首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
山西小麦品种和育种材料抗锈病、白粉病鉴定   总被引:1,自引:0,他引:1  
2011—2015年,采用人工接菌方法,对25个育种单位的601份小麦品种和育种材料进行了小麦条锈病、叶锈病和白粉病的抗病性鉴定,筛选出对小麦条锈病抗性表现良好的品种材料36份,对小麦叶锈病抗性表现良好的品种材料16份,对小麦白粉病抗性表现良好的品种材料12份。  相似文献   

2.
3.
A lesion-mimic mutant of wheat with enhanced resistance to leaf rust   总被引:2,自引:0,他引:2  
A lesion-mimic mutant was obtained from a mutagenic treatment performed with ethyl methanesulfonate on the Argentine bread wheat ( Triticum aestivum ) cultivar Sinvalocho M.A. The HLP (hypersensitive-like phenotype) mutant exhibited tiny, discrete, white lesions in the absence of any pathogen, resembling the typical hypersensitive response (HR). The lesions only became evident once the fifth or sixth leaf emerged, and spread at random along the leaf blades and leaf sheaths of the developing plant, including tissues of the spike. Because the lesion-mimic mutant showed no lesions at the seedling stage, the phenotypes of both the mutant and its mother line were identical at this point. Histochemical studies showed that spontaneous hypersensitive-like lesions in the HLP mutant corresponded to cell death. In leaf-rust ( Puccinia triticina ) infection experiments performed at seedling and adult-plant stages, adult HLP plants showed enhanced resistance to leaf-rust attack compared with plants of Sinvalocho M.A. of comparable developmental stage, suggesting that the HLP mutation may confer increased resistance to the fungus. Because enhanced resistance coincided with the presence of spontaneous HR lesions, activation of HLP plant defence responses appeared to be tightly linked to this phenomenon. Final plant height and yield components in the lesion-mimic mutant did not differ from those of the mother line, indicating that the HLP mutation caused no detrimental pleiotropic effects that significantly affected agronomic performance. These data support the direct use of mutations in disease-resistance breeding.  相似文献   

4.
Aegilops sharonensis (Sharon goatgrass) is a wild relative of wheat and a rich source of genetic diversity for disease resistance. The objectives of this study were to determine the genetic basis of leaf rust, stem rust, and powdery mildew resistance in A. sharonensis and also the allelic relationships between genes controlling resistance to each disease. Progeny from crosses between resistant and susceptible accessions were evaluated for their disease reaction at the seedling and/or adult plant stage to determine the number and action of genes conferring resistance. Two different genes conferring resistance to leaf rust races THBJ and BBBB were identified in accessions 1644 and 603. For stem rust, the same single gene was found to confer resistance to race TTTT in accessions 1644 and 2229. Resistance to stem rust race TPMK was conferred by two genes in accessions 1644 and 603. A contingency test revealed no association between genes conferring resistance to leaf rust race THBJ and stem rust race TTTT or between genes conferring resistance to stem rust race TTTT and powdery mildew isolate UM06-01, indicating that the respective resistance genes are not linked. Three accessions (1644, 2229, and 1193) were found to carry a single gene for resistance to powdery mildew. Allelism tests revealed that the resistance gene in accession 1644 is different from the respective single genes present in either 2229 or 1193. The simple inheritance of leaf rust, stem rust, and powdery mildew resistance in A. sharonensis should simplify the transfer of resistance to wheat in wide crosses.  相似文献   

5.
为明确春小麦品种沈免2063所含抗叶锈病基因的对数、身份、显隐性和互作关系,以沈免2063为父本,分别与感病品种Thatcher及小麦抗叶锈病近等基因系Lr9、Lr19、Lr24、Lr25、Lr28、Lr42和Lr43的载体品系杂交,获得F1、F2和F3代群体后,分别在苗期和成株期进行抗病性测定。结果表明:沈免2063含有3对显性遗传且相互独立作用的抗叶锈病基因Lr9、Lr19和Lr25,在苗期,沈免2063对致病类型CBG/QQ的抗病性由Lr9和Lr25控制,对PHT/RP的抗病性由上述3对抗叶锈病基因控制;在成株期,沈免2063对优势致病类型PHT/RP和THT/TP等比混合菌种的抗病性由上述3对抗叶锈病基因控制。Lr9、Lr19和Lr25在育成品种中出现频率很低,目前尚很有效,但这3个基因均为典型的垂直抗病性基因,应进行基因布局、基因轮换等科学组配,才能延长其使用寿命。  相似文献   

