首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selection was applied from 1964 to 1978 for increased weaning weight (WWL) or yearling weight (YWL) in two Hereford lines with an Angus line maintained as an unselected control line (CL). Each line was maintained with 50 cows and four sires (two sires selected each year and each used for 2 yr). Traits analyzed were birth weight (BW), preweaning daily gain (WDG), weaning weight (WW), weaning conformation grade (WG), weaning condition score (WC), weaning to yearling daily gain (YDG), yearling weight (YW), yearling conformation grade (YG) and yearling condition score (YC). After 15 yr of selection, a total of 3.22 generations of selection had occurred in both WWL and YWL. Average selection differentials in standard measure per generation for WWL, YWL and CL, respectively, were: BW, .44, .51, .0; WDG, .95, .81, .09; WW, .97, .85, .09; WG, .66, .57, .09; WC, .60, .38, -.02; YDG, .30, .79, .38; YW, .80, 1.05, .25; YG, .63, .62, .34 and YC, .45, .64, .24. The proportionate contribution of sire selection (delta S) to the average midparent selection differential per generation (delta M) was 70% in WWL and 76% in YWL. Selection indexes in retrospect were also calculated.  相似文献   

2.
Correlated responses to selection for yearling (AS1 herd) or 18-month weight (AS2 herd) wereevaluated against a control (AC0 herd) in a progeny test herd using 2294 calves born in 1975–1988. A sample of privately-owned Angus bulls, available by artificial insemination (AI), were compared with them for eight liveweight or gain traits up to 18 months, with four carcass traits on steers. Cows of known pedigree in the progeny test herd were also evaluated for seven maternal traits. Other correlated responses were evaluated directly in the ACO and selection herds (three puberty traits, daily food intake, cow weight, and survival and reproduction traits).Realised genetic correlations to selection for yearling weight (AS1 herd) averaged 6% higher (forgrowth and carcass traits) than published paternal half-sib estimates, whilst those with 18-month weight (AS2 herd) were about 10% lower than with yearling weight. The sign of maternal genetic effects for live weights up to weaning varied among selection herds. Realised genetic correlations with selection weight averaged 0.51 (carcass fat depth), 0.93 (food intake), 0.16 (scrotal circumference in bulls), 0. 18 (age at puberty) and 0.37 (weight at puberty in heifers), 0.38 (cow weight, AS I herd) and 0.92 (cow weight, AS2 herd). The selection herd differences from control were not significant for cow or calf mortality or reproductive traits (6501 mating records), but tended to be negative for cow and calf death rates, and variable for overall reproductive rate.  相似文献   

3.
Single trait selection was practiced in three lines of Hereford cattle at two locations. Bulls were selected within sire families for increased weaning weight (WW) in the WW line (WWL), for postweaning gain (PG) in the PG line (PGL) and at random in the control line (CTL). Data include the performance of 2,467 calves produced from 1967 to 1981. Environmental effects were estimated from CTL (method I) and from multiple regression procedures (method II). Phenotypic and environmental time trends were negative for WW and generally were positive for PG. Estimated genetic gains for WW in WWL were 1.07 +/- .51 kg/yr in bulls and .62 +/- .36 kg/yr in heifers using method I and .50 +/- .31 kg/yr in bulls and .10 +/- .17 kg/yr in heifers using method II. Corresponding values for PG in PGL were .85 +/- .40 and 1.03 +/- .24 kg/yr in bulls and .30 +/- .28 and .37 +/- .12 kg in heifers. Correlated genetic gains for WW in PGL were larger than direct WW gains, whereas genetic gains for PG in WWL were smaller than direct PG gains. From method I, estimates of realized heritability (h2R) for WW were .31 +/- .18 in bulls and .22 +/- .13 in heifers. For PG, h2R was .31 +/- .13 in bulls and .06 +/- .12 in heifers. Using method II, h2R for WW was .09 +/- .08 in bulls and .02 +/- .07 in heifers. Corresponding values for PG were .29 +/- .10 and .11 +/- .08. Joint estimates of the realized genetic correlation between WW and PG were .69 +/- .18 and .46 +/- .31 for methods I and II, respectively. Variation in selection response was evaluated using quasi-replicates. Results of this study indicate that selection for PG improved both WW and PG faster than selection for WW.  相似文献   

