首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Viking 2 lander began imaging the surface of Mars at Utopia Planitia on 3 September 1976. The surface is a boulder-strewn reddish desert cut by troughs that probably form a polygonal network. A plateau can be seen to the east of the spacecraft, which for the most probable lander location is approximately the direction of a tongue of ejecta from the crater Mie. Boulders at the lander 2 site are generally more vesicular than those near lander i. Fines at both lander sites appear to be very fine-grained and to be bound in a duricrust. The pinkish color of the sky, similar to that observed at the lander I site, indicates suspension of surface material. However, the atmospheric optical depth is less than that at the lander I site. After dissipation of a cloud of dust stirred during landing, no changes other than those stemming from sampling activities have been detected in the landscape. No signs of large organisms are apparent at either landing site.  相似文献   

2.
The results from the meteorology instruments on the Viking 1 lander are presented for the first 4 sols of operation. The instruments are working satisfactorily. Temperatures fluctuated from a low of 188 degrees K to an estimated maximum of 244 degrees K. The mean pressure is 7.65 millibars with a diurnal variation of amplitude 0.1 millibar. Wind speeds averaged over several minutes have ranged from essentially calm to 9 meters per second. Wind directions have exhibited a remarkable regularity which may be associated with nocturnal downslope winds and gravitational oscillations, or to tidal effects of the diurnal pressure wave, or to both.  相似文献   

3.
The Mutch Memorial Station (Viking Lander 1) on Mars acquired imaging and meteorological data over a period of 2245 martian days (3:3 martian years). This article discusses the deposition and erosion of thin deposits (ten to hundreds of micrometers) of bright red dust associated with global dust storms, and the removal of centimeter amounts of material in selected areas during a dust storm late in the third winter. Atmospheric pressure data acquired during the period of intense erosion imply that baroclinic disturbances and strong diurnal solar tidal heating combined to produce strong winds. Erosion occurred principally in areas where soil cohesion was reduced by earlier surface sampler activities. Except for redistribution of thin layers of materials, the surface appears to be remarkably stable, perhaps because of cohesion of the undisturbed surface material.  相似文献   

4.
Throughout the complete Mars year during which they have been on the planet, the imaging systems aboard the two Viking landers have documented a variety of surface changes. Surface condensates, consisting of both solid H(2)O and CO(2), formed at the Viking 2 lander site during the winter. Additional observations suggest that surface erosion rates due to dust redistribution may be substantially less than those predicted on the basis of pre-Viking observations. The Viking 1 lander will continue to acquire and transmit a predetermined sequence of imaging and meteorology data as long as it is operative.  相似文献   

5.
Drifts of fine-grained sediment are present in the vicinity of the Viking 1 lander. Many drifts occur in the lees of large boulders. Morphologic analysis indicates that the last dynamic event was one of general deflation for at least some drifts. Particle cohesion implies that there is a distinct small-particle upturn in the threshold velocity-particle size curve; the apparent absence of the most easily moved particles (150 micrometers in diameter) may be due to their preferential transport to other regions or their preferential collisional destruction. A twilight rescan with lander cameras indicates a substantial amount of red dust with mean radius on the order of 1 micrometer in the atmosphere.  相似文献   

6.
The purpose of the physical properties experiment is to determine the characteristics of the martian "soil" based on the use of the Viking lander imaging system, the surface sampler, and engineering sensors. Viking 1 lander made physical contact with the surface of Mars at 11:53:07.1 hours on 20 July 1976 G.M.T. Twenty-five seconds later a high-resolution image sequence of the area around a footpad was started which contained the first information about surface conditions on Mars. The next image is a survey of the martian landscape in front of the lander, including a view of the top support of two of the landing legs. Each leg has a stroke gauge which extends from the top of the leg support an amount equal to the crushing experienced by the shock absorbers during touchdown. Subsequent images provided views of all three stroke gauges which, together with the knowledge of the impact velocity, allow determination of "soil" properties. In the images there is evidence of surface erosion from the engines. Several laboratory tests were carried out prior to the mission with a descent engine to determine what surface alterations might occur during a Mars landing. On sol 2 the shroud, which protected the surface sampler collector head from biological contamination, was ejected onto the surface. Later a cylindrical pin which dropped from the boom housing of the surface sampler during the modified unlatching sequence produced a crater (the second Mars penetrometer experiment). These two experiments provided further insight into the physical properties of the martian surface.  相似文献   

7.
8.
Early results from the meteorological instruments on the Viking 2 lander are presented. As on lander 1, the daily patterns of temperature, wind, and pressure have been highly repetitive during the early summer period. The average daily maximum temperature was 241 degrees K and the diurnal minimum was 191 degrees K. The wind has a vector mean of 0.7 meter per second from the southeast with a diurnal amplitude of 3 meters per second. Pressure exhibits both diurnal and semidiurnal oscillations, although of substantially smaller amplitude than those of lander 1. Departures from the repetitive diurnal patterns begin to appear on sol 37.  相似文献   

9.
Neutral mass spectrometers carried on the aeroshells of Viking 1 and Viking 2 indicate that carbon dioxide is the major constituent of the martian atmosphere over the height range 120 to 200 kilometers. The atmosphere contains detectable concentrations of nitrogen, argon, carbon monoxide, molecular oxygen, atomic oxygen, and nitric oxide. The upper atmosphere exhibits a complex and variable thermal structure and is well mixed to heights in excess of 120 kilometers.  相似文献   

