首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several studies indicate a long-term decline in numbers of different species of voles in northern Fennoscandia. In boreal Sweden, the long-term decline is most pronounced in the grey-sided vole (Clethrionomys rufocanus). Altered forest landscape structure has been suggested as a possible cause of the decline. However, habitat responses of grey-sided voles at the landscape scale have never been studied. We analyzed such responses of this species in lowland forests in Västerbotten, northern Sweden. Cumulated spring densities representing 22 local time series from 1980–1999 were obtained by a landscape sampling design and were related to the surrounding landscape structure of 2.5×2.5 km plots centred on each of the 22 1-ha trapping plots. In accordance with general knowledge on local habitat preferences of grey-sided voles, our study supported the importance of habitat variables such as boulder fields and old-growth pine forest at the landscape scale. Densities were negatively related to clear cuts. Habitat associations were primarily those of landscape structure related to habitat fragmentation, distance between habitat patches and patch interspersion rather than habitat patch type quantity. Local densities of the grey-sided vole were positively and exponentially correlated with spatial contiguity (measured with the fragmentation index) of old-growth pine forest, indicating critical forest fragmentation thresholds. Our results indicate that altered land use might be involved in the long-term decline of the grey-sided vole in managed forest areas of Fennoscandia. We propose two further approaches to reveal and test responses of this species to changes in landscape structure.  相似文献   

2.
Over the past three decades in boreal Sweden, there has been a long-term decline of cyclic sympatric voles, leading to local extinctions of the most affected species, the grey-sided vole (Clethrionomys rufocanus). We monitored this decline by snap-trapping on 58 permanent plots spread over 100 km2 in spring and fall from fall 1971–2003. The reason for the decline is largely unknown, although a common major factor is likely to be involved in the decline of C. rufocanus and of the coexisting voles. However, here we deal with the reasonability of one complementary hypothesis, the habitat fragmentation hypothesis, which assumes that part of the decline of C. rufocanus is caused by habitat (forest) destruction. There was considerable local variation in the decline among the 58 1-ha sampling plots, with respect to both density and timing of the decline; however, all declines ended up with local extinction almost without exception. Local declines were not associated with habitat destruction by clear-cutting within sampling-plots, as declines started about equally often before as after clear-cutting, which suggested that habitat destruction outside sampling plots could be involved. In a multiple regression analysis, local habitat preference (LHP; expressed as a ratio of observed to expected number of voles trapped per habitat) together with two habitat variables in the surrounding (2.5×2.5 km2) landscape matrix explained 56% of the variation among local cumulated densities of C. rufocanus and hence of local time-series. LHP was positively correlated and explained 31% of the variation, while connectivity among clear-cuts was negatively correlated and proximity among xeric-mesic mires was positively correlated and explained additional 16% and 9%, respectively. Even if the overall decline cannot be connected to local clear-cutting on sampling-plots, clear-cutting and hence habitat fragmentation/destruction in the surrounding landscapes potentially influenced grey-sided vole numbers negatively.  相似文献   

3.
We tested the effects of increased landscape corridor width and corridor presence on the population dynamics and home range use of the meadow vole (Microtus pennsylvanicus) within a small-scale fragmented landscape. Our objective was to observe how populations behaved in patchy landscapes where the animals home range exceeded or equaled patch size. We used a small-scale replicated experiment consisting of three sets of two patches each, unconnected or interconnected by 1-m or 5-m wide-corridors, established in an old-field community (S.W. Ohio). Control (0-m) treatments supported significantly lower vole densities than either corridor treatment. Females were the dominant resident sex establishing smaller home ranges (<150m2) than males (>450m2). Significantly more male voles dispersed between patches with corridors than between patches without corridors. However, no difference was observed regarding the number of male voles dispersing between patches connected by corridors when compared to the number dispersing across treatments. Dispersal between connected patches was restricted to corridors based on tracking tube data. Corridor presence was more important than corridor width regarding the movement of male voles within their home range.  相似文献   

