different degrees of compactness were impregnated in the emulsions containing the active ingredients and fabric variant G3 with the highest degree of impregnation was considered for the evaluation of the antibacterial properties and comfort characteristics. The results show that the treated cotton fabric had high antibacterial activity against both gram positive bacteria Staphylococcus aureus and Streptococcus β haemolytic, and gram negative bacteria Escherichia coli and Pseudomonas aeruginosa. The presence of the biologically active natural compounds on the cotton substrates modified the surface of the textile fibers as seen in the SEM images. The treatment also improved fabric comfort properties, the cotton substrates became less air permissive and more hygroscopic after the treatment. The experimental results indicated that propolis, beeswax and chitosan can be applied as an emulsion to functionalize cotton textile materials. The antibacterial performance of the functionalized fabrics suggested that the cotton fabrics treated with those biologically active natural compounds have the potentials to be used in medical fields.  相似文献   

11.
In this study, chitosan and pentasodium tripolyphosphate (TPP)-based bilayers were fabricated on the cationized woven cotton fabrics via layer-by-layer (LBL) self-assembly technique. The initial cationic charges on cotton fabric were produced through the aminization procedure involving the covalent attachment of reactive dye to cotton fabric and subsequent reductive cleavage of the dye to free amine. Different numbers of bilayers (1, 5, and 10) consisting of chitosan/TPP have been deposited on the fabrics. The surface morphology, cationic group content, chemical surface modification, whiteness index, surface tension and antibacterial properties of the modified cotton samples were investigated using scanning electron microscopy (SEM), methylene blue test, FTIR, reflectance spectroscopy, water contact angle measurements and antibacterial test, respectively. The bacterial inhibition experiments demonstrated that the modified cotton fabric with the addition of chitosan/TPP bilayers can increase the degree of inhibition on E. coli and S. aureus bacteria. The utilized LBL method was an easy and cost-effective procedure for developing of novel antibacterial textiles with the highly attractive feature in the medical and hygienic products.  相似文献   

12.
In this study, cotton/nylon blended fabrics were treated with atmospheric air plasma at various times (30–60 s) and were subsequently printed with pastes containing carbon black nanoparticles. Properties of plasma treated fabrics such as visible-near infrared (Vis-NIR) reflectance, water contact angle, air permeability, and color fastness were measured. It was shown that increasing plasma treatment time decreases reflection level of treated fabrics in Vis-NIR region. Plasma treatment also enhanced the hydrophobicity of cotton/nylon fabrics observed by an increase in water contact angle. Plasma treated samples for 60 s demonstrated lower air permeability than those treated for 30 s. Furthermore, printed samples possessed acceptable levels of fastness against washing, light and crocking.  相似文献   

13.
A derivative of an optical brightening agent (organic dye), i.e., 2,6-dibromo-4-flouroaniline (synthesized and reported previously) has been chemically bonded to cotton fabrics through a coupling agent, i.e., 3-(2-aminoethylamino)- propyltrimethoxy silane. These chemically treated cotton fabrics have been characterized by FTIR spectroscopy, color observation, tear properties determination, and UV-DRS analysis. The relevant spectra of FTIR confirm chemical bonding of the silane with cotton on one end and with the dye on the other. Comparison of the various treated and untreated cotton samples before and after washing by visual observations confirms the claim of chemical bonding of the dye with the cotton. The consistent decreasing patterns observed in tear strengths of the treated cloths with increase in concentration of the respective chemical validate modification of the cotton cloths. UV-DRS analysis of the modified cotton cloths show that the reflectance decreases with the use of silane.  相似文献   

14.
The dyeing and color fastness properties of three reactive-disperse dyes containing a sulphatoethylsulphone group on Nylon, cotton and N/C mixture fabrics were examined. Reduction-clearing was more effective in removing the unfixed dyes than soaping since the reactive-disperse dye became hydrophobic during dyeing process. Nylon was dyed well with three reactive-disperse dyes at pH 5∼8 and difference in chemical structure between dyes did not affect the final color strength of the dyed Nylon fiber, but their build-up properties on Nylon were not so good. The color strength of the dyed cotton was not as high as that of Nylon. The color strength of cotton increased by lowering dyeing temperature when the reactive-disperse dyes having hydroxy group were used. Nylon absorbed more dye molecules than cotton in simultaneous dyeing, the color difference between Nylon and cotton could be reduced as the dyeing temperature decreased. N/C mixture fabric was dyed well at 60 °C with the reactive-disperse dyes having hydroxyl group when applied at pH 7 and 60 °C, and their build-up properties were good. It was also found that washing fastness and rubbing fastness of dyed Nylon, cotton and N/C fabrics with the reactive-disperse dyes were excellent, while light fastness was moderate.  相似文献   

15.
Cotton samples were pre-treated with various sol solutions containing different alkoxysilanes (TEOS, GPTMS, APTES, and TESP-SA). The as-prepared cotton samples were dyed with 2 % owf Red and 4 % owf Blue. Furthermore, dyed cotton samples were after-treated with the alkoxysilanes. The alkoxysilane were also incorporated into the dyeing bath. The as- prepared cotton samples were subjected to a treatment with the non-formaldehyde durable press finishing agent BTCA in conjunction with the catalyst SHP. The textile materials were evaluated with respect to the colorimetric data (L*, a*, b*, ΔE*) and the color strength expressed in terms of K/S values. Tensile strength and dry crease recovery angles of the durable pressfinished samples were measured. The findings indicate that APTES and TESP-SA exert a significant influence on the color properties.  相似文献   

