首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Medetomidine is the most potent and selective alpha2-agonist used in veterinary medicine and its effects can be antagonized by the alpha2-antagonist atipamezole. The pharmacokinetics of medetomidine and atipamezole were studied in a cross-over trial in eight lactating dairy cows. The animals were injected intravenously (i.v.) with medetomidine (40 microg/kg) followed by atipamezole i.v. (200 microg/kg) or saline i.v. after 60 min. Drug concentrations in plasma were measured by HPLC. After the injection of atipamezole, the concentration of medetomidine in plasma increased slightly, the mean increment being 2.7 ng/mL and the mean duration 12.1 min. However, atipamezole did not alter the pharmacokinetics of medetomidine. It is likely that the increase in medetomidine concentration is caused by displacement of medetomidine by atipamezole in highly perfused tissues. The volume of distribution at steady state (Vss) for medetomidine followed by saline and medetomidine followed by atipamezole was 1.21 and 1.32 L/kg, respectively, whereas the total clearance (Cl) values were 24.2 and 25.8 mL/min x kg. Vss and Cl values for atipamezole were 1.77 mL/kg and 48.1 mL/min x kg, respectively. Clinically, medetomidine significantly reduced heart rate and increased rectal temperature for 45 min. Atipamezole reversed the sedative effects of medetomidine. However, all the animals, except one, relapsed into sedation at an average of 80 min after injection of the antagonist.  相似文献   

2.
ObjectiveTo describe the pharmacodynamics and pharmacokinetics following an intravenous (IV) bolus dose of medetomidine in the horse.Study designProspective experimental trial.AnimalsEight, mature healthy horses age 11.7 ± 4.6 (mean ± SD) years, weighing 557 ± 54 kg.MethodsMedetomidine (10 μg kg?1) was administered IV. Blood was sampled at fixed time points from before drug administration to 48 hours post administration. Behavioral, physiological and biochemical data were obtained at predetermined time points from 0 minutes to 24 hours post administration. An algometer was also used to measure threshold responses to noxious stimuli. Medetomidine concentrations were determined by liquid chromatography-Mass Spectrometry and used for calculation of pharmacokinetic parameters using noncompartmental and compartmental analysis.ResultsPharmacokinetic analysis estimated that medetomidine peaked (8.86 ± 3.87 ng mL?1) at 6.4 ± 2.7 minutes following administration and was last detected at 165 ± 77 minutes post administration. Medetomidine had a clearance of 39.6 ± 14.6 mL kg?1 minute?1 and a volume of distribution of 1854 ± 565 mL kg?1. The elimination half-life was 29.1 ± 12.5 minutes. Glucose concentration reached a maximum of 176 ± 46 mg dL?1 approximately 1 hour post administration. Decreased heart rate, respiratory rate, borborygmi, packed cell volume, and total protein concentration were observed following administration. Horses lowered their heads from 107 ± 12 to 20 ± 10 cm within 10 minutes of drug administration and gradually returned to normal. Horse mobility decreased after drug administration. An increased mechanical threshold was present from 10 to 45 minutes and horses were less responsive to sound.Conclusion and clinical relevance Behavioral and physiological effects following intravenous administration positively correlate with pharmacokinetic profiles from plasma medetomidine concentrations. Glucose concentration gradually transiently increased following medetomidine administration. The analgesic effect of the drug appeared to have a very short duration.  相似文献   

3.
The pharmacokinetics of two potent α2-adrenoceptor agents that can be used for immobilization (medetomidine) and reversal (atipamezole) of the sedation in mammals, were studied in three reindeer ( Rangifer tarandus tarandus) in winter and again in summer. Medetomidine (60 μg/kg) was injected intravenously (i.v.), followed by atipamezole (300 μg/kg) intravenously 60 min later. Drug concentrations in plasma were measured by HPLC. The administration of atipamezole resulted in an immediate 2.5–3.5 fold increase in the medetomidine concentration in plasma. Clearance for medetomidine (median 19.3 mL/min·kg) was lower than clearance for atipamezole (median 31.0 mL/min·kg). The median elimination half-lives of medetomidine and atipamezole in plasma were 76.1 and 59.9 min, respectively. The animals became resedated 0.5–1 h after the reversal with atipamezole. Resedation may be explained by the longer elimination half-life of medetomidine compared to atipamezole.  相似文献   