4.
With expansion of urban areas worldwide, migrating songbirds increasingly encounter fragmented landscapes where habitat patches are embedded in an urban matrix, yet how migrating birds respond to urbanization is poorly understood. Our research evaluated the relative importance of patch-level effects and body condition to movement behaviour of songbirds during migratory stopover within an urban landscape. We experimentally relocated 91 migrant Swainson’s thrushes (Catharus ustulatus) fitted with 0.66 g radio-transmitters to seven forest patches that differed in area (0.7–38.4 ha) and degree of urbanization within central Ohio, USA, May 2004–2007. Fine-scale movement rate of thrushes (n = 55) did not differ among urban forest sites, but birds in low energetic condition moved at higher rates, indicating an energetically mediated influence on movement behaviour. In larger sites, Swainson’s thrushes (n = 59) had greater coarse-level movement during the first 3 days and utilized areas farther from forest edge, indicating stronger influence by patch-level factors. Thrushes exhibited strong site tenacity, with only five individuals (7%) leaving release patches prior to migratory departure. Movement outside the release patch only occurred at the smallest forest patches (0.7 and 4.5 ha), suggesting that these sites were too small to meet needs of some individuals. Swainson’s thrushes exhibited edge avoidance and apparent area sensitivity within urban forest patches during stopover, implying that conservation of larger patches within urban and other fragmented landscapes may benefit this species and other migrant forest birds.  相似文献   

5.
The purpose of our study was to compare the number, proportion, and species composition of introduced plant species in forest patches situated within predominantly forested, agricultural, and urban landscapes. A previous study suggested that agricultural landscape context does not have a large effect on the proportion of introduced species in forest patches. Therefore, our main goal was to test the hypothesis that forest patches in an urban landscape context contain larger numbers and proportions of non-native plant species. We surveyed the vegetation in 44 small remnant forest fragments (3–7.5 ha) in the Ottawa region; 15 were situated within forested landscapes, 18 within agricultural landscapes, and 11 within urban landscapes. Forest fragments in urban landscapes had about 40% more introduced plant species and a 50% greater proportion of introduced plant species than fragments found in the other two types of landscape. There was no significant difference in the number or proportion of introduced species in forest fragments within forested vs. agricultural landscapes. However, the species composition of introduced species differed among the forest patches in the three landscape types. Our results support the hypothesis that urban and suburban areas are important foci for spread of introduced plant species.  相似文献   

6.
Effects of forest patch size on avian diversity   总被引:10,自引:2,他引:8  
The effects of landscape patchiness on the diversity of birds of the Georgia Piedmont were investigated during 1993. Birds were sampled along line transects within relatively large (10–13.25 ha) and small (less than 3.25 ha) forest patches located within nonforest agricultural landscapes. Patterns of habitat use in these patches were compared to those in contiguous forest patches larger than 13.25 ha. Analysis of variance revealed significant differences in diversity between large and small woodlots and between contiguous and fragmented landscapes, especially in terms of the numbers of edge and interior species and winter-resident, summer-resident, and year-round birds observed.  相似文献   

7.
A long-term decline of vole populations in boreal Sweden, especially of the grey-sided vole (Clethrionomys rufocanus Sund.), has been revealed by snap-trapping in 1971–2004. We identified important habitats for the grey-sided vole by mapping the distribution of cumulated number of reproductive females in 1971–1978, prior to the major decline in the 1980s. Mean abundance of C. rufocanus was higher in the western (inland) than eastern (coastland) part of the study area. As the inland appeared to represent the most, as far as we know, pristine, abundant part of the population, we based identification of high quality habitats on inland data only. Four habitats were more important than others and yielded nearly 86% of the reproductive females in spring: (1) forests of dry, (2) moist and (3) wet/hydric dwarf-shrub type, in addition to (4) forest/swamp complexes rich in dwarf-shrubs. The latter three habitats were used more frequently than expected from their occurrence in the landscape. Still, the variation in density of reproductive females within patches of the same habitat was frequently high. This suggested that habitat composition in the surrounding landscape, perhaps may have affected local vole density at the patch scale. Clear-cut sampling plots appeared to be low-frequently used by reproductive females, but also by males and immatures. In conclusion, our study indicated the importance of also studying habitat at a larger scale than that of the patch to get a deeper understanding on how habitat influences local and regional densities and population dynamics of C. rufocanus.  相似文献   

