共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Two different soils were amended with 14C-labelled plant material and incubated under controlled laboratory conditions for 2 years. Half the samples were cropped with wheat (Triticum aestivum) 10 times in succession. At flowering, the wheat was harvested and the roots removed from the soil, and a new crop was started. Thus, the soil was continuously occupied by predominantly active root systems. The remaining samples were maintained without plants under the same conditions. The aim of the experiment was to study the effects of active roots on C-mineralization rates during different stages of decomposition and during long-term incubation. During the first 200 days, corresponding to the active decomposition stages, the roots weakly reduced 14C mineralization. With a lower level of decomposition, when more than 60% of the initial 14C was mineralized and when the available nutrients were markedly exhausted by plant uptake, the roots stimulated 14C mineralization.[/ p] 相似文献
2.
Zörb C Langenkämper G Betsche T Niehaus K Barsch A 《Journal of agricultural and food chemistry》2006,54(21):8301-8306
In some European community countries up to 8% of the agricultural area is managed organically. The aim was to obtain a metabolite profile for wheat (Triticum aestivum L.) grains grown under comparable organic and conventional conditions. These conditions cannot be found in plant material originating from different farms or from products purchased in supermarkets. Wheat grains from a long-term biodynamic, bioorganic, and conventional farming system from the harvest 2003 from Switzerland were analyzed. The presented data show that using a high throughput GC-MS technique, it was possible to determine relative levels of a set of 52 different metabolites including amino acids, organic acids, sugars, sugar alcohols, sugar phosphates, and nucleotides from wheat grains. Within the metabolites from all field trials, there was at the most a 50% reduction comparing highest and lowest mean values. The statistical analysis of the data shows that the metabolite status of the wheat grain from organic and mineralic farming did not differ in concentrations of 44 metabolites. This result indicates no impact or a small impact of the different farming systems. In consequence, we did not detect extreme differences in metabolite composition and quality of wheat grains. 相似文献
3.
Krishna Murari Sharma Deendayal Sharma Shiv Singh Tomar Ganpat Singh Chauhan 《Archives of Agronomy and Soil Science》2013,59(1):61-71
A field experiment was conducted during the winter seasons between 2004 and 2006 to assess the role of balanced fertilization and bioregulators (foliar-applied brassinosteroid 0.5 mg I?1, thiourea 1000 mg I?1 and kinetin 10 mg I?1) in enhancing the productivity of wheat. Conjoint application of NPKSZn (120 kg N, 40 kg P2O5, 30 kg K2O, 40 kg S, 5.5 kg Zn ha?1) recorded maximum improvements in yield attributes and significantly out-yielded all the fertilization treatments with 14.90, 4.97 and 6.39% increments in grain yield compared with NPK, NPKS and NPKZn treatments, respectively. Nutrient (N, P, K, S, Zn) content and uptake were also improved significantly with balanced fertilization. Among the bioregulators, application of 0.50 mg I?1 brassinosteroid recorded maximum increments in grain yield (14.10%), followed by 10 mg I?1 kinetin (12.31%) and 1000 mg I?1 thiourea (9.92%), over control (4.99 t ha?1). Bioregulators significantly enhanced the uptake of nutrients (N, P, K, S, Zn) over control. NPKSZn treatment also gave the maximum net return (Rs. 51,209 ha?1). Among the bioregulators, brassinosteroid provided the maximum net return (Rs. 47,292 ha?1) and benefit:cost (B:C) ratio (3.37) followed by thiourea (Rs. 45,500 ha?1 and 3.35). Kinetin also provided yield advantage, however, it gave a significantly reduced B:C ratio compared with control. 相似文献
4.
Nitrogen fertilization and maturity influence the phenolic concentration of wheat grain (Triticum aestivum) 下载免费PDF全文
This work investigated the influence of N fertilization and grain maturity on total phenolic concentration (TPC) of wheat caryopses. A pot experiment was conducted, using soft spring wheat (Triticum aestivum cv. Thasos) which was treated with four different amounts of nitrogen (0.25–2.00 g N pot?1) and harvested at three different development stages (medium milk stage, late milk stage, and dough maturity). Phenolic compounds were extracted and analyzed as total phenolic concentration in three discrete fractions: free soluble, conjugated soluble and insoluble bound forms. TPC of free phenolic compounds rose with increasing N supply while TPC of conjugated soluble phenolics decreased at the same time. Insoluble phenolics were less affected by N treatment. Total phenolic concentration also changed with the development stage of caryopses and reached a peak at the late milk stage. 相似文献
5.