4.
OBJECTIVE: To determine the hemodynamic consequences of the coadministration of a continuous rate infusion (CRI) of medetomidine with a fentanyl bolus in dogs. ANIMALS: 12 healthy sexually intact male dogs weighing 30.3 -/+ 4.2 kg (mean +/- SD). PROCEDURE: Dogs received either fentanyl alone (15.0 microg/kg, i.v. bolus) or the same dose of fentanyl during an 11-hour CRI of medetomidine (1.5 microg/kg/h, i.v.). Prior to drug administration, dogs were instrumented for measurement of cardiac output, left atrial pressure, and systemic arterial blood pressures. Additionally, blood samples were collected from the pulmonary artery and left atrium for blood gas analysis. RESULTS: Medetomidine infusion reduced the cardiac index, heart rate, and O2, delivery while increasing left atrial pressure. Subsequent fentanyl administration further decreased the cardiac index. The Pao2 was not significantly different between the 2 treatment groups; however, fentanyl transiently decreased Pao2 from baseline values in dogs receiving a CRI of medetomidine. CONCLUSIONS AND CLINICAL RELEVANCE: Because of the prolonged hemodynamic changes associated with the CRI of medetomidine, its safety should be further evaluated before being clinically implemented in dogs.  相似文献   

5.
The objective of this paper was to evaluate the effect of constant rate infusion of medetomidine on the anaesthetic requirements of desflurane in dogs. For this, six healthy dogs were studied. Measurements for baseline were taken in the awake, unsedated dogs, then each dog received intravenously (i.v.) three anaesthetic protocols: M (no medetomidine infusion), M0.5 (infusion of medetomidine at 0.5 microg/kg/h, i.v.) or M1 (infusion of medetomidine at 1 microg/kg/h, i.v.). All dogs were sedated with medetomidine (2 microg/kg, i.v.) and measurements repeated in 10 min. Induction of anaesthesia was delivered with propofol (3 mg/kg, i.v.) and maintained with desflurane for 90 min to achieve a defined surgical plane of anaesthesia in all cases. After tracheal intubation infusion of medetomidine was initiated and maintained until the end of anaesthesia. Cardiovascular, respiratory, arterial pH (pHa) and arterial blood gas tensions (PaO(2), PaCO(2)) variables were measured during the procedure. End tidal desflurane concentration (EtDES) was recorded throughout anaesthesia. Time to extubation, time to sternal recumbency and time to standing were also noted. Heart rate and respiratory rate were significantly decreased during sedation in all protocols compared to baseline values. Mean heart rate, mean arterial pressure, systolic arterial pressure, diastolic arterial pressure, respiratory rate, tidal volume, arterial oxygen saturation, end-tidal CO(2), pHa, PaO(2), and PaCO(2) during anaesthesia were similar for all protocols. EtDES for M (8.6 +/- 0.8%) was statistically higher than for M0.5 (7.6 +/- 0.5%) and M1 (7.3 +/- 0.7%) protocols. Infusion of medetomidine reduces desflurane concentration required to maintain anaesthesia in dogs.  相似文献   

6.
The pharmacokinetics of medetomidine hydrochloride (Domitor) administered at a single dose of 15 μg/kg IV in sheep are described. Plasma medetomidine concentrations were determined using a sensitive radioreceptor assay technique, capable of also measuring metabolites which would bind to α2 adrenergic receptors. Medetomidine was rapidly distributed, with a half-life of distribution of 4.65/pm0.65 min. The apparent volume of distribution was 2.69/pm0.62 L/kg, while elimination half-life was 37.85/pm2.84 min. Total body clearance varied between 16.29 and 151.81 mL/min.kg. Pharmacological effects of medetomidine paralleled its plasma concentration.  相似文献   