8.
The complexity inherent in variable, or mixed-severity fire regimes makes quantitative characterization of important fire regime attributes (e.g., proportion of landscape burned at different severities, size and distribution of stand-replacing patches) difficult. As a result, there is ambiguity associated with the term ‘mixed-severity’. We address this ambiguity through spatial analysis of two recent wildland fires in upper elevation mixed-conifer forests that occurred in an area with over 30 years of relatively freely-burning natural fires. We take advantage of robust estimates of fire severity and detailed spatial datasets to investigate patterns and controls on stand-replacing patches within these fires. Stand-replacing patches made up 15% of the total burned area between the two fires, which consisted of many small patches (<4 ha) and few large patches (>60 ha). Smaller stand-replacing patches were generally associated with shrub-dominated (Arctostaphylos spp. and Ceanothus spp.) and pine-dominated vegetation types, while larger stand-replacing patches tended to occur in more shade-tolerant, fir-dominated types. Additionally, in shrub-dominated types stand-replacing patches were often constrained to the underlying patch of vegetation, which for the shrub type were smaller across the two fire areas than vegetation patches for all other dominant vegetation types. For white and red fir forest types we found little evidence of vegetation patch constraint on the extent of stand-replacing patches. The patch dynamics we identified can be used to inform management strategies for landscapes in similar forest types.  相似文献   

9.
A measure of the historic range of variability (HRV) in landscape structure is essential for evaluating current landscape patterns of Rocky Mountain coniferous forests that have been subjected to intensive timber harvest. We used a geographic information system (GIS) and FRAGSTATS to calculate key landscape metrics on two ∼130,000-ha landscapes in the Greater Yellowstone Area, USA: one in Yellowstone National Park (YNP), which has been primarily shaped by natural fires, and a second in the adjacent Targhee National Forest (TNF), which has undergone intensive clearcutting for nearly 30 years. Digital maps of the current and historical landscape in YNP were developed from earlier stand age maps developed by Romme and Despain. Maps of the TNF landscape were adapted from United States Forest Service Resource Information System (RIS) data. Key landscape metrics were calculated at 20-yr intervals for YNP for the period from 1705-1995. These metrics were used to first evaluate the relative effects of small vs. large fire events on landscape structure and were then compared to similar metrics calculated for both pre- and post-harvest landscapes of the TNF. Large fires, such as those that burned in 1988, produced a structurally different landscape than did previous, smaller fires (1705-1985). The total number of patches of all types was higher after 1988 (694 vs. 340-404 before 1988), and mean patch size was reduced by almost half (186 ha vs. 319-379 ha). The amount of unburned forest was less following the 1988 fires (63% vs. 72-90% prior to 1988), yet the number of unburned patches increased by nearly an order of magnitude (230 vs. a maximum of 41 prior to 1988). Total core area and mean core area per patch decreased after 1988 relative to smaller fires (∼73,700 ha vs. 87,000-110,000 ha, and 320 ha vs. 2,123 ha, respectively). Notably, only edge density was similar (17 m ha−1 after 1988) to earlier landscapes (9.8-14.2 m ha−1).Three decades of timber harvesting dramatically altered landscape structure in the TNF. Total number of patches increased threefold (1,481 after harvest vs. 437 before harvest), and mean patch size decreased by ∼70% (91.3 ha vs. 309 ha). None of the post-harvest landscape metrics calculated for the TNF fell within the HRV as defined in YNP, even when the post-1988 landscape was considered. In contrast, pre-harvest TNF landscape metrics were all within, or very nearly within, the HRV for YNP. While reference conditions such as those identified by this study are useful for local and regional landscape evaluation and planning, additional research is necessary to understand the consequences of changes in landscape structure for population, community, ecosystem, and landscape function. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Urban forest dynamics can influence the provision of ecosystem services provision. Considerable research has been conducted to understand how these dynamics respond to urbanization, from individual patches to entire landscapes. However, most of these are cross-sectional studies based on landscape metrics, and research using a process-based perspective in this context is scarce. In this study, we present a “pattern-process” analytical framework to quantify the evolutionary behavior of urban forest patches. We combine this framework with land cover classification data based on high-resolution remote sensing images (< 1 m) from 2002, 2013, and 2019 to detect the dynamic characteristics of four processes of forest patches in Beijing urban areas. These dynamic characteristics include: size distribution, aggregation and fragmentation, transfer, and self-stabilization. The results showed that 1) the average size of the patches in the study area is increasing, and patches larger than 50 m2 have a more positive influence on the process of patch structure evolution, 2) patch fragmentation shifts with the direction of urban sprawl, 3) transfer between urban forest and bare land is increasing, and 4) urban forest network construction positively enhances the stability of patches. This framework can provide a useful basis for understanding the spatial and temporal evolution of urban forest landscapes during urban development and contribute to the sustainable management of urban forests.  相似文献   