4.
Selection was applied from 1964 to 1978 for increased weaning weight (WWL) or yearling weight (YWL) in two Hereford lines. An Angus line was maintained as an unselected control line (CL). Each line was maintained with 50 cows and four sires each year (two sires selected each year and used for 2 yr). Primary traits measured in the lines were birth weight (BW), preweaning daily gain (WDG), weaning weight (WW), weaning conformation grade (WG), weaning condition score (WC), weaning to yearling daily gain (YDG), yearling weight (YW), yearling conformation grade (YG) and yearling condition score (YC). Averaged over two methods, estimated genetic responses/generation (in standard deviation units) in WWL and YWL were: BW, .29, .26; WDG, .17, .15; WW, .22, .19; WG, .19, .26; WC, .12, .12; YDG, -.02, .04; YW, .08, .14; YG, .19, .16; YC, -.13, -.03. The realized heritability estimates were .23 and .15 for WW and YW, respectively. The realized genetic correlation between WW and YW was .69. Progeny from crosses of selected WWL and YWL sires to Angus cows had similar feedlot and carcass performance. At the end of the study, milk yield and composition were similar for mature cows in WWL and YWL.  相似文献   

5.
Single trait selection was practiced in three lines of Hereford cattle derived from a common base population. Selection was practiced on males only within sire families for increased weaning weight (WW) in the WW line (WWL), for postweaning gain (PG) in the PG line (PGL) and at random in the control line (CTL). Females were culled on the basis of age or reproductive failure. Progeny of selected bulls were produced in two herds from 1970 through 1981. The data consisted of records on 2,467 progeny of 125 sires and 922 dams. Generations of selection to produce the 1981 calf crop were 1.96, 1.85 and 1.80 for WWL, PGL and CTL, respectively. For calves born in 1981, mean cumulative selection differentials (CSD) were 54.5 kg in WWL and 37.8 kg in PGL. Corresponding values in standard deviation units (SDU) were 2.31 and 1.68, respectively. Secondary selection differentials were 25 to 40% as large as selection differentials for the primary traits. Unintentional selection in the CTL in 1981 was 16.2 kg or .68 SDU for WW and .2 kg or .01 SDU for PG, respectively. Regressions of CSD on year were 4.1 kg or .17 SDU in WWL and 3.2 kg or .14 SDU in PGL. Realized selection differentials were approximately 88% of the potential selection differentials in both lines. Inbreeding coefficients of dam and calves in 1981 were 2.0 and 3.5% in WWL, 2.1 and 3.5% in PGL and 2.9 and 5.8% in CTL.  相似文献   

6.
The objective of this research was to partition phenotypic variation in calf gain from birth to weaning, and milk production measured, by the weigh-suckle-weigh method, and udder score of cows into genetic and nongenetic components. Data were from the Line 1 Hereford population maintained by USDA-ARS at Miles City, MT, and included observations of pre-weaning gain (n = 6,835) from 2,172 dams, milk production (n = 692) from 403 cows, and udder score (n = 1,686) from 622 cows. Data were analyzed using a Gibbs sampler for multiple-trait animal models. Results are reported as means +/- SD derived from the posterior distributions of parameter estimates. Mean estimates of the phenotypic variance of preweaning gain, milk production, and udder score were 476.3 kg2, 8.88 kg2, and 1.89 (1 to 9 scale), respectively. Estimates of phenotypic correlations between preweaning gain and milk production, preweaning gain and udder score, and milk production and udder score were 0.37 +/- 0.04, - 0.07 +/- 0.04, and - 0.09 +/- 0.05, respectively. Estimates of heritability for direct and maternal preweaning gain, milk production, and udder score were 0.13 +/- 0.03, 0.25 +/- 0.04, 0.25 +/- 0.06, and 0.23 +/- 0.05, respectively. Genetic correlations of milk production with maternal preweaning gain and udder score were estimated as 0.80 +/- 0.08 and - 0.36 +/- 0.16, respectively. Posterior distributions of the other genetic correlations all contained 0.00 within the respective 90% probability density posterior intervals. Estimates of repeatability of maternal preweaning gain, milk production, and udder score were 0.43 +/- 0.03, 0.39 +/- 0.05, and 0.34 +/- 0.03, respectively. Breeding value for maternal gain from birth to weaning was highly predictive of breeding value for milk production. Direct measurement of milk production to use in genetic improvement may not be justified because it is difficult to measure, and selection based on the breeding value for maternal preweaning gain may be nearly as effective in changing milk production as direct selection. A potentially undesirable consequence of selection to increase milk production is the degradation of udder quality. However, this correlation is not so strong as to preclude simultaneous improvement of milk production and udder quality using appropriate predicted breeding values for each trait.  相似文献   