7.
OBJECTIVE: To evaluate the effects of the alpha2-adrenoceptor agonist medetomidine on respiratory rate (RR), tidal volume (V(T)), minute volume (V(M)), and central respiratory neuromuscular drive as determined by inspiratory occlusion pressure (IOP) during increasing fractional inspired concentrations of carbon dioxide (FiCO2) in conscious dogs. ANIMALS: 6 healthy dogs (3 males and 3 females). PROCEDURE: Dogs were administered 0, 5, or 10 microg of medetomidine/kg i.v. We measured RR, V(T), V(M), and IOP for the first 0.1 second of airway occlusion (IOP0.1) during FiCO2 values of 0%, 2.5%, 5.0%, and 75% at 15 minutes before and 5, 30, and 60 minutes after administration of medetomidine. RESULTS: Increases in FiCO2 significantly increased RR, V(T), and V(M). The i.v. administration of 5 and 10 microg of medetomidine/kg significantly decreased RR and V(M) at 5, 30, and 60 minutes for FiCO2 values of 2.5% and 5.0% and at 30 and 60 minutes for an FiCO2 value of 75%. The IOP0.1 was decreased after 30 minutes only for an FiCO2 value of 7.5% in dogs administered 5 and 10 microg of medetomidine/kg. The IOP0.1 was decreased at 60 minutes after administration of 10 microg of medetomidine/kg for an FiCO2 value of 7.5%. CONCLUSIONS AND CLINICAL RELEVANCE: The i.v. administration of medetomidine decreases RR, V(M), and central respiratory drive in conscious dogs. Medetomidine should be used cautiously and with careful monitoring in dogs with CNS depression or respiratory compromise.  相似文献   

8.
Renal effects of the selective alpha(2)-adrenoceptor agonist, medetomidine, were investigated in anesthetized dogs. Animals were administered medetomidine 20 and 40 microg/kg intravenously (IV) and 80 mug/kg intramuscularly (IM) or 1 ml of saline IV. Urine and blood samples were collected before and at 30, 60, 90 and 120 min following medetomidine injection. Mean arterial blood pressure (MABP), renal blood flow (RBF), glomerular filtration rate (GFR), urine volume (U(v)), urine osmolality (U(osm)), free water clearance (C(H2O)), fractional clearance of sodium (F(Na)), plasma osmolality (P(osm)), plasma glucose levels and plasma antidiuretic hormone (ADH) concentrations were measured. The results showed that IV administration of medetomidine initially increased MABP 5-15 min followed by long-lasting decrease. The initial hypertension was not observed after IM administration, which was accompanied by a more profound hypotensive effects. RBF, GFR, U(v), C(H2O) increased after IV injection and decreased after IM. Medetomidine increased FNa and Posm and decreased U(osm). Plasma glucose levels initially increased and subsequently decreased. Plasma ADH concentration was decreased by IV injection but increased by IM administration. Our data imply that: 1) IV administration of medetomidine at dose rates of 20 and 40 microg/kg results in profound diuresis up to 2 hr; 2) Suppression of ADH release from the CNS is one of the mechanisms of medetomidine-induced diuresis although it may not be the principal one.  相似文献   

9.
10.
The clinical effects and pharmacokinetics of medetomidine (MED) and its enanti-omers, dexmedetomidine (DEX) and levomedetomidine (LEVO) were compared in a group of six beagle dogs. The dogs received intravenously (i.v.) a bolus of MED (40 microg/kg), DEX (20 and 10 microg/kg), LEVO (20 and 10 microg/kg), and saline placebo in a blinded, randomized block study in six separate sessions. Sedation and analgesia were scored subjectively, and the dogs were monitored for heart rate, ECG lead II, direct blood pressure, respiratory rate, arterial blood gases, and rectal body temperature. Blood samples for drug analysis were taken. Peak sedative and analgesic effects were observed at mean (+/- SD) plasma levels of 18.5 +/- 4.7 ng/mL for MED40, 14.0 +/- 4.5 ng/mL for DEX20, and 5.5 +/- 1.3 ng/mL for DEX10. The overall level of sedation and cardiorespiratory effects did not differ between MED40, DEX20 and DEX10 during the first hour, apparently due to a ceiling effect. However, the analgesic effect of DEX20 lasted longer than the effect of the corresponding dose of racemic medetomidine, suggesting greater potency for dexmedetomidine in dogs. Levomedetomidine had no effect on cardio-vascular parameters and caused no apparent sedation or analgesia. The pharmacokinetics of dexmedetomidine and racemic medetomidine were similar, but clearance of levomedetomidine was more rapid (4.07 +/- 0.69 L/h/kg for LEVO20 and 3.52 +/- 1.03 for LEVO10) than of the other drugs (1.26 +/- 0.44 L/h/kg for MED40, 1.24 +/- 0.48 for DEX20, and 0.97 +/- 0.33 for DEX10).  相似文献   