通过在山西省临汾市尧都区建立夏季小麦收获后复播大豆、油葵、玉米和夏季休闲4个茬口,进行不同茬口、施N水平对下季种植的小麦品质性状及其变异系数的研究.结果表明:小麦千粒重、容重、蛋白质含量、沉降值及湿面筋品质性状等各茬口问存在差异,大豆茬口可较好地协调各品质性状.千粒重和容重在休闲茬口中均以高N水平(E、F)较高,而在其他茬口中则以低N水平较高;蛋白质含量、沉降值和湿面筋3个性状在4个茬口中的平均值则以高N水平(E)较高;茬口和施氮水平对各品质性状的变异系数影响分别为沉降值>湿面筋>蛋白质含量、沉降值>蛋白质含量>湿面筋.该项研究为专用小麦标准化生产提供了理论依据. 相似文献
6.
A field experiment was conducted to evaluate the effect of integrated use of farmyard manure and bio-inoculants on wheat productivity for two years in succession. Increasing levels of farmyard manure (FYM) up to 15 t ha?1 significantly (p ≤ 0.05) improved the dry matter accumulation, effective tillers per m row length, and grain weight per spike in both the years. Application of 15 t ha?1 FYM caused significant increase in spikelets per spike and grains per spike over control and 5 t ha?1 during two consecutive years. Inoculation with MSX-9 strain of Azotobacter chroococcum produced significantly higher dry matter accumulation to 25.63, 13.33, 7.78 and 23.66, 8.35, 5.50% over uninoculation, Azospirillum brasilense (SP-7) and Azospirillum lipoferum (A-5) at harvest during 1999–2000 and 2000–2001, respectively. Incorporation of 15 t ha?1 FYM significantly (p ≤ 0.05) enhanced grain and straw yield to 62.45 and 38.05%; 56.66 and 36.28%; 59.42 and 37.52% over control in 1999–2000, 2000–2001 and pooled analysis, respectively. The grain and straw yield of wheat significantly (p ≤ 0.05) enhanced to 26.51, 10.10, 7.54 and 14.45, 5.77, 3.16% through A. chroococcum (MSX-9), A. brasilense (SP-7) and A. lipoferum (A-5) over uninoculation. 相似文献
7.
Nitrogen (N) is an important plant nutrient and is crucial for the plant growth and grain yield formation of field crops such as wheat (Triticum aestivum L. ssp. aestivum). However, little is known about the influence of N on secondary metabolites in wheat grains which are supposed to be beneficial for human health due to their antioxidant potentials. Therefore, we investigated the influence of N fertilization on plant growth and yield performance of winter wheat, as well as on total phenolic concentration, antioxidant capacity, and the accumulation of (in)soluble phenolic acids in wheat grains during the grain‐filling phase. It was found that ferulic acid was the predominant phenolic acid in wheat grains. As expected, higher amounts of N fertilizer led to increasing grain yields, whereas the concentration of soluble ferulic acid decreased. In contrast, insoluble bound ferulic acid, total phenolic content, and antioxidant capacity were not affected by the N treatment. Insoluble phenolic compounds seemed to be less susceptible to variations in N supply. 相似文献
8.
Sanghun Lee Howard J. Woodard James J. Doolittle 《Soil Science and Plant Nutrition》2013,59(5):696-704
The objective of this study was to investigate whether oxyanionic phosphate (P) and sulfate (S) fertilizer management could influence selenium (Se) uptake by wheat (Triticum aestivum) in medium and high Se areas. Field studies were established at two locations for two growing seasons in central South Dakota, USA. Phosphate fertilizer was applied using three different methods (banded with seed, surface-broadcasted in the fall, or surface-broadcasted in the spring) using six different P rates. Sulfate fertilizers were broadcasted at four rates in the fall. Selenium concentration in wheat grain was significantly influenced by the interaction of P application methods and rates, but it was dependent on location. Grain Se concentration decreased in high Se availability soil when P fertilizer was applied, due to the dilution effect. Grain Se concentration and uptake was significantly decreased as S applications increased due to the competition effect, but the depression was apparent in high Se availability soil. The results from this study showed that P and S fertilizer management can influence Se level in wheat grain grown in naturally high Se areas, even though overall grain Se level was strongly associated with location variation. 相似文献
9.
Summary In a field experiment with 14C-labeled winter wheat conducted in the north-central region of the United States, crop-accumulated carbon (grain excluded) returned to the soil was found to be 542 g m–2 year–1. Almost half of the carbon from the underground compartment was released in the form of CO2 during the first 3 months after harvest due to very favorable conditions for biological activity. After 18 months, no less than 80% of the carbon from the plant residues was mineralized. About 16% of straw carbon and 24% of root carbon was transferred into soil organic matter. The annual rate of soil organic matter decomposition was approximated as 1.7%.Contribution from the Missouri Agricultural Experiment Station, Journal Series Number 10134 相似文献
10.