6.
Genetics of leaf rust resistance in spring wheat cultivars alsen and norm   总被引:3,自引:0,他引:3  
Oelke LM  Kolmer JA 《Phytopathology》2005,95(7):773-778
ABSTRACT Alsen is a recently released spring wheat cultivar that has been widely grown in the United States because it has resistance to Fusarium head blight and leaf rust caused by Puccinia triticina. Norm is a high yielding wheat cultivar that has been very resistant to leaf rust since it was released. Alsen and Norm were genetically examined to determine the number and identity of the leaf rust resistance genes present in both wheats. The two cultivars were crossed with leaf rust susceptible cv. Thatcher and F(1) plants were backcrossed to Thatcher. Eighty one and seventy three BCF(1) of Thatcher times; Alsen and Thatcher x Norm respectively, were selfed to obtain BCF(2) families. The BCF(2) families were tested as seedlings with different isolates of P. triticina that differed for virulence to specific leaf rust resistance genes. The BCF(2) families that lacked seedling resistance were also tested as adult plants in greenhouse tests and in a field rust nursery plot. Segregation of BCF(2) families indicated that Alsen had seedling genes Lr2a, Lr10, and Lr23 and adult plant genes Lr13 and Lr34. Norm was determined to have seedling genes Lr1, Lr10, Lr16, and Lr23 and adult plant genes Lr13 and Lr34. The characterization of Lr23 in the segregating populations was complicated by the presence of a suppressor gene in Thatcher and the high temperature sensitivity of resistance expression for this gene. The effective leaf rust resistance in Alsen is due to the interaction of Lr13 and Lr23, with Lr34; and the effective leaf rust resistance in Norm is due to the interaction of Lr13, Lr16, and Lr23, with Lr34.  相似文献   

7.
The development of the leaf rust fungus ( Puccinia recondita f.sp. tritici ) in a susceptible cultivar and three other cultivars possessing the Lr9, Lr20 and Lr28 alleles for resistance was studied by light and fluorescence microscopy. Formation of the substomatal vesicle, intercellular hypha and the first haustorial mother cell was unaffected by resistance. Lr9 and Lr28 expression was rapid, first seen as early initiation of hyphal branching at 16 h after inoculation, then reduced haustorial diameters at 19 h. Limited host cell necrosis was seen immediately afterwards. Elongation of intercellular hyphae was reduced between 20 and 24 h, and virtually ceased by about 30 h. Numbers of infection sites with a second haustorial mother cell were briefly higher at 24 h. Reduced hyphal branching and haustorial mother cell numbers were seen at 20–24 h and 36 h respectively. Lr20 expression was not seen until 36 h when reduced hyphal branching was observed, accompanied by extensive host cell necrosis. Reduced haustorial mother cell numbers were detected at 48 h. Findings suggested a secondary role for host cell necrosis in the expression of the Lr9 and Lr28 alleles. Host necrosis may play a determinant role in Lr20- based expression.  相似文献   

8.
Pavon76苗期抗小麦叶锈性基因的推导   总被引:1,自引:0,他引:1  
 选用19个具不同毒性基因组合的小麦叶锈菌致病类型对墨西哥品种Pavon76进行了抗叶锈性基因的推导。通过与48个抗叶锈单/双基因系的反应型比较,鉴定出该品种中可能含有Lr1、Lr3、L410、L413、Lr14a、Lr34LrB抗性基因。  相似文献   