11.
Medetomidine, an α2-adrenoceptor agonist, is a potent sedative and analgesic agent in the dog. When necessary, its action can be effectively antagonized by atipamezole. The present work was designed to study the effects of these drugs on each others' pharmacokinetics when a single intramuscular dose of medetomidine (50 μg kg-1) was followed by a dose of atipamezole (250 μg kg-1). Three different treatments were used: medetomidine alone, atipamezole alone, and atipamezole after medetomidine. Drug concentrations in plasma were measured by GC-MS. Statistical analysis of the results (anova) revealed significant differences between treatments in the kinetic parameters of medetomidine. Atipamezole decreased the AUC of medetomidine from 41.3 to 28.6 ng h ml"1(P = 0.005), t1/4 from 1.44 to 0.87 h ( P = 0.015), and increased Cl from 21 to 31 ml min-1kg-1(P = 0.017). Differences in V2 did not reach statistical significance. The only statistically significant effects of medetomidine on the pharmacokinetics of atipamezole in this study were the slight decrease of Cl and C max as well as the increase of AUC . It is suggested that the large dose of medetomidine used caused haemodynamic changes, resulting in decreased hepatic circulation and slower drug metabolism. Antagonism by atipamezole restored the hepatic blood flow and, consequently, increased the elimination of medetomidine by biotransformation.  相似文献   

12.
The sedative effects in horses of the new alpha 2 agonist medetomidine were compared with those of xylazine. Four ponies and one horse were treated on separate occasions with two doses of medetomidine (5 micrograms/kg bodyweight and 10 micrograms/kg bodyweight) and with one dose of xylazine (1 mg/kg bodyweight) given by intravenous injection. Medetomidine at 10 micrograms/kg was similar to 1 mg/kg xylazine in its sedative effect but produced more severe and more prolonged ataxia, and one animal fell over during the study. Medetomidine at 5 micrograms/kg produced less sedation but a similar degree of ataxia to 1 mg/kg xylazine.  相似文献   

13.
The cardiopulmonary effects of an intravenous (iv) medetomidine injection (5 μg/kg) followed 5 min later by its infusion at 3.5 μg/kg/h for 115 rnin were studied in 9 horses and ponies. Five minutes after the end of infusion 60 μg/kg atipamezole were given. Physiological data during infusion were compared with pre-sedation values. Stroke volume was reduced significantly 5 min after initial medetomidine injection. Cardiac index was reduced significantly and systemic vascular resistance increased significantly for the first 20 min, but returned towards pre-sedation values after this time. Arterial blood pressures were reduced significantly from 30 min until the end of the procedure (minimum MAP was 102.4 ± 9.61 mmHg). Mixed venous oxygen tension was reduced significantly during the infusion. Respiratory rate fell and PaCO2- rose significantly from 40 min onward. Other variables showed no significant changes. The horses recovered rapidly after atipamezole was injected. Arterial blood pressures remained significantly lowered, but other cardiovascular variables returned towards pre-sedation values. It is concluded that the infusion of medetomidine at 3.5 μg/kg/h causes minimum cardiopulmonary depression once the effects of an initial 5 μg/kg injection have waned, and so could prove suitable as part of an anaesthetic technique in equidae.  相似文献   