16.
The wrinkle-resistant property of cotton specimens treated by 1,2,3,4-butanetetracarboxylic acid (BTCA) and catalysed by sodium hypophosphite (SHP) in the presence of TiO2 or nano-TiO2 has been evaluated in the present study. In this study, Scanning Electron Microscopy proved the presence of TiO2 or nano-TiO2 on the fibre surface. It was also found that 0.1–0.2 % TiO2 or nano-TiO2 was the optimum concentration to enhance the wrinkle-resistance of BTCA-SHP-treated cotton fabrics. In addition, the TiO2 or nano-TiO2 added in the wrinkle-resistant treatment could act as a multi-functional finishing agent to improve the UV protection property while they are safe to human skin as proved by the cytotoxicity test. Therefore, TiO2 or nano-TiO2 was evident that they could enhance the finishing performance and minimise the side effect.  相似文献   

17.
Cotton fabrics exhibiting superhydrophobic and antibacterial properties were prepared through a non-solvent induced phase separation method using hydrophobic poly(vinylidene fluoride) (PVDF) and its hybrids with photocatalytic zinc oxide nanoparticles (nano-ZnO) as surface modifying agents for cotton fabric. The effects of coagulating medium and temperature on microstructural morphology and surface hydrophobictity of the cotton fabrics were investigated by FE-SEM observation and contact angle measurement. Superhydrophobic cotton fabrics exhibiting water contact angle higher than 150 ° could be obtained by coating the fabrics with solutions of PVDF and nano-ZnO followed by coagulation in ethanol as non-solvent. This phenomenon is considered to be originated from both chemically hydrophobic PVDF layer and physical micro- and nano-bumps formed on the surface of cotton fabric, which are essential requirements for Lotus effect. Moreover, antibacterial properties could be synergistically obtained by utilizing photocatalytic effect of nano-ZnO.  相似文献   

18.
In this paper, chitosan was suggested for using as a replacement for sodium alginate in the pretreatment print paste for digital ink-jet printing for cotton fabric. Pretreatment print pastes prepared from the mixture of chitosan and acetic acid with the appropriate viscosity gave satisfactory prints on the cotton fabric. Chitosan-treated cotton fabrics were digitally irk-jet printed with four different colors and the color fastness rating of the printed fabrics was satisfactory. Experimental results revealed the possibility of pre-treating the cotton with chitosan to replace the sodium alginate normally present in the pretreatment print paste recipe.  相似文献   

19.
Natural dye extracts were obtained by extraction from Punica granatum L. using water as an extractant at 90 °C for 90 min with various liquor ratios (solid Punica granatum L.(wt.): solvent water(wt.); 1:100–1:5). Dyeing was carried out using a 1:50 dyeing bath ratio at 80 °C for 60 min by exhaustion method. This study focused on the effect of liquor ratio on dyeing properties and deodorizing/antibacterial performance of various fabrics (cotton, silk and wool) dyed with Punica granatum L. extract without mordants. The optimum liquor ratio was found to be 1:10. By IR, UV-visible spectroscopies and HPLC analysis, the main component in Punica granatum L. extract and the yellow colorant component were found to be ellagic acid. By GC/MS analysis, the major volatile components of pristine Punica granatum L. powder were found to be acetic acid (area: 25.84 %), ethanol (area: 17.97 %), acetoin (area: 13.11 %), acetaldehyde (area: 8.96 %), isobutanal (area: 4.90 %). All dyed fabrics (cotton, silk and wool fabrics) displayed outstanding deodorizing performance (99 %) against ammonia gas and excellent antibacterial performance (bacteriostatic reduction rate: 99.9 %) against Staphylococcu aureus and Klebsiella pneumoniae.  相似文献   

20.
The use of non-toxic and eco-friendly natural dyes on textiles has received much attention due to the increased environmental awareness in order to avoid some hazardous synthetic dyes. In the present study, an eco-friendly approach was developed to impart color and antibacterial properties to silk fabrics dyed with turmeric extract as a non-toxic natural colorant. The natural colorant was extracted from Curcuma Longa rhizome. Copper sulfate, ferrous sulfate and potassium aluminium sulfate were applied in a pre-metallization process as mordanting agents. Antibacterial properties of treated fabrics were evaluated against common pathogenic bacteria, Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative). The effects of dye concentration and mordant types on the obtained color hues, antibacterial efficiency and color fastness of the fabrics were investigated. The results indicated that mordanted and dyed fabrics possessed desirable antibacterial properties. Complete antibacterial activity of the treated fabrics was obtained with 3 %owf (on weight of the fabric) copper sulfate. It was also shown that increasing the dye concentration could lead to a more efficient antibacterial activity on the mordanted dyed fabrics. An optimum level of the antibacterial activity was observed in the sample treated with 30 %owf of turmeric. Furthermore, the results of CIE L*, a*, b* values, FTIR, washing, light and rubbing fastnesses of the dyed fabrics were reported. The mordanted dyed silk fabrics exhibited desirable color fastness properties. These studies proved a direct relationship between the degree of antibacterial activity of the fabrics treated with turmeric and the metals ion concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号