首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The fungal pathogen Monilinia fructicola causes blossom blight and fruit brown rot of stone fruits in California. In this study, spore densities in the air were monitored in six orchard/year combinations with Burkard spore traps. A real-time PCR assay was developed to efficiently quantify the dynamics of spore density in these orchards during the growing season. Different patterns of dynamics of spore density were observed in these orchards. A linear relationship between numbers of spores counted with a compound microscope and those determined with the real-time PCR assay was obtained, using the same samples of spore traps. Spore density in five of six orchard/year combinations ranged from 0.0 to 0.05 spores l−1, except for that in orchard 4, which showed much higher values of spore density in the air, as well as higher values and wider range of incidences of blossom infection and fruit rot than those in the other orchards. The results demonstrated a potential method to quantitatively determine spore inoculum potential in orchards by using a real-time PCR assay.  相似文献   

2.
A 2-year study was conducted to determine the widespread occurrence of overwintered conidial inoculum of Venturia inaequalis and its impact on the apple scab control in 18 apple orchards (organic and integrated) with various levels of scab in the Netherlands. Autumn assessments of scab lesions showed that the integrated orchards had a significantly lower scab incidence (<20%) compared to that of the organic orchards (>60%). At the bud-break phenological stage, the mean numbers of nonviable and viable conidia on 1 cm pieces of shoots ranged from 1 to about 90 and from 6 to more than 1000 in the integrated and the organic orchards, respectively, for both years. However, viable conidia on shoots were found only in 2 integrated and 6 organic orchards out of the 18 and the viability of conidia was below 2%. The mean numbers of viable and nonviable conidia per 100 buds ranged from 24 to more than 1000 and from 230 to almost 5000 in the integrated and the organic orchards, respectively, for both years. In both years, some 60–85% of the conidia was found on the outer bud scales. The percentage viability associated with the outer bud tissues was below 2% for all the orchards. However, the percentage of viable conidia within the inner bud tissues ranged from 0% to 6% in the integrated and from 2% to 11% in the organic orchards for both years. Differences between the organic and the integrated orchards were clearly demonstrated for overwintered conidia associated with both shoot and bud samples. The relationship between autumn scab incidence and numbers of overwintered conidia associated with shoots or buds was exponential. If the autumn scab incidence was above 40%, then the number of overwintered conidia markedly increased. We conclude that specific treatments for overwintering conidia of Venturia inaequalis may not be necessary in integrated orchards with a low scab incidence in the previous autumn. However, the risk of early scab epidemics initiated by overwintered conidia potentially is high in organic orchards. Preventative measures in early spring and also in the previous year must be established in these orchards.  相似文献   

3.
Holb IJ  Scherm H 《Phytopathology》2007,97(9):1104-1111
ABSTRACT Epidemic development of brown rot, caused by Monilinia fructigena, was monitored in integrated and organic apple orchards at two locations in eastern Hungary between 2002 and 2005 on three cultivars with early, midseason, and late ripening periods. Disease incidence and severity measures were affected significantly (P < 0.05) by management system (organic versus integrated) and cultivar, but there was no significant management system-cultivar interaction. Epidemics started 2 to 4 weeks earlier in organic orchards and on the early cv. Prima compared with integrated orchards and the late cv. Mutsu. Disease intensity increased markedly in the final 3 to 5 weeks before harvest and was considerably lower in integrated than in organic orchards. Final brown rot incidence on fruit in the tree was correlated with incidence on dropped fruit on the orchard floor (r > 0.75, P < 0.05), whereby the lag period from the appearance of the first symptomatic fruit on the ground to the occurrence of the first symptomatic fruit in the tree ranged from 2 weeks to 2 months, depending on the cultivar. The inflection point of the disease progress curve was attained first by fruit on the ground, followed successively by fruit in the lower, middle, and upper thirds of the tree canopy. This may indicate that dropped fruit that became infected early provided a source of inoculum for subsequent epidemics by serving as a bridge between sporulation from overwintered fruit mummies in the spring and the first fruit with sporulating lesions in the tree in midsummer. Removal of dropped fruit from the orchard floor resulted in a significantly lower disease incidence on fruit in the tree on all cultivars; thus, drop-removal may be useful as a brown rot management practice in apple orchards.  相似文献   