14.
The pharmacokinetics of gentamicin was studied in lambs, calves and foals, respectively after single intravenous (i.v.) injections of 5 mg kg(-1) body weight. The plasma concentration-time curves of gentamicin sulphate were best fitted to follow a two-compartment open model in calves and foals and a three-compartment open model in lambs. Gentamicin showed high plasma level at 5 min post-injection. Then its concentration decreased gradually until its minimum detectable level at 10 and 12 h post-injection in foals and calves, respectively, was reached. In contrast, the plasma concentrations were much higher in lambs and persisted up to 48 h from the onset of injection. Values of pharmacokinetic parameters for gentamicin sulphate in different animals after i.v. injections were calculated. Pharmacokinetic data in lambs demonstrated a triphasic decline in plasma gentamicin concentration with slow terminal elimination phase (washout phase) with (t(1/2y)) of 7.7 h. Gentamicin showed a small volume of distribution Vd(ss) (80.3 ml kg(-1)) in lambs indicating that the drug is slightly distributed in extra-vascular tissues. The overall rate of total body clearance ClB in lambs was (0.46 ml kg(-1)) slower than in calves (1.5 ml kg(-1)) and foals (2.7 ml kg(-1)). In vitro protein binding per cent of gentamicin sulphate in plasma were 16.80, 11.03 and 7.98% in lambs, calves and foals. The results of this study emphasize the importance of determining the pharmacokinetics of gentamicin in each species of young animals separately.  相似文献   

15.
OBJECTIVE: To determine the effect of medetomidine on the stress response induced by ovariohysterectomy in isoflurane-anesthetized dogs. STUDY DESIGN: Prospective randomized study. ANIMALS: Twelve healthy adult female purpose-bred dogs, weighing 16.8 to 25 kg. METHODS: Two treatments were randomly administered to each of twelve dogs at weekly intervals: (1) Saline injected IM followed in 15 minutes by isoflurane anesthesia (ISO) induced by mask and maintained at an end-tidal concentration of 1.8% for 60 minutes; and (2) Medetomidine, 15 ug/lkg IM followed in 15 minutes by isoflurane anesthesia (ISO&MED) induced by mask and maintained at an end-tidal concentration of 1.0% for 60 minutes. One week after completion of these two treatments, all dogs were ovariohysterectomized. six receiving each treatment (SURG and SURG&MED). Central venous blood samples (10 mL) were obtained immediately before medetomidine or saline (baseline) and at 30, 75, and 195 minutes and 24 hours after administration of medetomidine or saline in ISO and ISO&MED. In SURG and SURG&MED, samples were obtained immediately prior to injection of medetomidine or saline (baseline) and at 30 (before skin incision), 45 (after severence of the ovarian ligament), 75 (after skin closure), 105 (30 minutes after skin closure, dog recovered and in sternal recumbency), 135, 195, 375 minutes, and 24 hours after the initial sample. Samples were analyzed for epinephrine, norepinephrine, adrenocorticotrophic hormone (ACTH), cortisol, insulin, and glucose. Data were analyzed by analysis of variance and where significant differences were found, a least significant difference test was applied. RESULTS: Premedication with medetomidine prevented or delayed the stress response induced by ovariohysterectomy in isoflurane-anesthetized dogs. CONCLUSIONS: The stress response induced by ovariohysterectomy, although significant, is of short duration. Medetomidine safely and effectively reduced surgically-induced stress responses. CLINICAL RELEVANCE: Surgically induced stress responses can be obtunded or prevented by administration of medetomidine.  相似文献   

16.
OBJECTIVES: To determine if chronic selegiline HCl administration affects the cardiopulmonary response to medetomidine, oxymorphone, or butorphanol in dogs. STUDY DESIGN: Prospective randomized experimental study. ANIMALS: Twenty-eight adult, random source, hound dogs weighing 21-33 kg. METHODS: Dogs were assigned to the following treatment groups: selegiline + medetomidine (MED; n = 6); placebo + MED (n = 6), selegiline + oxymorphone (OXY; n = 6); placebo + OXY (n = 6); selegiline + butorphanol (BUT; n = 7) or placebo + BUT (n = 6). Nine dogs were treated with two of the three pre-medicants. Dogs were treated with selegiline (1 mg kg(-1) PO, q 24 hours) or placebo for at least 44 days prior to pre-medicant administration. On the day of the experiment, arterial blood for blood gas analysis, blood pressure measurements, ECG, cardiac ultrasound (mM-mode, 2-D, and continuous wave Doppler), and behavioral observations were obtained by blinded observers. An IV injection of MED (750 micro g m(-2)), OXY (0.1 mg kg(-1)) or BUT (0.4 mg kg(-1)) was given. Cardiopulmonary and behavioral data were collected at 1, 2, 5, 15, 30, and 60 minutes after injection. RESULTS: Selegiline did not modify responses to any of the pre-medicant drugs. Medetomidine caused a significant decrease in heart rate (HR), cardiac output (CO), and fractional shortening (FS). Mean arterial pressure (MAP), systemic vascular resistance (SVR), and central venous pressure (CVP) were increased. Level of consciousness and resistance to restraint were both decreased. Oxymorphone did not affect MAP, CO, CVP, or SVR, but RR and PaCO(2) were increased. Level of consciousness and resistance to restraint were decreased. BUT decreased heart rate at 1 and 5 minutes. All other cardiovascular parameters were unchanged. BUT administration was associated with decreased arterial pH and increased PaCO(2). BUT decreased level of consciousness and resistance to restraint. CONCLUSIONS AND CLINICAL RELEVANCE: Although pre-medicants themselves altered cardiopulmonary and behavioral function, selegiline did not affect the response to medetomidine, oxymorphone, or butorphanol in this group of normal dogs.  相似文献   