7.
Simultaneous selection for low birth weight and high yearling weight has been advocated to improve efficiency of beef production. Two sublines of Line 1 Hereford cattle were established by selection either for below-average birth weight and high yearling weight (YB) or for high yearling weight alone (YW). Direct effects on birth weight and yearling weight diverged between sublines with approximately four generations of selection. The objective of this study was to estimate genetic trends for traits of the cows. A three-parameter growth curve [Wt = A(1 - b0e(-kt))] was fitted to age (t, d)-weight (W, kg) data for cows surviving past 4.5 yr of age (n = 738). The resulting parameter estimates were analyzed simultaneously with birth weight and yearling weight using multiple-trait restricted maximum likelihood methods. To estimate maternal additive effects on calf gain from birth to weaning (MILK) the two-trait model previously used to analyze birth weight and yearling weight was transformed to the equivalent three-trait model with birth weight, gain from birth to weaning, and gain from weaning to yearling as dependent variables. Heritability estimates were 0.32, 0.27, 0.10, and 0.20 for A, b0, k, and MILK, respectively. Genetic correlations with direct effects on birth weight were 0.34, -0.11, and 0.55 and with direct effects on yearling weight were 0.65, -0.17, and 0.11 for A, b0, and k, respectively. Genetic trends for YB and YW, respectively, were as follows: A (kg/generation), 8.0+/-0.2 and 10.1+/-0.2; b0 (x 1,000), -1.34+/-0.07 and -1.16+/-0.07; k (x 1,000), -14.3+/-0.1 and 4.3+/-0.1; and MILK (kg), 1.25+/-0.05 and 1.89+/-0.05. Beef cows resulting from simultaneous selection for below-average birth weight and increased yearling weight had different growth curves and reduced genetic trend in maternal gain from birth to weaning relative to cows resulting from selection for increased yearling weight.  相似文献   

8.
Heritability of 2-yr-old heifer calving difficulty score was estimated in nine purebred and three composite populations with a total of 5,986 calving difficulty scores from 520 sires and 388 maternal grandsires. Estimates were 0.43 for direct (calf) genetic effects and 0.23 for maternal (heifer) genetic effects. The correlation between direct and maternal effects was -0.26. Direct effects were strongly positively correlated with birth weight and moderately correlated with 200-d weight and postweaning gain. Smaller negative correlations of maternal calving difficulty with direct effects of birth weight, weaning weight, and postweaning gain were estimated. Calving difficulty was scored from 1 to 7. Predicted heritabilities using seven optimal scores were similar to those using four scores. The predicted heritability using only two categories was reduced 23%. Phenotypic and direct genetic variance increased with increasing average population calving difficulty score. The estimated direct and maternal heritabilities for 2-yr-old calving difficulty score were larger than many literature estimates. These estimates suggested substantial variance for direct and maternal genetic effects. The direct effects of 2-yr-old calving difficulty score seemed to be much more closely tied to birth weight than were maternal effects.  相似文献   