11.
Spatio-temporal landscape heterogeneity has rarely been considered in population-level impact assessments. Here we test whether landscape heterogeneity is important by examining the case of a pesticide applied seasonally to orchards which may affect non-target vole populations, using a validated ecologically realistic and spatially explicit agent-based model. Voles thrive in unmanaged grasslands and untreated orchards but are particularly exposed to applied pesticide treatments during dispersal between optimal habitats. We therefore hypothesised that vole populations do better (1) in landscapes containing more grassland and (2) where areas of grassland are closer to orchards, but (3) do worse if larger areas of orchards are treated with pesticide. To test these hyposeses we made appropriate manipulations to a model landscape occupied by field voles. Pesticide application reduced model population sizes in all three experiments, but populations subsequently wholly or partly recovered. Population depressions were, as predicted, lower in landscapes containing more unmanaged grassland, in landscapes with reduced distance between grassland and orchards, and in landscapes with fewer treated orchards. Population recovery followed a similar pattern except for an unexpected improvement in recovery when the area of treated orchards was increased. Outside the period of pesticide application, orchards increase landscape connectivity and facilitate vole dispersal and so speed population recovery. Overall our results show that accurate prediction of population impact cannot be achieved without taking account of landscape structure. The specifics of landscape structure and habitat connectivity are likely always important in mediating the effects of stressors.  相似文献   

12.
Landscape structure can influence the fine-scale movement behavior of dispersing animals, which ultimately may influence ecological patterns and processes at broader scales. Functional grain refers to the finest scale at which an organism responds to spatial heterogeneity among patches and extends to the limits of its perceptual range. To determine the functional grain of a model insect, red flour beetle (Tribolium castaneum), we examined its movement behavior in response to experimental flour landscapes. Landscape structure was varied by manipulating habitat abundance (0%, 10%, 30%, and 100%) and grain size of patches (fine-2 × 2 cm, intermediate-5 × 5 cm, and coarse-10 × 10 cm) in 50 × 50 cm landscapes. Pathway metrics indicated that beetles used a similar proportion of all landscape types. Several pathway metrics indicated a graded response from the fine to the coarse grain landscape. Lacunarity analysis of beetle pathways indicated a non-linear change in space use between the fine and intermediate landscapes and the coarse-grained landscape. Beetles moved more slowly and tortuously (with many turns), and remained longer in both the overall landscape and individual patches, in fine-grained compared to coarse-grained landscapes. Our research demonstrates how detailed examination of movement pathways and measures of lacunarity can be useful in determining functional grain. Spatially explicit, organism-centered studies focusing on behavioral responses to different habitat configurations can serve as an important first step to identify behavioral rules of movement that may ultimately lead to more accurate predictions of space use in landscapes.  相似文献   