4.
In a 4-year study, the incidence of various types of injuries (caused by insects, birds, growth cracks, mechanical wounding, and other, unidentified factors) was assessed in relation to brown rot development (caused by Monilinia fructigena) on fruit of three apple cultivars (Prima, Jonathan, and Mutsu) in integrated and organic blocks of two apple orchards in Hungary. In addition, populations of male codling moths (Cydia pomonella) were monitored with pheromone traps season-long in both management systems. On average, injury incidence on fruit at harvest was 6.1 and 19.2% in the integrated and organic treatments, respectively. Insect injury, which was caused primarily by C. pomonella, had the highest incidence among the five injury types, accounting for 79.4% of the total injury by harvest in the organic blocks and 36.6% in the integrated blocks. Levels of all other injury types remained close to zero during most of the season, but the incidence of bird injury and growth cracks increased markedly in the final 3 to 5 weeks before harvest in both production systems. Brown rot developed more slowly and reached a lower incidence in the integrated (6.4% final incidence on average) compared with the organic blocks (20.1% average incidence). In addition, the disease developed later but attained higher levels as the cultivar ripening season increased from early-maturing Prima to late-maturing Mutsu. Overall, 94.3 to 98.7% of all injured fruit were also infected by M. fructigena, whereas the incidence of brown-rotted fruit without visible injury was very low (0.8 to 1.6%). Correlation coefficients (on a per plot basis) and association indices (on a per-fruit basis) were calculated between brown rot and the various injury types for two selected assessment dates 4 weeks preharvest and at harvest. At both dates, the strongest significant (P < 0.05) relationships were observed between brown rot and insect injury and between brown rot and the cumulative number of trapped C. pomonella. At the harvest assessment, two additional significant correlations were between brown rot and bird injury and between brown rot and growth cracks. In every case, correlation coefficients were larger in organic than in integrated blocks. Although it is well established that brown rot in pome fruits is closely associated with fruit injuries, this is the first study to provide season-long progress data on different injury types and quantitative analyses of their relative importance at different times in the growing season and across two distinct management systems.  相似文献   

5.
To evaluate the effect of conidial density of Monilinia spp. on the fruit surface on the incidence of latent infection and brown rot in peaches, eleven field surveys were performed in commercial orchards located in Cataluña, Spain over four growing seasons from 2002 to 2005, and nine surveys were conducted to determine the sources of overwintered Monilinia spp. inoculum. There was a significant positive relationship (r?=?0.69) between the numbers of conidia of Monilinia spp. on the fruit surface and the incidence of latent infections, but not with brown rot at harvest. Although mummified fruit, twigs and pits have been identified as being able to carry the pathogen from year to year in peaches grown in Spanish orchards, no relationships between any of these sources and the numbers of conidia on the fruit surface, or incidence of latent infection or brown rot were found. The effect of temperature (T), solar radiation (SR), rainfall (R) and wind speed (WS) on the area under the number of conidia of Monilinia spp. curve (AUncC) on peach surfaces was analysed. Regression analysis revealed that T, SR, R, and WS could account for 99% of the total variation in the area of the AUncC on peach surfaces. Thus, in order to reduce the incidence of latent infection and brown rot it is essential not only to remove the sources of primary inoculum but also to reduce the number of Monilinia spp. conidia on the fruit surface. Furthermore, the sources of airborne conidia of Monilinia spp. should be taken into consideration in disease management programmes in Spain.  相似文献   