9.
A restriction/realimentation feeding strategy was applied to pigs to increase the age at market weight and final ADG, modify protein and lipid deposition rates at carcass and muscle levels, and thereby improve eating quality of the pork. A total of 126 Duroc x (Large White x Landrace) pigs (females and castrated males) were used. At the average BW of 30 kg, within litter and sex, pairs of littermates (blocked by BW) were randomly assigned to ad libitum (AL) feeding during growing (30 to 70 kg of BW) and finishing (70 to 110 kg of BW) periods (AL, n = 56), or restricted feeding at 65% of the ADFI of the AL pigs, on a BW basis, during the growing period and AL feeding during finishing (compensatory growth, CG; n = 56). In each feeding regimen, 15 pigs were slaughtered at 70 kg of BW, and 41 pigs were slaughtered at 110 kg of BW. Additionally, 14 pigs were slaughtered at 30 kg of BW to calculate tissue deposition rates. The CG pigs showed decreased ADG (-35%, P = 0.001) during growing but increased ADG (+13%, P = 0.001) during finishing (i.e., compensatory growth) due to greater (P = 0.001) ADFI and G:F. Hence, CG pigs were 19 d older at 110 kg of BW than AL pigs. The CG pigs were leaner at 70 kg of BW than AL (e.g., 11.7 vs. 13.5 mm of average backfat thickness for CG and AL pigs, respectively, P = 0.023), whereas the differences were reduced at 110 kg of BW (20.6 vs. 21.0 mm of average backfat thickness for CG and AL pigs, respectively, P = 0.536). At 70 kg of BW, intramuscular fat (IMF) content of LM did not differ between CG and AL pigs (1.25 vs. 1.49%, respectively, P = 0.118), whereas CG pigs had less IMF in LM at 110 kg of BW (2.19 vs. 2.53% for CG and AL pigs, respectively, P = 0.034). Feeding regimen influenced the composition of weight gain. From 30 to 70 kg of BW, feed restriction reduced (P = 0.001) lean and adipose tissue deposition at the carcass level and protein and lipid deposition at the muscle level. From 70 to 110 kg of BW, the CG feeding strategy increased (P = 0.016) deposition of adipose but not of lean tissue at the carcass level. However, lipid and protein deposition at the muscle level were not affected. Thus, realimentation promoted deposition of subcutaneous fat over IMF. Feeding regimen hardly affected technological meat quality at 110 kg of BW. The CG feeding strategy decreased (P = 0.014) the meat juiciness score in relation to the decreased IMF but did not influence other sensory traits. Elevated IMF content and improved pork quality might be achieved by modifying the onset or duration of the restriction and realimentation periods.  相似文献   

10.
11.
The objective of this study was to estimate genetic correlations between calving difficulty score and carcass traits in Charolais and Hereford cattle, treating first and later parity calvings as different traits. Genetic correlations between birth weight and carcass traits were also estimated. Field data on 59,182 Charolais and 27,051 Hereford calvings, and carcass traits of 5,260 Charolais and 1,232 Hereford bulls, were used in bivariate linear animal model analyses. Estimated heritabilities were moderate to high (0.22 to 0.50) for direct effects on birth weight, carcass weight, and (S)EUROP (European Community scale for carcass classification) grades for carcass fleshiness and fatness. Heritabilities of 0.07 to 0.18 were estimated for maternal effect on birth weight, and for direct and maternal effects on calving difficulty score at first parity. Lower heritabilities (0.01 to 0.05) were estimated for calving difficulty score at later parities. Carcass weight was positively genetically correlated (0.11 to 0.53) with both direct and maternal effects on birth weight and with direct effects on calving difficulty score. Carcass weight was, however, weakly or negatively (-0.70 to 0.07) correlated with maternal calving difficulty score. Higher carcass fatness grade was genetically associated with lower birth weight, and in most cases, also with less difficult calving. Genetic correlations with carcass fleshiness grade were highly variable. Moderately unfavorable correlations between carcass fleshiness grade and maternal calving difficulty score at first parity were estimated for both Charolais (0.42) and Hereford (0.54). This study found certain antagonistic genetic relationships between calving performance and carcass traits for both Charolais and Hereford cattle. Both direct and maternal calving performance, as well as carcass traits, should be included in the breeding goal and selected for in beef breeds.  相似文献   