13.
14.
Effective conservation management for species that function as metapopulations requires an understanding of population dynamics at the landscape scale. The water vole, Arvicola amphibius, is one such species. Water voles have recently undergone a significant decline in the UK, as a result of habitat loss and predation from the introduced American mink, Neovison vison. Large reed bed and grazing marsh sites can provide refuge habitats for water voles from mink predation, in which case populations within these sites could sustain metapopulations in the surrounding landscape where conditions are less favourable. We carried out a study using a stochastic patch occupancy model to determine the long term viability of water vole metapopulations in the wider landscape around a series of extensive reed bed and grazing marsh sites designated as National Key Sites for water voles. The results of our model simulations show that a large protected core site, or mainland, is essential in maintaining the long term viability of these systems. Our results also show how these metapopulations could be enhanced by increasing patch numbers through habitat creation and/or restoration and suggest what the minimum effective size of created or restored patches should be. The study shows how population modelling can provide insight into some effective practical ways of enhancing the viability of water vole metapopulations at the landscape scale. Furthermore it demonstrates that extensive wetlands are an appropriate focus for water vole conservation measures.  相似文献   

15.
Improved knowledge of the environmental factors that affect woody composition is urgently required for species conservation in riparian zones of urbanizing landscapes. We investigated the environmental factors influencing tree abundance and regeneration in diverse forest types growing in the riparian area of an urbanizing landscape along the Chao Phraya River. We established 252 0.1-ha circular plots in remnant forest patches along 372 km of the river. Cluster analysis was applied to classify the forest types. The relationships between environmental variables and tree abundance were assessed with ordination analysis, and generalized linear models were used to assess seedling/sapling abundance. The cluster analysis revealed five forest types, including floodplain forest with three sub-forest types, swamp forest, and mangrove forest. The ordination indicated that tree abundance in the floodplain forest was positively affected by distance to the ocean and the proportion of forested area. Swamp forest was positively influenced by the proportion of urbanized area and mean rainfall. Mangrove forest was negatively related to distance to the river. Seedling/sapling abundance of the dominant species in the floodplain forests was positively affected by lowland plain topography and negatively affected by the proportion of urbanized area, whereas swamp and mangrove forest species were positively influenced by the proportion of urbanized area and estuarine topography. Mature tree density influenced seedling/sapling abundance of all forest types. Tree abundance and regeneration of the riparian landscape was prevented by the urbanized area, floodplain, estuarine topography, and mature tree densities in remnant forests. These results suggest that remnant forest patches of conserved riparian forests along the urbanized landscape of the Chao Phraya River must be protected and the factors determining their colonization must be considered to enhance restoration practices.  相似文献   

16.
Birds can serve as useful model organisms to investigate community level consequences of forestry practices. In this study we investigated the relationships between wintering bird communities and habitat and landscape characteristics of lowland managed forests in Northern Italy. This area is characterized by the spread of the black locust, an alien species that has been favored by forestry practices at the expense of natural oak forests. Birds were censused in winter by point counts in randomly selected plots of 50 m radius. We first addressed bird community–habitat relationships by means of habitat structure measurements, then we investigated bird community–landscape relationships by using GIS techniques. We used generalized linear models (GLM) to test for the effects of habitat and landscape variables on bird community parameters (namely bird species richness, diversity and abundance). Bird community parameters were influenced by oak biomass and tree age, and by oak area and core area, while the other forest habitat types showed less influence. In forest management terms, the main conclusion is that the retention of native oaks is the keyfactor for the conservation of winter bird diversity in local deciduous woods. At the habitat level black locust harvesting may be tolerated, provided that old, large, native oaks are retained in all local woodlots to preserve landscape connectivity and foraging resources. At the landscape meso-scale, large native oak patches, should be preserved or, where necessary, restored. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
This study examined the effects of habitat fragmentation on meadow vole (Microtus pennsylvanicus) population dynamics in experimental landscape patches. The study was conducted from May–November 1993 at the Miami University Ecology Research Center. Eight 0.1-ha small mammal enclosures were used. Four enclosures contained a 160 m2 nonfragmented patch and four enclosures contained four 40 m2 fragmented patches. Thus, each treatment was replicated 4 times in a systematic research design. The patches in both treatments contained high-quality habitat surrounded by low-quality matrix. Six pairs of adult meadow voles were released in each enclosure on 27 May 1993. Populations were monitored by live-trapping and radio-telemetry methods. Significantly greater densities of female voles were found during October in the fragmented treatment compared to the nonfragmented treatment. Also, significantly more females than males were found in the fragmented treatment compared to the nonfragmented treatment for the total study period. Significantly more subadult and juvenile males were found in the matrix versus the patch of the nonfragmented treatment compared to the fragmented treatment. Males in the fragmented treatment had significantly greater mean home range size than males or females in the nonfragmented treatment. There appears to exist a relationship between patch fragmentation and the social structure of meadow vole populations; this relationship appears to function as a population regulatory mechanism.  相似文献   