6.
Temporal development of brown rot (Monilinia fructigena) on fruits was analysed in two organic apple orchards on three apple cultivars in Eastern Hungary from 2002 to 2006. The three-parameter logistic function gave the best fit to brown rot over four non-linear growth functions in all cultivars, years and orchards. Depending on location, year and cultivar, disease increased continuously from 6 to 8 weeks before harvest up to harvest, reaching 19–37% of disease incidence. Disease variables of Y f , the final disease incidence; β, relative rate of disease progress; AUDPC S , standardized area under disease progress curve; T 1.5 , the time when disease incidence reaches 1.5% (day), and M, the inflection point were derived from the three-parameter logistic function. The disease variables of Y f , β, and AUDPC S were used in a computer simulation for predicting temporal brown rot development, and the disease variables of T 1.5 , M, and Y f were used to determine threshold values for epidemic intensity. Afterwards these were used to construct a fundamental model for developing a brown rot forecasting and management strategy (BRFMS). The fundamental model contained four parts: i) data insertion and analyses by computer simulation of pathogen submodels, ii) calculation of yield loss threshold levels based on disease incidence, iii) determination of epidemic intensity levels and iv) a decision module with suggestions for disease management practices for each epidemic intensity level. The fundamental model was supplemented with the prediction of occurrence of the first fruit rot symptoms and with the insect injury prediction related to brown rot development in order to complete a BRFMS for organic apple orchards. In a 3-year field evaluation from 2006 to 2008, season-long application of BRFMS treatments reduced the number of sprays against brown rot by 22–33% compared with the treatments of general spray schedules against brown rot.  相似文献   

7.
Symptoms of Welsh onion leaf blight, caused by Stemphylium vesicarium, are divided into two types, i.e., brown oval lesions and yellow mottle lesions. Yellow mottle lesions exert considerable economic damage on Welsh onion in northern Japan. In this study, we investigated the life cycle of the pathogen in terms of seasonal fluctuation of spore dispersal and its relationship with development of disease, formation period of pseudothecia and overwintering of the pathogen based on field surveys, spore trapping and fungal isolation. Conidia were trapped throughout the cropping season except before mid June, when no ascospores were trapped. Brown oval lesions, which contained a large number of conidia, usually occurred in July followed by yellow mottle lesions with an increasing number of conidia trapped. These observations suggest that conidia released from brown oval lesions play an important role as a secondary inoculum source of the disease, leading to the development of yellow mottle lesions. Pseudothecia on leaves were first observed at the end of the cropping season or immediately after harvest (late October). The pathogen overwintered in the form of pseudothecia produced on leaves with or without symptoms. Ascospores failed to be trap in the field during the interval between before and beginning of the cropping season in April–May. However, pot experiments demonstrated that ascospores were released from leaf debris in November and rapidly increased in number after snow melt. From this circumstantial evidence, we hypothesize that ascospores are the primary inoculum source of Welsh onion leaf blight.  相似文献   

8.
Experiments were conducted for 3 seasons, 2007–2008, 2008–2009 and 2009–2010 in a wheat field planted with a cultivar susceptible to powdery mildew in Langfang City, Hebei Province, China. Plants were inoculated with Blumeria graminis f. sp. tritici (Bgt) and conidia of Bgt in the air were trapped using volumetric spore samplers. Disease severity was recorded weekly. The relationships between airborne conidial concentrations and meteorological factors, as well as disease index were analyzed. Conidia were first detected about 20 days after inoculation in all three seasons, and then increased gradually with time. The highest conidial concentrations in the air were observed in mid-May 2008 and 2009 and late May 2010 at growth stage (GS) 10.5.4. The concentrations of Bgt conidia after inoculation (GS 5) to milky ripe (GS 11.1) in the air were positively correlated with temperature, solar radiation, and negatively with relative humidity and vapor pressure deficit (VPD). Prediction models of Bgt conidial concentrations in the air based on meteorological factors were constructed using multiple regression analysis. Time series analysis, using autoregressive integrated moving average (ARIMA) (p, d, q) models, showed that each of the three season’s data can be fitted with simple ARIMA (1, 0, 0) models. Conidial concentrations within the canopy were significantly higher than those above the canopy (P < 0.01). The weekly-accumulated mean hourly conidia per cubic metre of air significantly (P < 0.01) correlated with disease index in all three seasons.  相似文献   