9.
为明确青春221中抗叶锈病基因的有效性及其遗传机制,以青春221为父本,分别与感病品种铭贤169和Thatcher以及小麦抗叶锈病近等基因系Lr1、Lr3和Lr23的载体品系杂交,获得F1、F2和F3代群体后,分别在苗期和成株期进行抗病性测定。苗期,青春221对致病类型FGJ/QP、SHJ/GN和PHT/RP的抗病性分别由显性抗叶锈病基因Lr1、Lr3和Lr23控制,对致病类型BGD/HL的抗病性则由上述3对显性抗病基因独立或重叠作用控制,与Thatcher杂交后,青春221中的Lr23趋于隐性遗传并被Thatcher中的1对显性抑制基因抑制;成株期,青春221对优势致病类型PHT/RP和THT/TP混合菌种的抗病性由显性抗叶锈病基因Lr23控制,而Lr1和Lr3均不起作用。  相似文献   

10.
Leaf rust, caused by the fungus Puccinia triticina is a major disease of wheat (Triticum aestivum) worldwide. This disease is prevalent in southern South America where the environmental conditions and high genetic variability of P. triticina favour epidemics. The primary means of controlling pathogenic P. triticina races has been through using wheat varieties containing race-specific resistance genes. The defence mechanisms involved in durable race non-specific resistance to P. triticina are probably distinct from those involved in non-durable race-specific resistance. We investigated the histological components of resistance to P. triticina present in three wheat genotypes: the race non-specific resistant Brazilian variety Toropi; the race-specific resistant line RL6010 Lr9; and the susceptible Brazilian variety BRS 194. Plants of these three genotypes were inoculated with P. triticina race MFP and tissue samples excised from flag leaves at various times after inoculation to assess the number of infective structures, frequency of cell death and the accumulation of autofluorescent cells and hydrogen peroxide. The genotypes showed different resistance mechanisms active at different times during the infection process. Our results for Toropi indicate that there was a reduction in the extent of formation of stomatal appressoria and all subsequent structures. During attempted penetration we also observed the production of autofluorescent compounds and late cell death, but not peroxide formation. This non-specific resistance to P. triticina involves both pre-haustorial and post-haustorial mechanisms which may be responsible for maintaining the low disease severity observed in this variety even under high inoculum pressure.  相似文献   

11.
小麦抗叶锈病近等基因系TcLr19的差异表达分析   总被引:1,自引:0,他引:1  
由小麦叶锈菌(Puccinia triticina)引起的小麦叶锈病是影响小麦生产的重要病害之一,利用抗病品种是控制小麦叶锈病的主要措施。研究不同抗叶锈病基因与小麦叶锈菌互作后基因表达的特异性,对于探明小麦抗叶锈病机制具有重要作用,同时为抗病基因的克隆及优秀抗病小麦品种的  相似文献   

12.
Lr46: a gene conferring slow-rusting resistance to leaf rust in wheat   总被引:1,自引:0,他引:1  
ABSTRACT Wheat (Triticum aestivum) cultivar Pavon 76 carries slow-rusting resistance to leaf rust that has remained effective in Mexico since its release in 1976. 'Pavon 76' was crossed with two leaf rust-susceptible wheat cultivars, Jupateco 73S and Avocet S, and between 118 and 148 individual F(2) plant-derived F(3) and F(5) lines were evaluated for adult-plant leaf rust resistance at two field sites in Mexico during different seasons. Evaluation of F(1) plants and parents indicated that the slow-rusting resistance was partially dominant. Segregation in the F(3) and F(5) indicated that the resistance was based on two genes with additive effects. Monosomic analysis was carried out to determine the chromosomal locations of the resistance genes. For this purpose, two or three backcross-derived cytogenetic populations were developed by crossing 'Pavon 76' with a monosomic series of adult-plant leaf rust-susceptible cultivar Lal-bahadur. Evaluation of such BC(2)F(3) and BC(3)F(3) lines from 16 confirmed 'Lalbahadur' monosomics indicated that one slow-rusting gene was located in chromosome 1B of 'Pavon 76'. This gene, designated as Lr46, is the second named gene involved in slow-rusting resistance to leaf rust in wheat.  相似文献   