17.
Medetomidine, a potent alpha 2-adrenoceptor agonist, was investigated in open, multicenter clinical trials with patients of various canine and feline breeds (1736 dogs and 678 cats). The purpose of the study was to find an optimal dose of medetomidine for sedation and analgesia in clinical practice and to study how well the intended procedure could be performed under the influence of the drug. The mean dose (i.m.) of medetomidine used for examinations, clinical procedures and minor surgical interventions was 40 micrograms/kg, and for radiography 30 micrograms/kg. In cats the dose was 80-110 micrograms/kg. On the doses chosen, almost all animals were recumbent and 72% of the dogs and 85% of the cats were in a slight anaesthetic stage, unable to rise. The evaluation of the overall suitability of medetomidine (% of cases) in different indications was "very satisfactory" or "satisfactory" in 95% of dogs and 81-96% of cats. Side effects reported were limited almost exclusively to vomiting and muscle jerking in dogs (12% and 0.5% of the cases) and to vomiting in cats (65%). Medetomidine seems to suffice for pharmacological restraint of dogs and cats. The concomitant use of medetomidine (80-100 micrograms/kg) and ketamine (7 mg/kg) in cats (n = 295) provided a good anaesthesia (20-40 min). The recovery was smooth. The present study shows that medetomidine provides an effective level of sedation and analgesia for clinical use.  相似文献   

18.
The efficacy of atipamezole to reverse medetomidine induced effects in cats was investigated in a clinical study (n=160) including placebo. The atipamezole doses (intramuscularly) were two, four and six times (2X, 4X and 6X) the preceding medetomidine dose, which was 100 ug/kg body weight intramuscularly. Medetomidine was shown to produce moderate to deep sedation, recumbency and bradycardia in cat. Atipamezole was clearly able to reverse these effects of medetomidine. The median arousal time in the atipamezole dose groups was five minutes and walking time, 10 minutes, compared with more than 30 minutes in the placebo group. Heart rate was increased towards normal by atipamezole in a dose related manner. The clinical evaluation of the ability of atipamezole to reverse the effects of medetomidine was found to be ‘good’ in 82-5, 75 or 65 per cent of cases in dose groups 2X, 4X and 6X, respectively. The effect of atipamezole was evaluated as being ‘too potent’ in 2–5, 5 or 25 per cent of the cases in these respective groups. The incidence of side effects was negligible. In conclusion, atipamezole at the dose of two to four times the preceding dose of medetomidine seems to be an effective medetomidine antagonist for clinical use in cats.  相似文献   