18.
Spatial simulation models were developed to predict temporal changes in land use patterns in a piedmont county in Georgia (USA). Five land use categories were included: urban, cropland, abandoned cropland, pasture, and forest. Land use data were obtained from historical aerial photography and digitized into a matrix based on a 1 ha grid cell format. Three different types of spatial simulation were compared: (1) random simulations based solely on transition probabilities; (2) spatial simulations in which the four nearest neighbors (adjacent cells only) influence transitions; and (3) spatial simulations in which the eight nearest neighbors (adjacent and diagonal cells) influence transitions. Models and data were compared using the mean number and size of patches, fractal dimension of patches, and amount of edge between land uses. The random model simulated a highly fragmented landscape having numerous, small patches with relatively complex shapes. The two versions of the spatial model simulated cropland well, but simulated patches of forest and abandoned cropland were fewer, larger, and more simple than those in the real landscape. Several possible modifications of model structure are proposed. The modeling approach presented here is a potentially general one for simulating human-influenced landscapes.  相似文献   

19.
Land-use change is forcing many animal populations to inhabit forest patches in which different processes can threaten their survival. Some threatening processes are mainly related to forest patch characteristics, but others depend principally on the landscape spatial context. Thus, the impact of both patch and landscape spatial attributes needs to be assessed to have a better understanding of the habitat spatial attributes that constraint the maintenance of populations in fragmented landscapes. Here, we evaluated the relative effect of three patch-scale (i.e., patch size, shape, and isolation) and five landscape-scale metrics (i.e., forest cover, fragmentation, edge density, mean inter-patch isolation distance, and matrix permeability) on population composition and structure of black howler monkeys (Alouatta pigra) in the Lacandona rainforest, Mexico. We measured the landscape-scale metrics at two spatial scales: within 100 and 500 ha landscapes. Our findings revealed that howler monkeys were more strongly affected by local-scale metrics. Smaller and more isolated forest patches showed a lower number of individuals but at higher densities. Population density also tended to be positively associated to matrices with higher proportion of secondary forests and arboreal crops (i.e. with greater permeability), most probably because these matrices can offer supplementary foods. The immature-to-female ratio also increased with matrix permeability, shape complexity, and edge density; habitat characteristics that can increase landscape connectivity and sources availability. The prevention of habitat loss and isolation, and the increment of matrix permeability are therefore needed for the conservation of this endangered Neotropical mammal.  相似文献   

20.
Habitat fragmentation is considered one of the major conservation issues of recent decades. We tested predictions of landscape patterns in a 352,253-ha managed forest area in southeast British Columbia. We did this by focussing on forest fragmentation concerns among old-growth, harvest, and wildfire patches in 44 delineated landscapes using patch indices as measures of landscape pattern. We found no significant association between amount of harvesting and 15 old-growth patch indices. Comparisons among patch types revealed that amounts and spatial patterns of harvest patches differed little from amounts and spatial patterns of old-growth patches in control landscapes. Variability indices revealed similar variability between harvest patches and old-growth patches, and more variability between harvest patches and wildfire patches. Little of the evidence gathered in this study supported predictions of fragmentation of old-growth spatial patterns, or predicted differences between harvest spatial patterns and more naturally occurring spatial patterns. We suggest these results could be due to the relatively small amounts of harvesting and old-growth forest in these landscapes, and therefore habitat amount may be a more important factor than spatial configuration of patches in these landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号