12.
The objectives of the current study were to investigate the additive genetic associations between heifer pregnancy at 16 months of age (HP16) and age at first calving (AFC) with weight gain from birth to weaning (WG), yearling weight (YW) and mature weight (MW), in order to verify the possibility of using the traits measured directly in females as selection criteria for the genetic improvement of sexual precocity in Nelore cattle. (Co)variance components were estimated by Bayesian inference using a linear animal model for AFC, WG, YW and MW and a nonlinear (threshold) animal model for HP16. The posterior means of direct heritability estimates were: 0.45 ± 0.02; 0.10 ± 0.01; 0.23 ± 0.02; 0.36 ± 0.01 and 0.39 ± 0.04, for HP16, AFC, WG, YW and MW, respectively. Maternal heritability estimate for WG was 0.07 ± 0.01. Genetic correlations estimated between HP16 and WG, YW and MW were 0.19 ± 0.04; 0.25 ± 0.06 and 0.14 ± 0.05, respectively. The genetic correlations of AFC with WG, YW and MW were low to moderate and negative, with values of − 0.18 ± 0.06; − 0.22 ± 0.05 and − 0.12 ± 0.05, respectively. The high heritability estimated for HP16 suggests that this trait seem to be a better selection criterion for females sexual precocity than AFC. Long-term selection for animals that are heavier at young ages tends to improve the heifers sexual precocity evaluated by HP16 or AFC. Predicted breeding values for HP16 can be used to select bulls and it can lead to an improvement in sexual precocity. The inclusion of HP16 in a selection index will result in small or no response for females mature weight.  相似文献   

13.
The objectives were to conduct a genetic evaluation of residual feed intake (RFI) and residual feed intake adjusted for fat (RFIFat) and to analyse the effect of selection for these traits on growth, carcass and reproductive traits. Data from 945 Nellore bulls in seven feed efficiency tests in a feedlot were analysed. Genetic evaluation was performed using an animal model in which the feed efficiency test and age of the animal at the beginning of the test were considered as a systematic effect. Direct additive genetic and residual effects were considered as random effects. Correlations and genetic gains were estimated by two‐trait analysis between feed efficiency measures (RFI and RFIFat) and other traits. Feed conversion showed low heritability (0.06), but dry matter intake (DMI), average daily gain, RFI, RFIFat, metabolic body weight and scrotal circumference measured at 450 days of age (SC450) showed moderate to high heritability (0.49, 0.28, 0.33, 0.36, 0.38 and 0.80, respectively). Similarly, ribeye area, backfat thickness, rump cap fat thickness, marbling score and subcutaneous fat thickness also had high heritability values (0.46, 0.37, 0.57, 0.51 and 0.47, respectively). Genetic correlations between RFI and SC450 were null, and between RFIFat and SC450 were strongly positive. Genetic and phenotypic correlations of RFI and RFIFat with carcass traits were not different from zero, as correlated responses for carcass traits were also not different from zero. The Nellore selection for feed efficiency by RFI or RFIFat allows the recognition of feed efficient animals, with DMI reduction and without significant changes in growth and carcass traits. However, because of the observed results between RFIFat and SC450, selection of animals should be analysed with caution and a preselection for reproductive traits is necessary to avoid reproductive impairments in the herd.  相似文献   

14.
In order to estimate genetic parameters, abattoir carcass data on 1,713 Angus and 1,007 Hereford steers and heifers were combined with yearling live-animal ultrasound measurements on 8,196 Angus and 3,405 Hereford individuals from seedstock herds. Abattoir measures included carcass weight (CWT), percentage of retail beefyield (RBY), near-infrared measured intramuscular fat percentage (CIMF), preslaughter scanned eye muscle area (CEMA), and subcutaneous fat depth at the 12th rib (CRIB) and at the P8 site (CP8). Ultrasound scans on yearling animals included 12th-rib fat depth (SRIB), rump fat depth at the P8 site (SP8), eye muscle area (SEMA), and percentage of intramuscular fat (SIMF). Records on CWT were adjusted to 650-d slaughter age, and the remaining abattoir traits were adjusted to 300-kg CWT. Scan data were analyzed treating records on males and females as different traits. Multivariate analyses were performed on a variety of trait combinations using animal model and REML algorithm. Heritability (h2) estimates for CWT, RBY, CIMF, CP8, CRIB, and CEMA were .31, .68, .43, .44, .28, and .26, respectively, for Angus and .54, .36, .36, .08, .27, .38, respectively, for Hereford. Pooled across sexes, h2 estimates for SIMF, SP8, SRIB, and SEMA were .33, .55, .51, and .42, respectively, for Angus and .20, .31, .18, and .38, respectively, for Hereford. Genetic correlations (r(g)) between the same pair of carcass traits measured at yearling through scanning and directly at the abattoir were moderate to strongly positive, suggesting that selection using yearling ultrasound measurements of seedstock cattle should result in predictable genetic improvement for abattoir carcass characteristics. Estimates of r(g) between the scanned fat measurements and RBY were negative, ranging from -.85 for Angus heifers to -.05 for Hereford heifers. Also, the estimates of r(g) between SEMA and the fat records measured at the abattoir were negative and ranged from -.94 in Hereford heifers to -.02 in Angus heifers.  相似文献   