Long‐term effects of crop rotation and fertilization are mostly observed with respect to the amount of soil organic matter (SOM) and measured in terms of soil organic carbon (SOC). In this paper, we analyze the SOM composition of samples from long‐term agricultural field experiments at sandy and clayey sites that include complex crop rotations and farm‐yard manure applications. The organic matter (OM) composition of the soil samples, OM(Soil), and that of sequentially extracted water, OM(W), and sodium pyrophosphate, OM(PY), soluble fractions was analyzed using Fourier Transform Infrared Spectroscopy (FTIR). The fraction OM(PY) represented between 13 and 34% of SOC, about 10 times that of OM(W). Site specific differences in OM(Soil) composition were larger than those between crop rotations and fertilizer applications. The smaller C=O group content in FTIR spectra of OM(W) compared with OM(PY) suggests that analysis of the more stable OM(PY) fraction is preferable over OM(W) or OM(Soil) for identifying long‐term effects, the OM(Soil) and OM(W) fractions and the content of CH groups being less indicative. Farm‐yard manure application leads to a more similar content of C=O groups in OM(PY) between crop rotations and fertilizer plots at both sites. Short‐term effects from soil tillage or potato harvesting on composition of OM require further studies. 相似文献
11.
The hypothesis that stress ethylene production could determine plant sensitivity to ozone was tested with spring wheat (Triticum aestivum). The mechanism includes formation of radicals which induce peroxidative chain reactions. NO in the low ppb range could induce additional ethylene production. NO was added to three ozone levels in order to investigate its potential in enhancing ozone toxicity. Using malondialdehyde, ethane emission and activity of ascorbate peroxidase as indicators of peroxidation reactions, no indications for the postulated interaction was found. NO at low ozone concentrations induced effects on yield and physiological parameters similar to those of increased ozone concentrations, but this was not due to additional ethylene production. At higher ozone concentrations no adverse effect of NO addition could be detected. 相似文献
12.
AbstractA pot experiment was conducted to study the interaction effects of phosphorus and copper on wheat. The soils used were calcareous loamy sand (ls) and non calcareous sandy loam (sl). Four levels of Cu (0, 5, 10 and 20?mg Cu kg?1 soil) and six levels of P (0, 25, 50, 100, 200 and 400?mg P kg?1 soil) were applied in all possible combinations with three replications. Soil pH decreased with Cu application while Olsen P increased with P application in both soils. Growth and yield of wheat improved significantly with graded levels of applied P. However, when any level of P was combined with 20?mg Cu kg?1 soil, severe iron chlorosis of leaves, a drastic reduction in growth and chlorophyll content was observed in calcareous ls only. The results indicated that it was Cu and not P that induced Fe deficiency in wheat grown in alkaline calcareous soil and the Cu requirement of the crop seemed to be much lower in the calcareous ls. Root dry matter, grain and straw yield decreased with increasing levels of applied Cu in ls but in sl maximum increase of 62.5, 74.3 and 63.7 per cent in root, grain and straw yield was observed with a combined application of 400?mg P and 5?mg Cu kg?1 soil over control. Accumulation of Cu in roots decreased the Fe absorption by roots which indicated that Fe chlorosis of wheat leaves is expected when Cu: Fe concentration ratio in root is > 0.30. 相似文献
13.
Murat Ali Turan Süleyman Taban Günsu Barişik Kayin Nilgün Taban 《Journal of plant nutrition》2018,41(11):1351-1357
A greenhouse experiment was conducted with three doses of boron (0, 1, and 10 mg B kg?1 in the form of boric acid (H3BO3). Durum wheat (Triticum durum L. cv: Çakmak-79) and bread wheat (Triticum aestivum L. cv: Gerek-79) cultivars were used as plant material. B toxicity symptoms strongly appeared in durum wheat compared to bread wheat. Applications of B at 1.0 mg B kg?1 stimulated and increased the dry weights of both the cultivars, while high level B application (i.e., 10 mg B kg?1) depressed and decreased the dry weights significantly. B concentration and uptake in the leaf tip were increased with an increase in B application, whereas calcium (Ca) concentration and uptake were decreased in both the cultivars. It was observed that a substantial amount of B was accumulated in the plant cell wall. As similar to leaf tips, B concentrations in the cell wall also increased with B application, whereas Ca concentration was decreased. 相似文献
14.