13.
Aegilops umbellulata, a non‐progenitor diploid species, is an excellent source of resistance to various wheat diseases. Leaf rust and stripe rust resistance genes from A. umbellulata were transferred to the susceptible wheat cultivar WL711 through induced homoeologous pairing. A doubly resistant introgression line IL 393‐4 was crossed with wheat cultivar PBW343 to develop a mapping population. Tests on BC2F7 RILs indicated monogenic inheritance of seedling leaf rust and stripe rust resistance in IL 393‐4 and the respective co‐segregating genes were tentatively named LrUmb and YrUmb. Bulked segregant analysis placed LrUmb and YrUmb in chromosome 5DS, 7.6 cM distal to gwm190. Aegilops geniculata‐derived and completely linked leaf rust and stripe rust resistance genes Lr57 and Yr40 were previously located in chromosome 5DS. STS marker Lr57/Yr40MAS‐CAPS16 (Lr57/Yr40‐CAPS16), linked with Lr57/Yr40 (T756) also co‐segregated with LrUmb/YrUmb. Seedling infection types differentiated LrUmb from Lr57. Absence of leaf rust‐susceptible segregants among F3 families of the intercross (IL 393‐4/T756) indicated repulsion linkage between LrUmb and Lr57. YrUmb expressed a consistently low seedling response under greenhouse conditions, whereas Yr40 expressed a higher seedling response. Based on the origin of LrUmb/YrUmb from the U genome and Lr57/Yr40 from the M genome, as well as phenotypic differences, LrUmb and YrUmb were formally named Lr76 and Yr70, respectively. These genes have been transferred to Indian wheat cultivars PBW343 and PBW550, and advanced breeding lines are being tested in state and national trials.  相似文献   

14.
为了进一步弄清高温抗条锈病的抗性机制,利用荧光显微技术和电镜技术研究了高温抗条锈性品种小偃6号的组织病理学特征和超微结构变化。结果表明:在高温抗条锈性表达时,病斑周围寄主细胞发生坏死和木质化,在高温处理24h,坏死细胞和木质化细胞数分别为初期的17.1和23.8倍。从超微结构观察,在高温抗条锈性表达时,侵染点附近寄主细胞壁表面凹凸不平、粗糙,细胞壁的厚度也较健康细胞厚。之后,细胞内的细胞器消解,仅有沿细胞壁分布的原生质和残存的一些颗粒状物质。  相似文献   

15.
16.
Leaf rust caused by Puccina triticina is one of the most destructive fungal diseases of wheat (Triticum aestivum). Adult plant resistance (APR) is an effective strategy to achieve long‐term protection from the disease. In this study, findings are reported from a genome‐wide association study (GWAS) using a panel of 96 wheat cultivars genotyped with 874 Diversity Arrays Technology (DArT) markers and tested for adult leaf rust response in six field trials. A total of 13 quantitative trait loci (QTL) conferring APR to leaf rust were identified on chromosome arms 1BL, 1DS, 2AS, 2BL, 2DS, 3BS, 3BL, 4AL, 6BS (two), 7DS, 5BL/7BS and 6AL/6BS. Of these, seven QTLs mapped close to known resistance genes and QTLs, while the remaining six are novel and can be used as additional sources of resistance. Accessions with a greater number of combined QTLs for APR showed lower levels of disease severity, demonstrating additive and significant pyramiding effects. All QTLs had stable main effects and they did not exhibit a significant interaction with the experiments. These findings could help to achieve adequate levels of durable resistance through marker‐assisted selection and pyramiding resistance QTLs in local germplasm.  相似文献   