15.
Data from the first four cycles of the Germplasm Evaluation Program at the U.S. Meat Animal Research Center (USMARC) were used to investigate genetic relationships between mature weight (MW, n = 37,710), mature weight adjusted for body condition score (AMW, n = 37,676), mature height (HT, n = 37,123), and BCS (n = 37,676) from 4- to 8-yr old cows (n = 1,800) and carcass traits (n = 4,027) measured on their crossbred paternal half-sib steers. Covariance components among traits were estimated using REML. Carcass traits were adjusted for age at slaughter. Estimates of heritability for hot carcass weight (HCWT); percentage of retail product; percentage of fat; percentage of bone; longissimus muscle area; fat thickness adjusted visually; estimated kidney, pelvic, and heart fat percentage; marbling score; Warner-Bratzler shear force; and taste panel tenderness measured on steers were moderate to high (0.26 to 0.65), suggesting that selection for carcass and meat traits could be effective. Estimates of heritability for taste panel flavor and taste panel juiciness were low and negligible (0.05 and 0.01, respectively). Estimates of heritability from cow data over all ages and seasons were high for MW, AMW, and HT (0.52, 0.57, 0.71; respectively) and relatively low for BCS (0.16). Pairwise analyses for each female mature trait with each carcass trait were done with bivariate animal models. Estimates of genetic correlations between cow mature size and carcass composition or meat quality traits, with the exception of HCWT, were relatively low. Selection for cow mature size (weight and/or height) could be effective and would not be expected to result in much, if any, correlated changes in carcass and meat composition traits. However, genetic correlations of cow traits, with the possible exception of BCS, with HCWT may be too large to ignore. Selection for steers with greater HCWT would lead to larger cows.  相似文献   

16.
Leptin is the hormone product of the obese gene that is synthesized and predominantly expressed by adipocytes. This study estimated the genetic variation in serum leptin concentration and evaluated the genetic and phenotypic relationships of serum leptin concentration with performance, efficiency of gain, and carcass merit. There were 464 steers with records for serum leptin concentration, performance, and efficiency of gain and 381 steers with records for carcass traits. The analyses included a total of 813 steers, including those without phenotypic records. Phenotypic and genetic parameter estimates were obtained using SAS and ASREML, respectively. Serum leptin concentration was moderately heritable (h2 = 0.34 +/- 0.13) and averaged 13.91 (SD = 5.74) ng/mL. Sire breed differences in serum leptin concentration correlated well with breed differences in body composition. Specifically, the serum leptin concentration was 20% greater in Angus-sired steers compared with Charolais-sired steers (P < 0.001). Consequently, ultrasound backfat (27%), carcass 12th-rib fat (31%), ultrasound marbling (14%), and carcass marbling (15%) were less in Charolais- than Angus-sired steers (P < 0.001). Conversely, carcass LM area (P = 0.05) and carcass lean meat yield (P < 0.001) were greater in Charolais- compared with Angus-sired steers. Steers with greater serum leptin concentration also had greater DMI (P < 0.001), greater residual feed intake (P = 0.04), and partial efficiency of growth (P = 0.01), but did not differ in feed conversion ratio (P > 0.10). Serum leptin concentration was correlated phenotypically with ultrasound backfat (r = 0.41; P < 0.001), carcass 12th-rib fat (r = 0.42; P < 0.001), ultrasound marbling (r = 0.25; P < 0.01), carcass marbling (r = 0.28; P < 0.01), ultrasound LM area (r = -0.19; P < 0.01), carcass LM area (r = -0.17; P < 0.05), lean meat yield (r = -0.38; P < 0.001), and yield grade (r = 0.32; P < 0.001). The corresponding genetic correlations were generally greater than the phenotypic correlations and included ultrasound backfat (r = 0.76 +/- 0.19), carcass 12th-rib fat (r = 0.54 +/- 0.23), ultrasound marbling (r = 0.27 +/- 0.22), carcass marbling (r = 0.76 +/- 0.21), ultrasound LM area (r = -0.71 +/- 0.19), carcass LM area (r = -0.75 +/- 0.20), lean meat yield (r = -0.59 +/- 0.22), and yield grade (r = 0.39 +/- 0.26). Serum leptin concentration can be a valuable tool that can be incorporated into appropriate selection programs to favorably improve the carcass merit of cattle.  相似文献   