The herbicide isoproturon is widely used for controlling weed/grass in agricultural practice. However, the side effect of isoproturon as contaminants on crops is unknown. In this study, we investigated isoproturon-induced oxidative stress in wheat ( Triticum aestivum). The plants were grown in soils with isoproturon at 0-20 mg/kg and showed negative biological responses. The growth of wheat seedlings with isoproturon was inhibited. Chlorophyll content significantly decreased at the low concentration of isoproturon (2 mg/kg), suggesting that chlorophyll was rather sensitive to isoproturon exposure. The level of thiobarbituric acid reactive substances (TBARS), an indicator of cellular peroxidation, showed an increase, indicating oxidative damage to plants. The isoproturon-induced oxidative stress resulted in a substantial change in activities of the majority of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX). Activities of the antioxidant enzymes showed a general increase at low isoproturon concentrations and a decrease at high isoproturon concentrations. Activities of CAT in leaves showed progressive suppression under the isoproturon exposure. Analysis of nondenaturing polyacrylamide gel electrophoresis (PAGE) confirmed these results. We also tested the activity of glutathione S-transferase (GST) and observed the activity stimulated by isoproturon at 2-10 mg/kg. 相似文献
15.
Okot-Kotber M Liavoga A Yong KJ Bagorogoza K 《Journal of agricultural and food chemistry》2002,50(8):2410-2417
Polyphenol oxidase (PPO), known to induce browning in wheat-based products, has been shown to be activatable in wheat (Triticum aestivum) bran extracts by chemical compounds. The activity in the extracts could be increased to varying degrees with acetone, methanol, ethanol, 2-propanol, and n-butanol as additives in the extraction buffer. The most potent alcoholic activator was n-butanol (about a 3-fold increase), followed by 2-propanol and ethanol, whereas methanol had the least effect. Ionic detergents in the extraction buffer were also good activators, with sodium dodecyl sulfate (SDS) being more potent (3-fold increase) than cetyltrimethylammonium bromide (CTAB) that had only half as much effect, whereas the nonionic detergent, Triton X-114, was ineffective. The chaotropes, urea and guanidine x HCl (GND), were the most potent activators of all, increasing the activity over 4-fold. Of the two chaotropes, GND was more effective at lower concentrations (<6 M) than urea. However, the enzyme activity lessened at a higher concentration of GND (6 M), while there was a further increase in the activity with 6 M urea treatment. The activity lessened with higher concentration of GND presumably as a result of extensive denaturation of the enzyme, as GND is known to be a more potent denaturant than urea. It is hypothesized that in wheat PPO exists in an inactive form which may be activated by the presence of activators, hitherto unknown, similar in effect to that elicited by the chemical denaturants in this study. 相似文献
16.
Ibrahim S. Alsaadawi Ali K. Sarbout Laith M Al-Shamma 《Archives of Agronomy and Soil Science》2013,59(10):1139-1148
Studies were conducted to screen eight sunflower (Helianthus annuus L.) genotypes for their allelopathic potential against weeds and wheat crop, which customarily follows sunflower in Iraq. All sunflower genotypes significantly inhibited the total number and biomass of companion weeds and the magnitude of inhibition was genotype dependent. Among the eight genotypes tested, Sin-Altheeb and Coupon were the most weed-suppressing cultivars, and Euroflor and Shumoos were the least. A subsequent field experiment indicated that sunflower residues incorporated into the field soil significantly inhibited the total number and biomass of weeds growing in the wheat field. Sunflower genotypes Sin-Altheeb and Coupon appeared to inhibit total weed number and biomass more and significantly increased wheat yield compared with the least-suppressive genotypes (Euroflor and Shumoos). Chromatographic analyses by HPLC revealed the presence of 13 secondary metabolites in residues of the tested sunflower genotypes. All the isolated compounds appeared to be phenolic, with the exception of terpinol, which is a terpenoid derivative. The total concentration of Phytotoxins (phenolic compounds) was found to be higher in the most-suppressive potential genotypes compared with the least-suppressive genotypes. 相似文献
17.
长期定位施肥对冬小麦干物质生产、产量形成及钾素吸收分配的影响 总被引:1,自引:0,他引:1
采用田间试验、室内分析与数理统计相结合的方法研究了潮土区长期定位施肥对冬小麦干物质生产、产量形成及钾素吸收分配的影响。结果表明,长期施用化肥(NPK),有机无机肥配施(MNPK),无机肥配合秸秆还田(SNPK)均能显著提高冬小麦茎蘖数、地上部干物质积累量、籽粒产量及钾素积累量,但三者之间并无显著差异。冬小麦吸钾量在整个生育期内呈"低-高-低"单峰曲线变化,在扬花期至灌浆前期达最大值,拔节期吸钾量与冬小麦生长关系最为密切,与产量、地上部干物质积累量、穗数、穗粒数、株高及穗长均呈显著正相关。冬小麦在生育后期存在钾素外排现象,外排的钾素量达43.05~114.81kg/hm2,是冬小麦成熟期钾素积累量的1.55~3.09倍,冬小麦生育后期钾素管理不容忽视。 相似文献
18.