9.
During European canker monitoring in an apple experimental orchard, 14 mummified fruit (two and three trees with 10 and four positive records in 2018 and 2019, respectively) showed perithecia. Perithecium production on apple fruit, confirmation of pathogenicity of Neonectria ditissima isolated from mummified fruit, and ascospore release from fruit tissues has rarely been reported, and their role in the epidemiology of European canker has been largely overlooked. Thus, the objectives of our study were to (a) prove the presence of both conidia and ascospores of N. ditissima in mummified fruit in an experimental field, confirming pathogenesis in different apple cultivars, and (b) monitor production of the two types of inoculum in infected apple fruit over time. Canker incidence in this orchard was 47% of trees with symptoms in 2018 and 48% in 2019. Molecular and morphological tests confirmed that the fungus detected in the mummified apple fruit was N. ditissima. Apple fruit with sporodochia and perithecia washed immediately after collection from the orchard showed conidia but no ascospores of N. ditissima. However, after 4 days’ incubation, perithecia on mummified fruit showed many ascospore cirri. Koch's postulates were fulfilled on apple plants and mature fruit. Fruit inoculated with N. ditissima released spores for over a year under Brazilian field conditions. The release of both spore types peaked in May (Brazilian leaf fall) and October (spring); release of conidia also peaked in February (early harvest). These results support our hypothesis that fruit can serve as primary inoculum for European canker in Brazilian apple orchards.  相似文献   

10.
Atmospheric concentrations of Botrytis cinerea conidia were monitored for two seasons in a strawberry crop in Moguer (Huelva, southwestern Spain). Concentrations of conidia were estimated using a Burkard volumetric spore sampler. A diurnal pattern of conidial release was observed. Airborne conidial concentration was significantly and positively correlated with the average solar radiation and mean temperature, and negatively with rainfall and relative humidity. Among the weather variables considered, solar radiation showed the most consistent results in the regression analysis, explaining over 40% of airborne conidial concentration variability. Correlation between Botrytis fruit rot incidence and accumulated number of conidia over seven days was significant and positive. Two regression models containing three variables explained over 62 and 52% of the fruit rot incidence variability. A positive but non-significant correlation was established between B. cinerea incidence in flowers and airborne conidial concentration. It was not possible to fit a consistent regression model to relate flower infection incidence to conidial concentration or weather variables.  相似文献   

11.
Ascospores of Mycosphaerella pomi, the pathogen of Brooks fruit spot of apple, were produced in pseudothecia on previously infected and overwintered apple leaves from late April through early August in Aomori Prefecture, Japan. In June 2003, the ascospores were germinating and producing Cylindrosporium-type conidia on apple fruit and leaf surfaces in an orchard. After ascospores were sprayed on apple leaves, Cylindrosporium-type conidia developed on the leaf surfaces. Such Cylindrosporium-type conidia caused typical symptoms of Brooks fruit spot on apple trees after inoculations. These results suggested that the Cylindrosporium-type conidia also serve as an infection source, in addition to the ascospores, for Brooks fruit spot in apple orchards.  相似文献   

12.
A two-year study was conducted to determine the effect of six sanitation treatments on leaf litter density (LLD), relative ascospore production of Venturia inaequalis and scab incidence on spur-leaf clusters, leaves and harvested fruits, on two cultivars with low and high scab susceptibilities, in Hungarian integrated and organic apple orchards. The following sanitation treatments were used: sprays of lime sulphur in autumn, collecting fallen leaves in autumn, straw mulch cover in late winter, sprays of lime sulphur followed by mulch cover, collecting fallen leaves followed by mulch cover, collecting fallen leaves followed by covering the orchard floor with plastic foil, and non-sanitized control. LLD decreased continuously in all treatment plots by 0–23% by mid-May in both orchards and years; however, LLD reduction was 1.4–4.2 times higher in the organic orchard compared to the integrated one. All treatments, except for the lime sulphur treatment, resulted in significant (P < 0.05) reduction of LLD and ascospore production in both the integrated and organic apple orchards compared to non-sanitized plots. The most efficient treatment was leaf collection combined with plastic foil cover, followed by leaf collection combined with mulch cover, leaf collection alone, mulch cover alone, and lime sulphur spray combined with mulch cover, with a reduction in the ascospore production of >95, 72–92, 56–79, 24–38, and 27–46%, respectively, in the mean of both orchards and years. However, only treatments of leaf collection applied alone, or in combination with mulch or with plastic foil cover reduced significantly (P < 0.05) leaf and/or fruit scab incidence by 18–57% compared to non-sanitized plots. These three leaf collection treatments are recommended in both integrated and organic orchards and the possibilities of successfully incorporating these methods into orchard management practices are interpreted.  相似文献   