10.
The results from the meteorology instruments on the Viking 1 lander are presented for the first 20 sols of operation. The daily patterns of temperature, wind, and pressure have been highly consistent during the period. Hence, these have been assembled into 20-sol composites and analyzed harmonically. Maximum temperature was 241.8 degrees K and minimum 187.2 degrees K. The composite wind vector has a mean diurnal magnitude of 2.4 meters per second with prevailing wind from the south and counterclockwise diurnal rotation. Pressure exhibits diurnal and semidiurnal oscillations. The diurnal is ascribed to a combination of effects, and the semidiurnal appears to be the solar semidiurnal tide. Similarities to Earth are discussed. A major finding is a continual secular decrease in diurnal mean pressure. This is ascribed to carbon dioxide deposition at the south polar cap.  相似文献   

11.
Sjogren WL 《Science (New York, N.Y.)》1979,203(4384):1006-1010
Doppler radio-tracking data have provided detailed measurements for a martian gravity map extending from 30 degrees S to 65 degrees N in latitude and through 360 degrees of longitude. The feature resolution is approximately 500 kilometers, revealing a huge anomaly associated with Olympus Mons, a mascon in Isidis Planitia, and other anomalies correlated with volcanic structure. Olympus Mons has been modeled with a 600-kilometer surface disk having a mass of 8.7 x 1021grams.  相似文献   

12.
The location of the Viking 1 lander is most ideal for the study of soil properties because it has one footpad in soft material and one on hard material. As each soil sample was acquired, information on soil properties was obtained. Although analysis is still under way, early results on bulk density, particle size, angle of internal friction, cohesion, adhesion, and penetration resistance of the soil of Mars are presented.  相似文献   

13.
14.
The results of two of the three biology experiments carried out on the Viking Mars landers have been simulated. The mixture of organic compounds labeled with carbon-14 used on Mars released carbon dioxide containing carbon-14 when reacted with a simulated martian surface and atmosphere exposed to ultraviolet light (labeled release experiment). Oxygen was released when metal peroxides or superoxides were treated with water (gas exchange experiment). The simulations suggest that the results of these two Viking experiments can be explained on the basis of reactions of the martian surface and atmosphere.  相似文献   

15.
During October 1976, the Viking 2 orbiter acquired approximately 700 high-resolution images of the north polar region of Mars. These images confirm the existence at the north pole of extensive layered deposits largely covered over with deposits of perennial ice. An unconformity within the layered deposits suggests a complex history of climate change during their time of deposition. A pole-girdling accumulation of dunes composed of very dark materials is revealed for the first time by the Viking cameras. The entire region is devoid of fresh impact craters. Rapid rates of erosion or deposition are implied. A scenario for polar geological evolution, involving two types of climate change, is proposed.  相似文献   

16.
Observations of the latitude dependence of water vapor made from the Viking 2 orbiter show peak abundances in the latitude band 70 degrees to 80 degrees north in the northern midsummer season (planetocentric longitude approximately 108 degrees ). Total column abundances in the polar regions require near-surface atmospheric temperatures in excess of 200 degrees K, and are incompatible with the survival of a frozen carbon dioxide cap at martian pressures. The remnant (or residual) north polar cap, and the outlying patches of ice at lower latitudes, are thus predominantly water ice, whose thickness can be estimated to be between 1 meter and 1 kilometer.  相似文献   

17.
Chemical results from four samples of martian fines delivered to Viking landers 1 and 2 are remarkably similar in that they all have high iron; moderate magnesium, calcium, and sulfur; low aluminum; and apparently very low alkalies and trace elements. This composition is best interpreted as representing the weathering products of mafic igneous rocks. A mineralogic model, derived from computer mixing studies and laboratory analog preparations, suggests that Mars fines could be an intimate mixture of about 80 percent iron-rich clay, about 10 percent magnesium sulfate (kieserite?), about 5 percent carbonate (calcite), and about 5 percent iron oxides (hematite, magnetite, maghemite, goethite?). The mafic nature of the present fines (distributed globally) and their probable source rocks seems to preclude large-scale planetary differentiation of a terrestrial nature.  相似文献   

18.
The reflectivity of Phobos has been determined in the spectral region from 0.4 to 1.1 micrometers from images taken with a Viking lander camera. The reflectivity curve is flat in this spectral interval and the geometric albedo equals 0.05 +/- 0.01. These results, together with Phobos's reflectivity spectrum in the ultraviolet, are compared with laboratory spectra of carbonaceous chondrites and basalts. The spectra of carbonaceous chondrites are consistent with the observations, whereas the basalt spectra are not. These findings raise the possibility that Phobos may be a captured object rather than a natural satellite of Mars.  相似文献   

19.
Duxbury TC 《Science (New York, N.Y.)》1978,199(4334):1201-1202
A Viking orbiting spacecraft successfully obtained pictures of the martian satellite Phobos with Mars in the background. This is the first time that a single picture was obtained from a spacecraft which contained both a planet and a moon and had significant surface detail visible on both. The region of Mars below Phobos included volcanoes in the Tharsis Montes region. These pictures showed Phobos to be smaller than previously thought. The image of Phobos can be used as a control point to determine the map coordinates of surface features on Mars.  相似文献   

20.
Radio tracking data from the Viking lander have been used to determine the lander position and the orientation of the spin axis of Mars. The areocentric coordinates of the lander are 22.27 degrees N, 48.00 degrees W, and 3389.5 kilometers from the center of mass; the spin axis orientation, referred to Earth's mean equator and equinox of 1950.0, is 317.35 degrees right ascension and 52.71 degrees declination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号