17.
Selection in pigs for either fast (line F) or slow (line S) postweaning gain was replicated in spring (SREP) and fall (FREP) farrowing groups. Littermate barrows were sampled from F and S during Generations 2, 3, and 4 of the SREP and Generation 3 of the FREP. Beginning at approximately 35 kg (OTWT), barrows were either allowed ad libitum access to feed (AL) or limited to a standard total feed intake (LIM). Blocks of the line x intake level factorial were removed from test and carcass data collected when the average weight of barrows in the block was approximately 110 kg. Carcass data were also collected on an additional barrow from each litter at OTWT to allow estimation of lean tissue gain per unit of feed consumed (LTFC) of tested barrows. In Generations 3 and 4 of the SREP, F-AL was greater (P less than .01) than S-AL for average daily intake and ADG; carcass backfat was greater (P less than .01) but LTFC tended to be less (P less than .10) for F-AL than for S-AL. When LIM was imposed in the SREP, F barrows gained faster (P less than .05) than S barrows in Generation 4, but across generation the lines did not differ for carcass backfat and LTFC was greater (P less than .01) for F than for S. In the FREP, F-AL was greater (P less than .05) than S-AL for average daily intake and ADG and was less (P less than .05) for LTFC, but F and S did not differ for these traits when LIM was imposed; carcass backfat of F was greater (P less than .01) than that of S by .46 cm under AL and .38 cm under LIM. Most of the response in ADG could be attributed to changes in intake, but results in Generation 4 of the SREP indicated that changes in efficiency had also contributed. Most of the additional intake in F vs S resulted in deposition of fat, probably due in part to the heavier weight of F-AL vs S-AL barrows.  相似文献   

18.
The juvenile live weights, yearling fleece weight and wool characteristics of 2987 Romney progeny of 114 sires born over 9 breeding seasons in a fleece-weight-selected and a random control line were analysed. The high fleece weight-selected flock performance was higher (P < 0.001) for weaning weight and spring weight (6.9 and 8.4%), higher (P < 0.001) for greasy and clean fleece weight (23.8 and 24.3%), and also higher (P < 0.001) for FD by 1 μm, staple length by 6 mm, and wool yellowness by 0.3 unit than random control yearling sheep. Heritability estimates for weaning and spring live weight, greasy fleece weight, clean fleece weight, yield, fibre diameter, staple length, staple strength, loose wool bulk, brightness and yellowness were 0.15, 0.51, 0.35, 0.36, 0.40, 0.57, 0.41, 0.24, 0.46, 0.12 and 0.14 respectively. The heritability estimates are within the range of the long wool sheep breeds studied previously. The high selection differential achieved in the initial screening commercial flocks however facilitated to approach a selection response peak in a shorter selection duration and thus resulted in a non-significant genetic gain in greasy fleece weight when averaged over the 9 years of selection.  相似文献   