13.
In 1982, an anamorphic fungus in the genus Monilia was first isolated as the causal agent of brown rot disease of Japanese apricot or mume (Prunus mume) in Oita Prefecture, Kyushu, Japan. Inoculation of flowers, shoots, and fruit of P. mume with the fungus reproduced brown rot disease symptoms similar to those found in nature. The fungus somewhat resembled the colony appearance of Monilinia (anamorph Monilia) laxa, the apricot brown rot fungus, on PSA plates, but it differed from the latter and the other two brown rot fungi, M. fructigena and M. fructicola, in terms of growth rate, temperature optima for mycelial growth and sporulation, morphology and germination pattern of conidia, nuclear number in the conidium, and nucleotide sequences in the ITS region of ribosomal DNA. It is newly described as Monilia mumecola Y. Harada, Y. Sasaki & T. Sano. A key to anamorphic states of four brown rot fungi of fruit trees is provided.  相似文献   

14.
The dynamics of the production of Stemphylium vesicarium conidia and Pleospora allii ascospores from different inoculum sources on the ground were compared in a model system of a wildflower meadow mainly composed of yellow foxtail, creeping cinquefoil and white clover. The meadow was either inoculated (each October) or not inoculated with a virulent strain of S. vesicarium, and either covered or not covered with a litter of inoculated pear leaves. Spore traps positioned a few centimetres above the ground were exposed for 170 7-day periods between October 2003 and December 2006. Ascospores and conidia were trapped in 46 and 25% of samples, respectively. Ascospore numbers trapped from the pear leaf litter were about five times higher than those from the meadow, while conidial numbers were similar from the different inoculum sources. The ascosporic season was very long, with two main trapping periods: December–April, and August–October; the former was most important for the leaf litter, the latter for the meadow. The conidial season lasted from April to November, with 92% of conidia caught between July and September. The fungus persistently colonized the meadow: the meadow inoculated in early October 2003 produced spores until autumn 2006. The present work demonstrates that orchard ground is an important source of inoculum for brown spot of pear. Thus, it is important to reduce inoculum by managing the orchard ground all year long.  相似文献   

15.
Trials were conducted in southern Queensland, Australia between March and May 2003, 2004 and 2005 to study patterns of hourly and daily release of the secondary conidia of Claviceps africana and their relationships with weather parameters. Conidia were trapped for at least one hour on most (> 90%) days in 2003 and 2004, but only on 55% of days in 2005. Both the highest daily concentration of conidia, and the highest number of hours per day when conidia were trapped, were recorded 1–3 days after rainfall events. Although the pattern of conidial release was different every day, the highest hourly conidial concentrations occurred between 10·00 hours and 17·00 hours on 73% of all days in the three trials. Hours when conidia were trapped were characterized by higher median values of temperature, windspeed and vapour pressure deficit, lower relative humidity, and leaf wetness values of 0%, than hours when no conidia were recorded. The results indicate that fungicides need to be applied to the highly ergot-susceptible male sterile (A-) lines of sorghum in hybrid seed production blocks and breeders' nurseries as soon as possible after rainfall events to minimize ergot severity.  相似文献   

16.
The horizontal and vertical distribution of airborne conidia ofBotrytis cinerea in a gerbera crop in two glasshouses (100 m2 and 350 m2) was studied during 18 months in 1988 and 1989. Conidia ofB. cinerea were caught in simple spore traps consisting of agar in Petri dishes placed in a regular pattern at three different heights in the glasshouse and counted as colonies, after incubation. Lesions due to conidial infection were counted on gerbera petals. The horizontal and vertical distribution of conidia ofB. cinerea in a gerbera crop grown under glass was fairly uniform in both distinct glass-houses. Conidia ofB. cinerea trapped in a glasshouse can originate from sources inside and outside the glasshouse. No significant interaction was found between location and time for the colony counts and for the log transformed (ln(N+1)) lesion counts. The results of this study suggest that spore trapping at one height and at a limited number of locations and dates is sufficient for efficient monitoring ofB. cinerea in a glasshouse.  相似文献   