Fernando Shintate Galindo Marcelo Carvalho Minhoto Teixeira Filho Salatiér Buzetti José Mateus Kondo Santini Eduardo Henrique Marcandalli Boleta Willian Lima Rodrigues 《Journal of plant nutrition》2020,43(8):1057-1069
AbstractNew studies are needed to optimize the nitrogen (N) amount that can be applied to utilize the Azospirillum brasilense benefits. In addition, information regarding the interaction between the urease inhibitor and biological nitrogen fixation (BNF) and how they affect the macronutrients accumulation are also needed. We evaluate the effect of N sources and doses associated with A. brasilense regarding the macronutrients accumulation in straw and grains and wheat grain yield in tropical conditions. A randomized block experimental design was used with four replications in a 2?×?5?×?2 factorial arrangement as follows: two N sources (urea and urea with urease enzyme inhibitor NBPT; five N doses (0, 50, 100, 150, and 200?kg ha?1) applied in topdressing; with and without A. brasilense inoculation. We found that an increase in N doses positively influenced the accumulation of macronutrients in straw and grains and the wheat grain yield. N sources have similar effects. Inoculation with A. brasilense increased accumulation of Mg and S in straw and P, Ca, and Mg in grains, regardless of the N dose. The inoculation with A. brasilense associated with 140?kg ha?1 of N increased wheat grain yield. The inoculation can contribute in a more sustainable way to wheat nutrition and optimizing N fertilization. 相似文献
19.
P. Mäder Stephan Edenhofer Thomas Boller Andres Wiemken Urs Niggli 《Biology and Fertility of Soils》2000,31(2):150-156
Arbuscular mycorrhizal (AM) root colonization was studied in a long-term field trial in which four farming systems currently
in use in Switzerland were continuously applied to a randomized set of plots at a single field site from 1978 till 1993. There
were two low-input farming systems (organic and bio-dynamic) and two high-input (conventional) farming systems (according
to Swiss guidelines of integrated plant production with and without farmyard manure). The systems had an identical 7-year
crop rotation and tillage scheme and differed essentially only in the amount and type of fertilizer supplied and in plant
protection management. The percentage of root colonization by AM fungi was determined in field samples 2–3 times over the
growing season in crops in the rotation, namely in winter wheat (Triticum aestivum L. cv. Sardona), vetch-rye and grass-clover. We found the percentage of root length colonized by AM fungi to be 30–60% higher
(P≤0.05) in the plants grown in soils from the low-input farming systems than in those grown in conventionally farmed soils.
Approximately 50% of the variation of AM root colonization was explained by chemical properties of the soils (pH, soluble
P and K, exchangeable Mg), the effect of soluble soil P being most pronounced. The potential of the field soils from the differently
managed plots to cause symbiosis with AM fungi was tested in a glasshouse experiment, using wheat as a host plant. Soils from
the low-input farming systems had a greatly enhanced capacity to initiate AM symbiosis. The relative differences in this capacity
remained similar when propagules of the AM fungus Glomus mosseae were experimentally added to the soils, although overall root colonization by AM fungi was 2.8 times higher.
Received: 27 August 1999 相似文献
20.
Summary Three field experiments with wheat were conducted in 1983, 1984, and 1985 in Terra Roxa soil in Paraná, the major Brazilian wheat-growing region, to study inoculation effects of various strains of Azospirillum brasilense and A. amazonense. In all three experiments inoculation with A. brasilense Sp 245 isolated from surface-sterilized wheat roots in Paraná produced the highest plant dry weights and highest N% in plant tops and grain. Grain yield increases with this strain were up to 31 % but were not significant. The application of 60 or 100 kg N ha–1 to the controls increased N accumulation and produced yields less than inoculation with this strain. Another A. brasilense strain from surface-sterilized wheat roots (Sp 107st) also produced increased N assimilation at the lower N fertilizer level but reduced dry weights at the high N level, while strain Sp 7 + Cd reduced dry weights and N% in the straw at both N levels. The A. amazonense strain isolated from washed roots and a nitrate reductase negative mutant of strain Sp 245 were ineffective. Strains Sp 245 and Sp 107st showed the best establishment within roots while strain Cd established only in the soil. 相似文献