19.
OBJECTIVE: To determine the pharmacokinetics of doxorubicin in sulphur-crested cockatoos, so that its use in clinical studies in birds can be considered. DESIGN: A pharmacokinetic study of doxorubicin, following a single intravenous (i.v.) infusion over 20 min, was performed in four healthy sulphur-crested cockatoos (Cacatua galerita). PROCEDURE: Birds were anaesthetised and both jugular veins were cannulated, one for doxorubicin infusion and the other for blood collection. Doxorubicin hydrochloride (2 mg/kg) in normal saline was infused i.v. over 20 min at a constant rate. Serial blood samples were collected for 96 h after initiation of the infusion. Plasma doxorubicin concentrations were assayed using an HPLC method involving ethyl acetate extraction, reverse-phase chromatography and fluorescence detection. The limit of quantification was 20 ng/mL. Established non-parametric methods were used for the analysis of plasma doxorubicin data. RESULTS: During the infusion the mean +/- SD for the Cmax of doxorubicin was 4037 +/- 2577 ng/mL. Plasma concentrations declined biexponentially immediately after the infusion was ceased. There was considerable intersubject variability in all pharmacokinetic variables. The terminal (beta-phase) half-life was 41.4 +/- 18.5 min, the systemic clearance (CI) was 45.7 +/- 18.0 mL/min/kg, the mean residence time (MRT) was 4.8 +/- 1.4 min, and the volume of distribution at steady state (V(SS)) was 238 +/- 131 mL/kg. The extrapolated area under the curve (AUC(0-infinity)) was 950 +/- 677 ng/mL x h. The reduced metabolite, doxorubicinol, was detected in the plasma of all four parrots but could be quantified in only one bird with the profile suggesting formation rate-limited pharmacokinetics of doxorubicinol. CONCLUSIONS AND CLINICAL RELEVANCE: Doxorubicin infusion in sulphur-crested cockatoos produced mild, transient inappetence. The volume of distribution per kilogram and terminal half-life were considerably smaller, but the clearance per kilogram was similar to or larger than reported in the dog, rat and humans. Traces of doxorubicinol, a metabolite of doxorubicin, were detected in the plasma.  相似文献   

20.
Medetomidine and its active d-enantiomer, dexmedetomidine, are highly selective alpha-2 agonists with potent sedative, anaesthetic-sparing and analgesic effects. These properties make them an ideal pre-anaesthetic medication for noxious surgical procedures. However, sheep can develop adverse hypoxaemic effects after intravenous alpha-2 agonists. Objective of the present study was to compare intramuscular injection of medetomidine or dexmedetomidine at equipotent doses as preanaesthetic medication prior to isoflurane anaesthesia in sheep. Nineteen healthy, adult, non-pregnant, female sheep of various breeds were used. The study was carried out as a randomised, blind trial. Group A received 15 micrograms/kg bwt dexmedetomidine and group B received 30 micrograms/kg bwt medetomidine intramuscularly (i.m.) 30 minutes prior to induction of anaesthesia. Anaesthesia was induced with ketamine (2.0 mg/kg bwt i.v.) and maintained with isoflurane in 100% oxygen. End expired anaesthetic concentration (FEiso), respiratory frequency (fR), direct arterial blood pressures and heart rates (HR) were measured. Arterial blood samples were taken at intervals. Data were averaged over time (sum of measurements/number of measurements) and tested for differences between groups by independent t-tests, and ANOVA for repeated measures followed by Bonferroni corrected t-tests. There were no differences in demographic data between the groups. Duration of anaesthesia [A: 170 (42) minutes, B: 144 (33) minutes] and duration of surgery [A: 92 (32) minutes, B: 85 (31) minutes] were similar in both groups. Average FEiso concentrations required to maintain a surgical plane of anaesthesia were not significantly different between groups [A: 0.82 (0.14)%; B: 1.00 (0.25)%]. Mean average fR, did not differ between groups [A: 31 (14), B: 37 (15)]. Heart rates were significantly lower in group B over the course of the anaesthesia. Mean arterial blood pressures (MAP) were not significantly different between the groups. The PaO2 was less variable in group A than in group B. Individual minimum values were 19.1 kPa and 7.9 kPa in group A and B, respectively. There were no significant differences in PaCO2 and paH between the groups and over time. In conclusion, intramuscular application of dexmedetomidine at 15 micrograms/kg bwt and medetomidine at 30 micrograms/kg bwt prior to isoflurane anaesthesia induced similar changes in clinically monitored cardiorespiratory parameters. The observed differences (heart rates, PaO2) between dexmedetomidine and medetomidine at the chosen dose relationship can be considered clinically not significant. At the chosen dose rates individual animals responded with a transient drop in blood oxygenation, therefore careful monitoring is required. In addition, in compromised sheep medetomidine and dexmedetomidine should be used carefully.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号