17.
In each of the five years 1969 and 1971-1974 inclusive a volumetric spore trap was used in an apple orchard to monitor changes in the number of airborne conidia of Podosphaera leucotricha , the causal agent of apple powdery mildew. The number of trapped conidia varied greatly between years. Time-series analyses, using autoregressive integrated moving average (ARIMA) models, revealed that the temporal pattern of the number of airborne conidia was similar in all years, generally following a diurnal pattern with an afternoon peak. A strong correlation between consecutive hourly counts indicated that the number of trapped conidia depended on the strength of sporulating sources. Using the time-series transfer function (TF) method, it was shown that in each year the most important weather variables influencing the number of airborne conidia were vapour pressure deficit (VPD) and rainfall. Variation between years in the dynamic effects of these variables on conidium numbers was detected, and may reflect weather differences between years. Stepwise regression analysis was applied to the combined daily data for 1973 and 1974 using a subset of weather variables as independent variables, chosen on the basis of TF analysis. A resulting regression model accurately predicted the temporal pattern of conidium numbers (expressed as a percentage of the maximum daily number trapped in the same year) in both years. When this model was applied to the other three years there was good agreement between predicted and observed temporal patterns. Application of this regression model for practical disease control is discussed.  相似文献   

18.
A Monilinia fructigena-like isolate (UFT) was collected from apple shoots in northeastern Hungary (Újfehértó). Brownish dieback and buff-coloured stromata were observed on shoots and small fruits of cv. ‘Ashton Bitter’. On potato dextrose agar (PDA) the colonies were yellowish in colour and irregular black stromatal crusts occurred. Conidia (16.6?×?10.1 µm) were slightly smaller than the average of M. fructigena. The fungus caused brown rot on inoculated apple fruits, and produced numerous sporodochia. The sequences of the rDNA internal transcribed spacer regions of the UFT isolate were almost identical to that of a previously described Monilia polystroma isolate, containing all five nucleotides that distinguish it from M. fructigena. Comparison of a genomic sequence of unknown function revealed that repetitive sequence motifs occurred in different numbers as insertions in the genomes of M. fructigena, Monilia polystroma, and the UFT isolate. Classical and molecular characterisation indicated that the UFT isolate belonged to Monilia polystroma. To our knowledge this is the first report of Monilia polystroma in Europe.  相似文献   

19.
Five field experiments were performed in commercial orchards located in Lleida (Spain) over three growing seasons, 2000–2002, in order to estimate the relationship between the incidence of latent infection caused by Monilinia spp. in peaches and the incidence of post-harvest brown rot. No latent infection was recorded at popcorn and the maximum incidence occurred pre-harvest; in some orchards a second peak was detected during the pit hardening period. Monilinia laxa is the most prevalent species isolated from peaches with brown rot. There was a positive correlation between the incidence of latent infection and that of post-harvest brown rot. The average incidence of latent infection during the crop season explained 55% of the total variation in the incidence of post-harvest brown rot. The effect of temperature (T) and duration of wetness (W) on the incidence of latent infection in peach and nectarine orchards was analysed using multiple regression. The regression analysis indicated that T and W jointly explained 83% of the total variation in the incidence of latent infection. The model predicts no latent infections when T < 8°C, and >22 h wetness are required when T = 8°C but only 5 h at 25°C are necessary for latent infection to occur. The incidence of brown rot and latent infection of peaches caused by M. laxa under controlled experimental conditions were also affected by T and W, as well as by fruit maturity and inoculum concentration. Latent infections were produced in fruit when T was not suitable for the development of brown rot symptoms. In these experiments more than 4–5 h of daily wetness were required after embryo growth in fruit sprayed to run-off with an inoculum concentration higher than 104 conidia ml−1 of M. laxa for brown rot and latent infections to develop. The fitted model obtained from the field data was able to predict the observed data obtained under controlled environmental conditions.  相似文献   

20.
Mulberry twigs were inserted into the soil as bait to detect Rosellinia necatrix at an early stage of tree infection in the orchard. R. necatrix was frequently trapped on twigs near the trunk base at soil depths of 6–20 cm within 10–20 days in May–July, suggesting that the incubation period was dependent on soil temperature. Subsequently, we inserted twig in the soil around healthy-looking trees in naturally infested orchards. R. necatrix was trapped from 80.0% of Japanese pear and 75.0% of apple trees that later proved to be infected. This bait twig method facilitated quicker diagnosis of white root rot on Japanese pear and apple at early stages of infection and can be used to detect recurrence of the fungus after fungicide treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号