19.
The CGC population is a stabilized composite of 1/2 Red Angus, 1/4 Charolais, and 1/4 Tarentaise germplasm. The objectives of this research were to estimate genetic parameters for weight traits of CGC and to evaluate genetic responses resulting from selection based on the following index: I = 365-d weight 3.2(birth weight). Phenotypes evaluated were birth weight (n = 5,083), 200-d weight (n = 4,902), 365-d weight (n = 4,626), and the index. In addition, there were 1,433 cows with at least one recorded weight, and 4,375 total observations of cow weight collected at the time their calves were weaned. In 1989, a randomly selected control line and a line selected for greater values of the index were established. Average generation intervals were 3.16 +/- 0.04 and 3.90 +/- 0.08 yr in the index and control lines, respectively. The index selection line (n = 950) accumulated approximately 212 kg more selection differential than the control line over three generations (n = 912). Heritability estimates for direct effects were 0.32 +/- 0.04, 0.49 +/- 0.05, 0.49 +/- 0.05, 0.30 +/- 0.04, and 0.70 +/- 0.04 for the index, birth weight, 365-d weight, 200-d weight, and cow weight, respectively. Heritability estimates for maternal effects were 0.05 +/- 0.02, 0.11 +/- 0.03, 0.04 +/- 0.02, and 0.19 +/- 0.04 for the index, birth weight, 365-d weight, and 200-d weight, respectively. In the control line, direct genetic changes for the index and its components were small. For the index selection line, direct genetic changes for the index, birth weight, 365-d weight, 200-d weight, and cow weight were 6.0 +/- 0.3, 0.45 +/- 0.09, 7.74 +/- 0.55, 3.42 +/- 0.25, and 6.3 +/- 0.9 kg/generation, respectively. Maternal genetic changes were generally small for both the control and index selection lines. Thus, selection for the index produced positive correlated responses for direct genetic effects on BW traits at all ages, with only minor effects on maternal genetic effects. Results demonstrate that despite a genetic antagonism that compromises selection response for decreased birth weight and increased postnatal growth, favorable genetic responses can be achieved with the selection index used in this study.  相似文献   

20.
SUMMARY: Correlated responses in pituitary gland weight and growth hormone (GH) concentration in the serum and pituitary were studied in lines of mice selected for growth rate, and in controls. The selection criteria were weight gain between 28 and 38 days on an ad libitum feed intake (EPA line), or on intake restricted to 80% of the control mice (EPR line), and weight gain between 48 and 58 days under the above two feeding regimes (LPA and LPR lines). The control line was maintained by random breeding. In generation 13, pituitary weight and growth hormone levels were determined at 38 days in lines EPA, EPR and the control and at 58 days in lines LPA, LPR and the control. Pituitary weight, corrected for body weight gain, was smaller in the EPA line than in the control line at 38 days and was greater in the LPR line than in the control line at 58 days. There were large differences in serum GH concentrations between the selected lines and the control; the differences were statistically significant at 38 days, with the EPA and EPR lines having lower levels than the controls. ZUSAMMENFASSUNG: Ver?nderung von Wachstumshormonspiegel bei Selektion für Zuwachs bei M?usen Ver?nderungen im Hypophysengewicht und Wachstumshormon-(GH)-Konzentrationen im Serum und in der Hypophyse wurden bei Wachstumsselektionslinien und bei Kontrollm?usen untersucht. Selektionskriterien waren Zuwachs zwischen 28 und 38 Tagen bei ad libitum Futteraufnahme (EPA Linie) oder bei Linien, wo Futteraufnahme auf 80% derjenigen der Kontrollm?use (EPR Linie) begrenzt wurde und Zuwachs zwischen 48 und 58 Tagen unter beiden Futterweisen (LPA und LPR Linie). Die Kontrollinie wurde durch Zufallspaarung fortgepflanzt. In Generation 13 wurden Hypophysengewicht und Wachstumshormonspiegel im Alter von 38 Tagen in Linien EPA, EPR und in Kontrollen und bei 58 Tagen in Linien LPA und LPR und Kontrollen bestimmt. Hypophysengewicht, korrigiert für Zuwachs, war geringer in der LPA Linie als in der Kontrolle bei 38 Tagen Alter und gr??er in der LPR Linie als in der Kontrolle bei 58 Tagen. Zwischen GH Konzentrationen selektierter und Kontrollinien waren erhebliche Differenzen, die bei 38 Tagen signifikant waren, wobei EPA und EPR Linien geringere Werte als die Kontrollen aufwiesen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号