17.
The aim of this study was to investigate the potential diversity and pathogen‐specificity of sources of quantitative resistance to leaf rust caused by Puccinia triticina in French wheat germplasm. From a set of 86 genotypes displaying a range of quantitative resistance levels during field epidemics, eight wheat genotypes were selected and challenged in a greenhouse with three isolates of the pathogen, belonging to different pathotypes. Five components of resistance were assessed: infection efficiency, for which an original methodology was developed, latent period, lesion size, spore production per lesion, and spore production per unit of sporulating tissue. High diversity and variability for all these components were expressed in the host × pathotype combinations investigated; isolate‐specificity was found for all the components. The host genotypes displayed various resistance profiles, based on both the components affected and the isolate‐specificity of the interaction. Their usefulness as sources of quantitative resistance was assessed: line LD7 probably combines diversified mechanisms of resistance, being highly resistant for all the components, but displaying isolate‐specificity for all the components; cv. Apache did not show isolate specificity for any of the components, which could be related to the durability of its quantitative resistance in the field over more than 11 years.  相似文献   

18.
Leaf rust caused by Puccinia triticina is a common disease on wheat in the coastal regions of Turkey. Collections of P. triticina from infected wheat leaves were obtained from the main wheat production zones of Turkey in 2009 and 2010. A total of 104 single uredinial isolates were tested for virulence on 20 lines of Thatcher wheat that differ for single leaf rust resistance genes. Forty-four different virulence phenotypes were identified over both years. Four phenotypes were found in both years. Phenotype FHPTQ found in 2009, with virulence to genes Lr2c, Lr3, Lr16, Lr26, Lr3ka, Lr17a, Lr30, LrB, Lr10, Lr14a, Lr18, Lr3bg, and Lr14b, was the most common phenotype at 15.4 % of the total isolates. Forty-three winter and spring wheat cultivars from Turkey were tested as seedlings with 13 different P. triticina virulence phenotypes from Canada, the US and Turkey. The infection types on the cultivars were compared with infection types on the Thatcher near isogenic lines to postulate the presence of seedling leaf rust resistance genes in the cultivars. Resistance genes Lr1, Lr3a, Lr10, Lr14a, Lr17a, Lr20, Lr23, and Lr26 were postulated to be present in the Turkish wheat cultivars. DNA of the wheat cultivars was tested with PCR markers to determine the presence of the adult plant resistance genes Lr34 and Lr37. Marker data indicated the presence of Lr34 in 20 cultivars and Lr37 in three cultivars. Field plot evaluations of the wheat cultivars indicated that no single Lr gene conditioned highly effective leaf rust resistance. Resistant cultivars varied for combinations of seedling and adult plant resistance genes.  相似文献   

19.
小麦抗源Sw92抗叶锈病基因遗传及其分子标记   总被引:1,自引:1,他引:1       下载免费PDF全文
以小麦优异抗源Sw92为父本,感病小麦品种铭贤169为母本,杂交获得F1、F2和BC1代群体。采用我国叶锈菌优势小种PHT对双亲及其杂交世代进行接种鉴定。结果表明,小麦抗源Sw92对叶锈菌小种PHT的抗性系由一对隐性基因所控制。采用简单重复序列(SSR)技术对Sw92携带的抗性基因进行分子标记,共筛选了371对SSR引物,获得2个引物(WMC494、WMC737)可在抗/感池和双亲中扩增出多态性DNA片段。遗传连锁分析结果表明,该抗病基因位于小麦6BS上,与WMC494、WMC737标记的遗传距离分别为3.4cM和15.0cM,不同于6BS上的已知抗叶锈基因Lr36和Lr53,暂命名为LrSw92。  相似文献   

20.
小麦叶锈病是四川冬、春麦上的常发病害,但仅在局部地区偶尔流行;叶锈菌在盆地内以夏孢子越冬,仅很少夏孢子能越夏,其主要越夏场所在海拔800~3 500 m地区的各类小麦上,而在1 900 m海拔地区、6~8月均温19.5℃的地方越夏菌量最大,呈显著优势。小麦秆锈病则是春麦区偶然流行的病害,其在盆地内常年无越冬菌源,但可在盆地内直至3 500 m海拔地区的小麦上越夏,其中以1 500 m以下,特别是700 m左右,6~8月均温23℃的地方越夏菌量较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号